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'Abstract

The Functional Languages and Architecture Group at the Massachusetts Institute of Technology
have been investigating many aspects of program decomposition, code-generation, and resource
management for a dataflow multiprocessor, the Tagged Token Dataflow Architecture. This report
summarizes the developments in these areas. Static analysis techniques serve to guide how
programs are mapped onto the machine for efficient execution. A certain class of nested loops is
shown to exhibit a "hyperplane of parallelism” that can be exploited to assign essentially sequential
tasks to processors. In general, dataflow programs require dynamic storage management and
dynamic allocation of work to processors. A dynamic resource management system for the Tagged
Token Dataflow Architecture is outlined. This resource management system structures the machine
resources 1o reduce the complexity of resource allocation. Blocks of work are assigned dynamically
to collections of processors. The mapping of individual activities to processors within a collection is
dictated by parameters set by the compiler and is carried out automatically by the hardware,

Key words and phrases: computer architecture, dataflow, multiprocessors, multitask, program
decomposition, resource management, von Neumann architectures.



Final Report: Program Decomposition
for Multiple Processor Machines

1. Introduction

Members of the Functional Languages and Architectures Group at M.LT. Laboratory for
Computer Science investigated various aspects of program decomposition, code-generation, and
resource management in the Tagged Token Dataflow Architecture under funding from the
International Business Machines Corporation through T. J. Watson Research Laboratory.
Substantial progress was made in a variety of areas. As we came to understand the problems
involved, the architecture evolved to meet new requirements. Thus, theoretical investigations were
continually mixed with development of simulation tools, compilation techniques, and re-evaluation
of the architecture. One prevailing realization of this project is that the ground is very fresh; there
is much more work to be done.

The issues in program decomposition for a dataflow multiprocessor are vastly different from
those in more conventional contexts. Dataflow programs offer fine-grained parallelism
independent of any particular machine feature. Dataflow machines can exploit diffuse,
unstructured parallelism. Most parallel computers in use today exploit specific, highly structured
forms of parallelism dictated explicitly in the program code. We would like to introduce this report
by explaining further the differences between a dataflow machine, such as the Tagged Token
Dataflow Architecture, and other parallel architectures in regard to program decomposition.

Consider first the kinds of high-speed parallel computers developed to date (e.g., Illiac 1V, Cray 1,
and Cyber 205). These machines offer specific vector constructs for parallel operation on arrays of
data. A program executes sequentially until a parallel operation is encountered. The parallel
operation is performed. and sequential execution resumes. There is no flexibility in how these
parallel operations are performed. On a pipelined processor, data is streamed from memory,
through the processor, and back to memory. Memory conflicts slow the pipeline beat. On an array
of processors, arrays of data are fetched in parallel. An operation is performed and an array is
written back, If there is contention for memory or conflicts in transferring data from memory
modules to processor modules, the entire machine waits until the last item of data is transferred. In
these machines, program performance can be greatly affected by the manner in which arrays are
mapped onto storage. However, only initial progress has been made in optimizing storage
atlocation. The primary program decomposition issue is how to expose the specific structures that
the machine can exploit. This can be thrown entirely on the user by offering special parallel
constructs in the programming language or can be addressed as a compilation problem; recognize
vector constructs in sequential code.

Loops in a sequential language can be transformed into vector constructs if there are no
dependencies between iterations. Dependencies arise through the use and subsequent reuse of
storage. If a variable is written by statement S, and later read by statement S, , with no intervening
writcs, there is a data dependency between S, and S;; information is oonveyeé from §; to S, via this
variable. If variables are only written once, only data dependencies are manifested. However, to
save space, programmers generally write into variables repeatedly. 1If a vartable is read by S, and
later written by Sj, or written in both S, and Sj, there is an artificial dependency between S, and Sj,
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even though no information is conveyed between the two instructions. If there is any dependency
(real or artificial) from Si to S., the two instructions must be executed in the order specified by the
sequential program; they can not execute in parallel.

Professor Kuck and others have worked extensively on exposing vector constructs in existing
FORTRAN programs. The first step is to recognize dependencies and construct a graph
representing the potential dependencies between pairs of instructions. There is a potential
dependency from §; to S, if (1) some variable appears in both 5; and S., (2) this variable is written in
at least one of the two instructions, and (3) there is a control sequence in which S is executed before
S. such that the shared variable is not written between 5, and S, There are a variety of problems
with this sort of dependency analysis. (1) It breaks down in {he presence of aliasingl, because
syntactically distinct variables may denote the same location when the program is executed. {2) The
potential dependency graph is a crude characterization of the actual dependencies (especially in
unstructured code, as generally found in large FORTRAN programs) because it must account ior
all possible control sequences. In many cases, a sequence of jumps, branches, and conditionals that
apparently leads from S, to S; may in fact be impossible because of mutually exclusive conditions on
the branches or it may be rarely traversed. (3) For array references, subscript analysis is required to
determine if two references may potentially denote the same location. Banerjee’s work [3, 4] offers
_ fairly powerful techniques for detecting dependencies in array references for a restricted class of
subscript expressions, appearing in simple loops. A conservative approach must be adopted in
constructing the potential dependency graph; a dependency is assumed to exist between a pair of
statements, unless proven otherwise. The second step in exposing vector constructs is to transform
the program to remove artificial “dependencies [17, 5,11, 4, 8,12, 14, 18).  Invariably, these
transformations introduce additional storage to avoid artificial dependencies. After these
transformations have been performed, loops which exhibit recognizable vector structure can be
compiled into the specific vector constructs of the target machine,

Another important class of parallel computers exploit unstructured, high-level parallelism ina
concurrent sequential process framework. Machines of this ilk have been developed for a variety of
real-time applications and as research tools for parallel computing [19]2. Programs are generally
written in languages which support multiple zasks, such as Ada. A program is decomposed into a
collection of tasks, usually by the programmer. Each task is a fairly large, independent block of
computation. Tasks communicate through message passing or shared variables. The programmer
has the onus of ensuring proper synchronization between concurrent tasks. The primary program
decomposition issue for this class of machines is how to assign tasks to processors. Generally, the
collection of tasks is small and stable. An estimate is made (by the programmer) of the
communication between pairs of tasks and the processing requirements of each task. A variety of
optimization techniques have been developed [15, 16, 6] to determine an assighment of tasks to
ProCessors.

1Aliasing arises when two different identifiers denote the same location. This can happen for example in FORTRAN if
variables are equivalenced, if a variable is passed as two of the arguments to a procedure, or if a variable that is declared in
COMMON is passed to a procedure.

zl'he current trend in high-speed machines is moving toward exploiting high-level parallelism in addition to structured
fine-grained parallelism. The Burroughs BSP, Cray X-mp, and Cray 2 are prime examplcs.
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The situation with dataflow machines is quite different from either of the scenarios depicted
above. Dataflow machines exploit unstructured, fine-grained paralielism, but they are not limited
to exploiting vector constructs. Dataflow machines also exploit high-level parallelism, but tasks are
small, short-lived, and extremely dynamic. Parallelism is exposed without special action on behalf
of the programmer and without exotic program transformations. The basic instruction scheduling
mechanism takes care of synchronization between concurrent computations automatically. An
instruction for a conventional machine specifies (explicitly or implicitly) locations where operands
are to be found, a location where the result is to be stored, and the instruction to execute next. An
instruction for a dataflow machine is quite different; each instruction specifies the collection of
instructions which are to use its result as an operand. Data is transferred explicitly between
instructions, rather than implicitly through data storage. An instruction is scheduled to execute
when its operands have all been sent to it. There is no instruction counter stepping through the
program, as in conventional machines, and no explicit parallel operations. Any instruction can
potentially execute in any processor. Parallelism is generated automatically, because whenever two
instruction have operands available concurrently, they may execute in parallel. A dataflow program
is a data dependency graph. There is no explicit use of storage, and hence no artificial
dependencies between instructions. Fach procedure or loop in a high-level dataflow program is
compiled into a dataflow graph, or code-block. As code-blocks are invoked, the program unfolds
into a larger graph. The primary program decomposition issue is how to assign work to processors
as the program dynamically unfolds. Invoking a code-block is analogous to spawning off a task, but
a task of a restricted nature because the only form of interaction is the transfer of arguments and
results. Fach code-block invocation represents a block of computation which manifests a
substantial amount of instruction level parallelism and can potentially be assigned to any collection
of processors in the system,

The remainder of this report describes the approach we have adopted for program decomposition
on the Tageed Token Dataflow Architecture. This approach involves a combination of static and
dynamic assignment of work to processors. The collection of processors in the system are
partitioned into smaller collections called domains. Code-block invocations are dynamically
assigned to domains by the resource management system. The work comprising a code-block
invocation is distributed automatically over processors in a domain based on parameters set by the
compiler, as a Tesult of static program analysis. Section 2 of the report describes some of the static
analysis techniques we have developed. Section 3 describes the hardware structures which allow for
automatic distribution of work within a domain and the resource management system which assigns
code-block invocations to domain. Section 4 describes some of the simulation tools we have
developed for experimenting with program decomposition on the Tagged Token Dataflow
Architecture.

2. Static Decomposition of Programs

Experience with conventional multiprocessors has demonstrated that programs perform well only
when their structure matches the underlying structure of the architecture [9]. We believe this to be
much less of a problem with dataflow multiprocessors for two reasons. (1} The dynamic instruction
scheduling mechanism provides tolerance to long, unpredictable communication latencies, because
while one instruction is waiting for data, others continue to execute. (2) A significant amount of
flexibility is allowed in the way a program is mapped onto the machine. We employ static program
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analysis to characterize the behavior of portions of a dataflow program, and use this
characterization to map programs onto the machine. The basic idea can be illustrated with a simple
example. The program shown in Figure 2-1 reduces a matrix to a column vector by summing the
elements in each row. A total of n instances of the inner loop are invoked, each executes n
iterations. The data dependencies can be seen clearly by unfolding the loops, as shown in Figure
2-2. Each node represents the computation involved in a single iteration of the inner loop. The arcs
represent data dependencies between iterations. We often call this unfolding of loops a dependency
lattice, due to its regular structure.

procedure Reduce(A,n)
(init R <- <>
for i from 1 to n do
R[i] <- (init sum <- 0
for j from 1 to n do
new sum <- sum + a[i,j]
return sum)
return R)

Figure 2-1: A Simple Dataflow Program with Nested Loops
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Figure 2-2: Dependency Lattice for Reduce

Given a machine with »n processing elements (PEs), there are two obvious ways to map this
program onto the machine. (1) Assign all iterations of the i" instance of the inner loop to the jh
PE. (2) Assign the jth iteration of each instance of the inner loop to the j‘h PE. These two mappings
are described in Figure 2-3. The Assignment 1 is superior because all processors operate
concurrently on independent tasks. The parallel structure of the machine is aligned with the
parallelism in the program. With the Assignment 2, the computational activity sweeps across the
processors, leaving many idle while others work.

If we adopt an abstract view of dataflow program execution, we can see why Assignment 1 is
intuitively better than Assignment 2. The basic rule in dataflow computation is that instructions
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Figure 2-3: Mapping Strategies for Reduce

execute when there operands become available. If we ignore for a moment how a particular
machine would perform this computation and focus on the abstract model, this program has a clear,
natural behavior. Initially, the first iteration of each instance of the inner loop is enabled for
execution. As iterations complete, they enable their successors. A wavefront of activity sweeps
across the dependency lattice normal to the j axis, as suggested in Figure 2-4. Assignment 1
effectively projects the dependency lattice along the j axis; thus distributing the parallel activity
across the processing elements, and assigning a sequential task to each one. The machine operates
in concert with the natural behavior of the program. Assignment 2 assigns a collection of parallel
activities to each processor.3.

These ideas can be formalized to provide a characterization for a broad class of programs, A
k-deep nested loop unfolds into an k-dimensional lattice, with one iteration of the inner loop at
each node in the lattice. Each vector (x),x,, .. X,) defines a collection of k-1 dimensional
hyperplanes, normal to the vector. A loop exhibits a hyperplane of parallelism if there is a vector
X = (XX, .., X, ) such that for any hyperplane TI normal to X, once all nodes to one side of I have
been computed, all nodes within IT can be computed simultaneously. In the simple example above,
the j axis defines such a hyperplane of parallelism. Once the node to the left of the line j = ¢ have
been compute, all nodes on the line j = c can be computed in parallel. Culler demonstrated [7] that
in general, if node I = (i}, i,,.. ,ik) depends on nodes I + B;, I + B,,... for some collection of

3Actua]ly, Assignment 2 is not as bad as it might appear; it will require twice the computing time as the Assignment 1.
PEi + will not wait for PE. to finish all its work; as soon as PE, finishes one iteration, data becomes available for Pi to
use, '}hc wavefront of activity will tend to sweep across the lattice at a 45° angle to the axes. This kind of adapta_\_)ljlity
makes dataflow multiprocessor less sensitive to the quality of the program decomposition than conventional

multiprocessors.
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Figure 2-4: Wavefront of Activity for Reduce

constant vectors B,B,.... then either the loop exhibits a k-1 dimensional hyperplane of parallelism
or the loop is illegal because it specifies cyclic data dependencies. This result follows directly from
the Strong Duality Theorem of Lincar Programming. Thus, all legal loops which involve array
references of the form A[i1+b1, 'i2+b2,...,ik+bk] and have boundary conditions that are
independent of the data computed in the loop exhibit a hyperplane of parallelism. The result
suggests an attractive way to map nested loops onto a collection of processors; project the k
dimensional lattice onto a k-1 dimensional hyperplane of parallelism to collapse the sequential
aspect of the program. then subdivide the resulting hyperplane among the processors, Such a
mapping will tend to distribute the parallel activity across processors and keep sequential tasks local
to a processor. Standard linear programming techniques (ie, simplex algorithm) suffice to
determine whether such a hyperplane exists, and to find one if it does exist.

As a more realistic example, consider the program for successive relaxation shown below. It
appears that a recurrence is present along all three indices. Nevertheless, a sequence of planes can
be found such. that once all nodes in the region between a plane and the origin have executed, all
nodes within the plane may execute simultaneously. In this case, the planes normal to the vector
<1,1,2> satisfy this property. Figure 2-5 demonstrates the flow vectors to the point <L,1,1>. The
dashed lines describe the plane of parallelism.



procedure SOR(X0,f,n,kmax,w,h)

This computes a solution to the Dirchelet problem in a square
by Successive over-relaxation,

X0 gives initial distribution including boundary conditions.
The grid is square with indices running from 0 to n+l.

kmax is the number of relaxations to perform,

w is the relaxation factor.

h is the time stap.

—tew G v = e -

(initial u <~ <0: X0>
for k from 1 to kmax do
new ufk] <~
(initial x <- <0:u[k-1,0], n+1l:u[k-1,n+1]>
for 1 from 1 to n do
new x[1] <-
(initial x_row <- <0: ufk-1,1,03, n+1: u[k-1,1,n+1]>
for j from 1 to n do
new x_row{j] <- :
(u[k-1,7,3] + w*(uk,i,3-1] + u[k,1-1,j] + u[k-1,1,j+1]
+ ulk-1,9+1,j] - 4*u[k-1,1,3] - h*h*f[i,j])/4)
return x_row)
return x)
return u[kmax])
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Figure 2-5: Flow vectors in SOR

This mapping technique is appealing, but has its drawbacks. First, complicated hyperplanar
projections will require sophisticated hardware to compute where a given node it to be performed.
Secondly, the hyperplane of parallclism may not be aligned with the flow of communication. The
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lattice shown in Figure 2-6 is a prime example. The hyperplane of parallelism is defined by the
vector (1.1). However, if the lattice is projected along this vector, all data transfers are external (ie,
from one PE to another). External communication is generally more costly than internal
communication, Projecting along either the i or j axis may yield a better execution behavior, even
though the parallelism in the machine is not aligned with the hyperplane of parallelism. The
wavefront of activity will still tend to sweep across the lattice normal to (1,1).

\4

Figure 2-6: Lattice with Unaligned Flow of Data

For the case where the number of iterations is much larger than the number of processors, it is
important to determine how to group portions of the lattice to be assigned to one processor. We
investigated two kinds of groupings [7]. Assuming that the lattice has been collapsed to form n
tasks, the i task can be assigned to processor i MOD k or to Lisk / nd. The second approach
provides more locality and invariably requires less external communication than the first,

The approach suggested here should be compared with similar work targeted at vector processors.
Kuck [11] and Lamport [13}have proposed a similar wavefront method for transforming loops into
vector constructs’. The collection of nodes within a hyperplane of paratlelism can be computed in
parallel by a vector operation, before advancing to the next. To exploit this parallelism, the loop
must be transformed so that the outer loop index effectively advances along the normal to the
hyperplane of parallelism. This introduces a variety of problems. (1) Since the loop is actually
transformed, extreme care is required to guarantee that the resulting program is equivalent to the
original. (2) Unless the normal is aligned with one of the original loop indices, the index
calculations in the transformed loop become very complex. (3) The access pattern for the data
involved in each vector operation also becomes complex; generally more complex than vector
machines support. Our goal is to characterize the behavior of a program and to determine how to

4’Ihe theory is much simpler in the case of conventional machines because data dependence arises from reading a value
stored by a lexicographically previous ileration. A simple back substitution suffices to determine the hyperplane. There is
no possibility of cyclic dependencies.
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‘map it onto the machine, rather than to remove recurrences. Program correctness can not be
affected by the mapping. Simple mappings which fail to capture the hyperplane of paralielism
execute correctly, exhibit ample parallelism, and often require less external communication than
those that capture the hyperplane precisely. The actual execution activity will tend to approximate
the hyperplane of parallelism, if the mapping is reasonably close. Also, this technique can be
employed for loops which fail to meet the exact conditions of the hyperplane result; since the
program is not changed in. any way, approximate characterizations provide useful mapping
information and still allow the program to execute correctly.

The dynamic scheduling mechanism of dataflow processors influences program decomposition
significantly, Decomposition issues are entirely divorced from program correctness issues; a
program will execute correctly under any decomposition, but will execute more efficiently under
some than others. The efficiency of the machine is affected by the quality of the program
decomposition, but to a lesser extent than conventional machines. The machine does not rely on
specific parallel constructs, each processor begins computing as soon as data is available. However,
the dynamic scheduling mechanism introduces a new class of problems. A program can not
accurately be viewed as simply a sequence of loops, as is customary with FORTRAN programs.
Rather, it is a collection of concurrent producer-consumer relationships. Thus, it is not necessarily
wise to focus on minimizing the time required for a given loop, since all resource allocation
decisions effect all other co-existing portions of the program. Moreover, tokens only travel on the
arcs in theory: in practice they are stamped with some kind of tag and must be navigated to the
place of execution. Mapping policies must be built upon some efficient set of hardware mapping
primitives.

3. Resource Management in the Tagged Token Dataflow Architecture

Static analysis techniques, such as those presented in the previous section, aid in mapping
portions of a program onto collections of processors. However, they are not powerful enough to
deal effectively with dataflow programs in the large. Dataflow programs are extremely dynamic, so
it is difficult to predict the overall structure of the collection of co-operating tasks that will exist at
any time. Thus, a dynamic resource management system has been developed for the Tagged Token
Dataflow Architecture to assign blocks of computation to collections of processors, as a program
unfolds dynamically. This assignment is determined primarily by the work load experienced by the
various processors. This section outlines the architecture, examines the trade-offs in static and
dynamic allocation of resources, and demonstrates how the dynamic resource management system
assigns code-block invocations to collections of processors, called domains. The distribution of
work within a domain is dictated by static analysis, as suggested in the previous section.

3.1. Architectural Background

The Tagged Token Dataflow Architecture (TTDA) is composed of a number of Processing
Elements (PEs), connected by a packet switched communications network. Each PE is a complete
dataflow computer. The basic organization is shown in Figure 3-1. The PE consists of a number of
asynchronous, pipeline stages, connected by FIFO buffers. The various stages form three
subsystems. The subsystem shown toward the right in Figure 3-1, performs the basic instruction
processing. The stages of this pipeline reflect the essential steps in the processing of a dataflow
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instruction: detect when data has arrived to enable an instruction, fetch the instruction, compute the
result, generate result tags, and finally dispense the result tokens. The subsystem to the left
provides storage for data structures. The structure store incorporates a number of innovative ideas
to atlow for sharing of information without constraining parallelism. The benefits of this approach
are presented in-Arvind and lannucci [2]. A detailed design of the controller for the data structure
storage is presented in Heller [10]. The center subsystem includes a PE controller, which provides a
variety of support operations, including input/output, block transfers, and access to the resource
management system.

3.1.1. Tokens and Tags

In the Tagged-Token Dataflow Architecture values are carried on fokens, which are passed from
one instruction to the next. The arrival of data causes the corresponding instruction to be fetched,
unlike a conventional computer in which the execution of an instruction causes data to be fetched.
There is no program counter in this machine, Each token carries a ¢ag, in addition to a data value,
which specifies the instruction to be executed. The tag contains essentially three items of
information, the address of the PE which is responsible for executing the instruction, the address of
the instruction to execute within this PE, and the context in which the instruction is to be executed.
The PE address is required because the program, that is, the code-block, is spread over many PEs,
and tokens must be freely transferred between PEs. The contextual information is required because
the TTDA is a parallel computational model; many logically distinct activations of a given code-
block may be in execution simultaneously, There miust be a way to distinguish the various
activations so that token belonging to different activations do not interact. All tokens belonging toa
given activation carry the same context identifier or color. Thus, two tokens are destined for the
same instance of an instruction if and only if their tags match.

3.1.2. Instruction Processing

Upon arriving at a processing element, a token enters the waiting-matching section. The tag it
carries is compared against the tags of all the tokens resident in the waiting-matching store.
Instructions are limited to two operands, so if a match is found, the corresponding instruction is
enabled for execution. The two matching tokens are purged from the waiting-matching store and
forwarded to the instruction fetch section, The instruction specified in the tag is fetched from
program memory, along with any required constants. The data values are aligned, and an operation
packet is sent to the ALU for processing. In parallel with the ALU, the compute-tag section forms
tags for result tokens, based on the destination list of the instruction and contextual information on
the input tag. The result values and tags are merged to form tokens and passed on (o the
communication network, whereupon each is delivered to the PE specified in its tag.

3.1.3. Tolerance to Communication Latency ,

In many respects, a multiprocessor setting presents a fundamental architectural challenge.
Communication latency between processors is generally large and unpredictable. Thus, for a
multiprocessor architecture to be successful, the individual processing elements must be extremely
tolerant to communication latency. The PEs which comprise the Tagged-Token Dataflow
Architecture meet this challenge. Note that once an instruction is enabled, it may be processed to
completion without further communication with other PEs. The pipeline is never held up by
communication latency. Waiting only takes place in the waiting-matching section. Completion
detection for external communication is provided naturally by the basic instruction scheduling
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Figure 3-1: The Tagged Token Dataflow Architecture

mechanism; when data arrives an instruction is scheduled. This dynamic scheduling, coupled with
the ability to interlace many independent threads of computation, allows for overlapped requests to
the communication system, tolerates long latencies, and tolerates unordered responses.



3.2. Managing Resources i

The description of the architecture presented above assumes that the program graph is in place,
distributed appropriately over the machine. We now examine the process of executing programs on
the Tagged-Token Dataflow Architecture at a somewhat higher level. It focuses on how resources
are managed and how work is distributed over the machine,

3.2.1. Code-block Activation

Fach code-block activation in a dataflow program represents a task, which can be executed
anywhere on the machine. These tasks are fairly small; they correspond to individual procedures or
loops in a high level dataflow language. A new task is dynamically created every time a procedure
or loop is invoked. Thus, the structure and quantity of tasks in execution is extremely variable and
dynamic. This raises a fundamental question. In what manner should block activations be
distributed over the collection of processors? At one extreme, it is possible to follow a completely
static approach; define at compile time a mapping from code-block activations to processors. When
a code-block is invoked simply compute the PEs that are responsible for the activation. If sufficient
resources are not available to support the activation in the designated PEs, the program aborts. The
other extreme is a completely dynamic approach; build a run-time system (a resource manager) to
allocate code-block activations to PEs based on the machine status and the availability of resources.
When a code-block is invoked, a request is sent to the manager to determine where the activation
should be performed.

3.2.2. Static vs. Dynamic Allocation

Each of the two approaches offers advantages and disadvantages A static approach offers very low
run-time overhead, but a dynamic approach offers more generality. Most high speed machines
today adopt a purely static approach; essentially all scheduling is determined by the code which is
generated. Storage is allocated statically. This caters fairly well to scientific applications written in
FORTRAN. This kind of approach can be extended to deal with a multiple processor
environment, if there are machine language construcls to cause a sequence of instructions to begin
executing on a given processor. If the decomposition is just right, the performance can be
extremely good. There is little overhead caused by the distribution of work at run-time. However,
if the structure of the program is not closely related to the structure of the machine, the
performance may suffer dramatically [9]. A static decomposition may fail because work is assigned
to a processor with insufficient resource, even though other processor could support the task.

Functional languages require dynamic resource allocation and thus preclude a purely static
approach. Various aspects of a program’s structure can be gleaned through static analysis, but these
only influence, rather than determine, the allocation of resources. Dynamic allocation on the
Tagged-Token machine is undertaken at the level of code-block invocations, each of which is
assigned to a group of PEs at run-time. This level of granularity reduces the overhead associated
with dynamic atlocation. The distribution of the individual activities which comprise a code-block
invocation is determined staticaily. If the code-block has a clear structure, e.g., a loop or a recursive
procedure, this is exploited by hardware structures which allow instances of the code-block to be
distributed automatically. The results of static analysis influence how this automatic distribution is
performed.

When a code-block is invoked, the status of the machine can be examined to determine where
there are resources available to perform the activation. This provides a way to dynamically balance



..13-

the workload over the machine, in addition to avoiding the problems with the static approach
mentioned above. David Culler has developed a dynamic resource management system as part of a
detailed simulation of the Tagged Token Dataflow Architecture along these lincs, This resource
management system has also been adopted for the emulated dataflow machine. We are currently
experimenting with various atlocation algorithms. Collections of processors are grouped together to
provide an efficient way to exploit the special structure of loops and recursive procedures, As static
analysis techniques develop further, we will consider more aggressive optimizations to exploit
special structures. The remainder of this section outlines the design of the resource management
system.

3.2.3. Hierarchy of Resources ‘

When a code-block is invoked, the task of executing it is assigned to a collection of PEs. A variety
of resources are required to support the activation: program memory, code-block registers, colors,
etc. Co-ordinating resource allocations between a variety of PEs can be extremely cumbersome, if
PEs are allowed to co-operate in arbitrary ways. In order to keep the complexity of resource
management tractable, a hierarchy is imposed on the set of system resources. In effect, the manager
deals with blocks of resources and allows the hardware to distribute them at a finer grain
automatically. This also allows the number of requests to the manager to be reduced.

The notions of physical domain and physical subdomain are introduced to facilitate selecting a set
of PEs for an invocation. The collection of PEs in the system are divided into disjoint physical
domains (PD), each being a set of consecutively addressed PEs. This partition is not allowed to
change while programs are running. Each Physical Domain may be further partitioned into a set of
disjoint physical subdomains (PSD), again each is a set of contiguously address PEs. The size of the
PSD is dynamic and will vary for different code-blocks in a given PD. A code-block activation is
assigned to a domain, and a complete copy of the code is placed in each subdomain.

To simplify memory management, we require that memory allocation be identical in every PE in
a given domain. The code-block is split into as many sub-blocks as there are PEs in a subdomain.
Fach PE receives one sub-block, all starting at the same base address. This allocation is replicated
for each subdomain in the domain, as shown in figure 3-2. For computational efficiency we require
that all PD and PSD be a power of two in size. '

Each copy of the code-block may be used by many concurrent activations and each of these may
require mapping information to be stored local to the PEs, so that result tags can be generated.
Again, by grouping activations together this mapping information can be kept within reason. Each
PE contains a set of 256 code-block registers (CBR), Each code-block register contains a code-base
address and information pertaining to the mapping of the code-block onto the domain. Hues,
which serve to distinguish concurrent activations, are partitioned into a set of Colors, Each Code-
block register can support 16 Colors; additional information can be associated with cach color.
Code-block registers, like program memory, are allocated uniformly throughout each domain.
With this partitioning, the manager views the system resources in terms of domains, code-block
registers, and colors.

To illustrate the role of the manager, consider the process of code-block activation. A request is
sent to the resource manager. It first selects a domain with sufficient resources to support the
activation. If the code-block is not present in this domain, it will have to be loaded. In this case, the
subdomain size may be set as suggested by the compiler, or as determined by the resource manager.
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Figure 3-2: Allocation of Program Memory Across a Domain

A code-block register must be allocated, and a set of colors, relative to this CBR, is assigned to this
activation. Finally, program memory is allocated throughout the domain and the code is loaded.
Mapping information is established in each PE to describe the disposition of the code-block, as part
of the CBR. Further information pertaining to each color can also be provided. The code-block is
now ready to execute. The manager allocates argument and result structures and sends descriptor
to both the caller and the newly activated code-block. The code-block may now execute on its own
except for invocation and resource allocation requests. Subsequent invocations of the same code-
block may share the CBR, if colors are available. If not, a new CBR must be allocated, but it may
share the copy of the code. In either case the mapping parameters will have to be the same as the
original, since the code has the same disposition. New color information may be provided.

These resource management concerns essentially dictate the structure of the tag carried on tokens,
It consists of five fixed size fields <PE#, CBR, Color, Initiation #, Relative instruction Address>.
The code-block register gives the base address of the code and the base address of the color
information. This allows instructions and constants to be fetched from program memory. The
CBR also describes the disposition of the code-block across the domain, so the hardware can
generate tags for result tokens.



3.2.4. Distribution of Work Within a Domain

The resource manager provides a mechanism for initiating a code-block activation. The
distribution of work within a domain is dictated by parameters set by the compiler. These
parameters are the mapping primitives upon which static decomposition strategies are based. Two
kinds of local distribution of work are supported: distribution of activities within a subdomain, and
distribution of repeated initiations across subdomains. These mechanisms are described below.

The simplest class of code-blocks are acyclic graphs, which arise form non-recursive procedures
with no internal loops. Each instruction in such a code-block is executed once per invocation. The
work involved in an invocation can be distributed over a collecion of processors by simply
partitioning the graph and assigning the various partitions to different processors. This partitioning
is determined by the compiler and expressed by the order in which nodes appear in the
representation of the graph.

Highly repetitive program structures, such as loops and recursive procedures, execute each
instruction in the graph many times. Numerous iterations of a loop, or numerous recursive
invocations of a procedure may execute in a domain without interaction with the resource manager.
Each color has associated with it 256 initiation numbers. Loops and recursive procedures make use
of the initiation numbers to distinguish tokens belonging to different iterations, or different
recursive invocations. Loops utilize the D operator, which increments the initiation number.
Recursive procedures may make use of the R operator, which computes a new initiation number of
the form A *1 + B. : ‘

The hardware provides a mechanism to distribute iterations and recursive invocations over
processors in a domain efficiently. Recall, each domain can be partitioned into subdomains, and
when a code-block is invoked in a domain a copy of the graph is placed in each subdomain.
Repeated initiations can be assigned to subdomains by hashing the initiation number in the tag.
Instructions for a given initiation are distributed over processors in a subdomain by partitioning the
graph as describe above. The subdomain size is determined by the compiler. Initiations can be
assigned to subdomains in blocks, ie., k initiations on the first subdomain, the next k on the second,
and so on. So initiation i is assigned to subdomain Li/k] MOD s, where s is the number of
subdomains in the domain. This provides enough flexibility to express the two mappings for the
Reduce example presented in Section 2. The rationale follows along the lines discussed in Arvind,
et. al. {1].

The results of the static analysis are expected to guide the resource manager in making
allocations. In particular, it enters into the process of choosing among domains, choosing
subdomain size, choosing k (the number of iterations to keep together), and for deciding where to
allocate data structures. Conveying this information is somewhat subtle, however, Completely
static information, such as nesting relationships, can be included in the compiler output along with
the code. Execution dependent information is supplied by augmenting the graph slightly and
sending information along with the request. Currently, only simple information is conveyed in this
way, such as the expected number of iterations. But we are investigating more powerful aids of this
form

Many loops may exceed 256 iterations, hence a facilities are provided for aflocating blocks of
colors and for using the next color in the case of initiation number overflow. The compiler
generates code (o test whether all colors and initiation numbers have been exhausted and to issue a
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manager request for more colors in case they are.

3.2.5. Compiler Responsihilities5 .

Introducing a resource management system into a dataflow model raised a number of interesting
compilation issues. The U-interpreter is entirely independent of resources; it assumes unbounded
computational resources. In order to execute dataflow programs on a practical machine, resources
must be explicitly requested. They must also be released in some manner. The basic dataflow
graphs must be augmented so that the resource manager request is generated when resources are
required. Also, the compiler must generate code to make proper use of blocks of resources, For
example, to use initiation numbers properly, it is necessary to handle overflows, and so on. The
compiler must generate code to determine when resources can be released. This involves detecting
completion of code-block activations and proper handling of reference counts for structures.

Detecting completion is somewhat tricky in a dataflow system; some instructions may be waiting
for data, even though the value which is to be the final result has been produced. This situation
arises particularily in the presence of conditionals. Thus, termination of activity within a code-block
activation is not synonymous with returning a result, as it is with conventional machines. Program
graphs must be embellished to detect the termination of activity for each code-block activation. For
acyclic graphs there is little trouble. A signal token is generated for any operators which have no
destinations. These and all the output arcs of the graph form the inputs to a binary reduction tree.
The token that falls out the bottom of the tree is the last token of the activation. This technique can
be extended to loops, but care must be taken to avoid serializing loops that would otherwise provide
parallelism. The special signal token of one iteration is part of the completion tree for the next. In
effect, completion detection is serial, even though the loop may be parallel. The detection simply
lags behind the loop execution.

One important implication of this incremental completion detection is that it makes it possible to
run loops of arbitrary number of iterations using a few colors. The loop is given multiple colors. As
it exhausts one color it goes on to the next or requests more. The completion follows behind
detecting and releasing colors that are no longer needed and, hence may be recycled.

The compiler must also assist in the detection of parallelism in loops in data structure
constructions. When certain restrictions apply, arrays can be modeled as I-structures which aflows
for a more parallel implementation than for ordinary structures Detecting those arrays which can be
implemented as I-structures is difficult in general; it involves analysis similar to the that done by
vectorizing compilers during code vectorization. There are, however, several important special
cases where I-structures can be detected casily. We have also found several situations in which the
techniques of vectorizing compilers can be borrowed and applied. Once I-structures are created by
the compiler, they must eventually be reclaimed. Since I-structures are acyclic, reference counting
can be implemented. Overhead of maintaining reference counts can be substantially reduced if
they are incremented at procedure call and exit only.

5Dewa]opmenl of the compiler has been carried out by Vinod Kathail under funding from ARPA. Guidelines for
compiler development were established through work described in this report.
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4. Architecture Development and Simulation

Over the past year, a detailed simulation of the Tagged Token Dataflow Architecture has been
developed in conjunction with IBM T. ). Watson Research Center®. This simulates the behavior of
the hardware down to the individual stages in the pipeline and the finite buffers connecting them,
It implements the functional characteristics of each stage as Pascal procedures and carries explicit
timing information to model the temporal behavior. Currently this is over 10,000 lines of Pascal
code. The basic simulated machine has been operational since June 1983. The period since then
has been devoted to developing the resource management system and responding to evolutions in
the architecture.

The simulation serves as a "soft” prototype of the machine. It has allowed the design to be carried
through in substantial detail, without the overhead of building hardware. Progress has been
incremental in both the simulation and the architecture. In many cases the process of writing
simulation code caused us to solidify the design. In some cases, the design was simply insufficient
for the task and had to be modified. In particular the relationship of the instruction fetch, tag
generation, and token forming stages evolved substantially after we had a very detailed
understanding of their tasks.

Modeling the finite buffers proved to be the most subtle aspect of the simulation. The basic
requirement was that each stage be represented by a Pascal procedure which could be implemented
with no knowledge of buffers or simulator scheduling; it simply receives a token at some time and
produces a list of tokens at some later time. The fabric of the simulation interfaces these procedural
modules to the time-dependent buffers. The problem is that because a given stage is allowed to run
to completion, it actually gets ahead of the downstream stage, and it may appear that a buffer is full
when indeed it should not be. We solved this problem by having the downstream station issue a
receipt for each token it removes. Whenever the two stations meet in time, it is possible to
reconstruct the precise history of insertions and deletions to the buffer. With this mechanism we
are able to guarantee that no insertion and no removable is performed too early or too late.

Perhaps the most valuable aspect of the simulation development was the experience with building
a resource manager. Since the compiler does not yet support streams or managers, we developed
the resource manager as a Pascal program, The basic issues were the same, however, and in the
simulation we try to account for the manager overhead appropriately. The current version supports
the means-ends analysis described above and block color allocation for loops. We plan to
cxperiment with more sophisticated techniques in the coming months. '

5. Conclusion

Our research over the past year has dug deeply into the exigencies of running programs on our
machine: generating good code, distributing the work, and managing resources. In many ways this
is a very new area of research, primarily by nature of the highly parallel environment. However, the
issues addressed in this report are not restricted to dataflow; they are applicable to any

6”f‘nis work is being carried out on an IBM 4341 on long term loan from the IBM Glendale Laboratory in Endicott,
New York. The simulation development is primarily through ARPA funding, however, partial support for Keshav
Pingali was provided under the IBM grant reported here.
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multiprocessor system comprising many autonomous processors. Dataflow simplifies some aspects
and complicates others. We have yet to study how restricting the programming language could
simplify resource management and architecture. For example, Id treats procedures as first class
data objects; restricting this would simplify the program analysis at the expense of programming
generality. Also, we have not dealt specifically with issues like splitting a code-block into two pieces
efficiently. The techniques for these kinds of problems are well represented in the literature and are
not as essential to the success or failure of the approach as the issues presented here. The topics
discussed in this report are still under active investigation. In particular much work needs to be
done to be able to abstract that information from a program which would be most useful in guiding
the resource management system during execution. This involves analyzing programs to determine
which information is essential for resource management, developing compilation techniques to
generate it, and resource management techniques to make use of it. |
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