LABORATORY FOR MASSACHUSETTS
INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

~

ID Compiler User’s Manual

Computation Structures Group Memo 248

Version of February 7, 1986

Steve Heller

Ken Traub

This research was supported in part by Advanced Rescarch Projects Agency
of the Department of Defense under Office of Naval Rescarch contract no.
NO0014-75-C-0661. Ken Traub is supported by a fellowship from the
National Science Foundation.

~

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139






1D COMPILER USER'S MANUAL (FEBRUARY 7, 1986} 1

1. Introduction

1.1. Overview

The Functional Languages and Architectures Group at MIT’s Laboratory for Computer
Science is designing a Dataflow Multiprocessor called the Tagged Token Dataflow Architecture
(TTDA) which will run the dataflow language ID. ID was originally described in a paper by Arvind,

Gostelow, and Plouffel; this manual describes the current 1D compiler.

The ID compiler has evolved over several years, beginning with Vinod Kathail's Version 0 in
1982. Written in MACLISP, it ran on MIT-XX (a DECSYSTEM-20) and was never fully debugged;
it is no longer supported. After being transported to Symbolics 3600-series Lisp Machines, enhanced,
and debugg.ed, Version 0 became Version 1, the version described in this manual. Version 1 has been
both available and supported since January, 1985, and has successfully compiled programs as large as
1200 lines. Version 2 will be designed to be far more flexible than its predecessors, facilitating
compiler related research and experiments. This version is currently in the planning phase and

should be available by the summer of 1986.

Figure 1-1 shows the relationship of the ID compiler to FLA’s other software facilities. It’s
primary purpose is to produce executable code for the TTDA simulator and TTDA emulator, on
which dataflow experiments are performed. The ID compiler also produces other forms of output
which are useful when debugging ID programs, the simulator and emulator, and the compiler itself.
Another facility, called IDSYS, exists for interpreting ID programs directly, without the intermediate
step of producing TTDA code; it achieves this by translating ID into MACLISP. While IDSYS is
available on MIT-XX, it is no longer being supported, and the dialect of ID it accepts differs
somewhat from the version accepted by the ID compiler. In particular, the interpretation of

structures differs in a subtle way.

]Arvind. K. P. Gostelow, and W. Plouffe, 4n Asynchronous Programming Language and Computing Machine, University of
California, levine, Department of information and Computer Scierce, Techrucal Report TR-114, December. 1978, At that
time, 1D stoed for Invine Datafow: perhaps now it stands for Institule Datallow!

-



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

1D Program
Source Code

v v

IDSYS | ID Compiler

(Unsupported) Version 1

Human-readable
Abstract Graph ——<{>
{.VAG )

Human-readable Machine-readable
TTDA Graph ——<|> TTDA Graph —<]>
{.VMC ) {.NMC )

Machine-readable
Abstract Graph
{.LAG)

N
v,

Results of Direct Simulator Emulator
L >—— Source Code

Execution

‘ Results of Results of
# # Simulation Emulation
_ l 4

Source Code Verification Dataflow
Verification and Debugging Experiments

Figure 1-1: The 1D Compiler and Retated Facilities



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986) 3

1.2. The ID Compiler

The ID compiler is a large LISP program that takes an ID source file as input and produces
an object file and a listing file as output. The object file contains the compiled version of the ID
program; this may be either a U-interpreter style graph or machine code for the Tagged-Token
Dataflow Architecture, in either a human-readable or a machine-readable form, as desired. The
listing file contains a listing of the source program, together with line numbers, statistics, and error

messages produced by the compiler,

The ID compiler currently runs on FLA’s Lisp Machines. This means that you have to have
access to one of FLA’s Lisp Machines to run the compiler directly, although the file system of the
Lisp Machine allows the source, object, and listing files to reside on any machine accessible to that
Lisp Machine. This means, for example, that you can still keep your files on XX even though you
invoke the compiler from JACARANDA. If you have access to XX but not to one of FLA’s Lisp
Machines, you can stilt use the compiler through the Remote ID Compiler (RIC) facility described in
Chapter 3. The compiler that used to run on XX is no longer available.

The information in this manual corresponds to Version 1.13 of the ID Compiler.



4 ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986) 5

2. Using the Compiler

The ID compiler can be used on any of FLA’s Lisp Machines.2 Unlike many Lisp Machine
programs, there is no special window associated with the 1D Compiler. Instead, you use a Lisp
Listenef to invoke the compiler (you can get a Lisp Listener by typing SELECT-L). The ID Compiler
is built into the "world" of FLLA’s Lisp Machines, so you need not do anything special before running

it

To compile a file, you give the Id Comp1ile command to the command processor. (For
more information about the Symbolics Command Processor, see the appropriate Symbolics
documentation.} Here is the description of the Id Compile command, following the format of

Symbolics’ documentation,
Id Compile Command

Id Compile source-file object-file listing-file keywords
Compiles an ID source file (collection of ID procedure definitions).

source-file The name of the ID source file. The default extension is ID; the default host, directory,
and name are taken from the usual file default.

object-file  The name for the file that will receive the object code. The default host, directory, and
name are taken from the corresponding field of source-file. The default extension
depends on the type of object code produced; see the :0bject Type keyword below.

listing-file  The name for the file that will receive the compiler listing. The compiler listing includes
the original ID source annotated with line numbers, any error messages produced, an
indication of the correspondence between unique code block names produced by the
compiler and the user’s procedure names (or line numbers in the case of loop code
blocks), and statistics related to the size of the program.

2lf you need to use it on some other [Lisp Machine, see Steve Heller or Ken Traub.



keywords  can be:

:0bject Type

:Constant Area

:New Symbols

ID COMPILER USER’S MANUAL (FEBRUARY 7, 1986}

{Numeric-Mc Verbose-Mc Lisp-Graph
Verbose-Graph}

The type of object code to be produced; the default is
Numer1c~Mc. This option also determines the defauit extension

for object-name, as described below:

Machine readable form of code for the
Tagged Token Dataflow Architecture, This
is the form understood by the simulator and
emulator. Default object-name extension:
NMC.

Numeric-Mc

Human readable form of code for the
Tagged Token Dataflow Architecture.
Default object-name extension: VMC.

Verbose-Mc

Lisp-style representation of the abstract U-
interpreter graph; theoretically machine
readable. Default object-name extension:
LAG.

Lisp-Graph

Verbose-Graph Human readable representation of the
abstract U-interpreter graph. Default
object-name extension: VAG.,

Examples of each of these types of output are given in Appendix
L

{yes no}
Whether to use constant areas in loops. The default is yes.

{yes no} ,

Whether to generate unique names for code blocks different
from names generated by earlier compiles. The default is no, so
that if you compile the same program twice the same unique
names will be generated. Adding this keyword to your Id
Comp1%e command is the same as :New Symbo1ls yes.

As an example, the command

Id Compile XX:<ARVIND>SIMPLE
will try to compile the file CARVIND>SIMPLEID on XX into a numeric machine code file
CARVIND>SIMPLENMC and a listing file CARVINI>SIMPLELISTING, both on XX.

One restriction on the use of the 1) Compiler is that only one campilation per machine can

L}



1D COMPILER USER'S MANUAL (FEBRUARY 7, 1986) 7

take place at once. This means, for example, that you can’t start a compilation from Lisp Listener 1

and then start another in Lisp Listener 2 while the first is still in progress.



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)



ID COMPILER USER’S MANUAL (FEBRUARY 7, 1986) 9

3. The Remote ID Compiler

The Remote ID Compiler (RIC) facility permits the ID Compiler to be used even when an
FL.A Lisp Machine console is not available. By using the network, a host can send a file o a Lisp
Machine for compilation, and receive the object and listing files, as well as the compiler’s informatory
mess:iges. Currently, RIC is only available on MIT-XX and other TOPS-20 machines, but there are
plans to implement versions for Unices (e.g., MIT-NEWTOWNE-VARIETY) and VM/370s (e.g.,
MIT-BIG-BLUE).

3.1. Using RIC on MIT-XX
Before invoking the compiler, it is necessary to type the following command to the EXEC:
Declare PCL PS:<ID.SS.RIC>RIC.PCL
It is a good idea to put this command in your LOGIN . CMD file so that you won’t have to worry about
it. This command defines a new EXEC command, ID-COMPILE, which is similar to the Lisp
Machine command described in Chapter 2. Cosmetic differences are necessary because of the two

systems’ different command processors.

The most general format of the ID~COMPILE command is:
ID~COMPILE Source-file Object-file Listing-file Options

The Source file, Object-file, and Listing-file parameters have exactly the same meanings and defaults
‘as the corresponding parameters for the Lisp Machine’s Id Comp1le command. Of these three
parameters, only Source-file need be speciﬁed. Compiler options, while usually appearing at the end
of the command, may actually appear anywhere after the word ID-COMPILE. Each option consists
of a slash followed by a keyword, and they have no associated value as they do on the Lisp Machine;

an option takes effect by virtue of its presence in the command line. The following options may be

specified:

/NUMERIC-MC Has the same meaning as :0bject Type Numeric-Mc on the Lisp
Machine,

/VERBOSE-MC Has the same meaning as :0bject Type Verbose-Mc on the Lisp
Machine,

/L1ISP-GRAPH Has the same meaning as :0bject Type Lisp~Graph on the Lisp
Machine. :

/VERBOSE-GRAPH  Has the same meaning as :0bject Type Verbose-Graph on the Lisp
Machine,



10 1D COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

/NO-CONSTANT Has the same meaning as :Constant Area No on the Lisp Machine. Not
giving this option has the same cffect as :Constant Area Yes on the Lisp
Machine.,

/NEH-SYﬁBOLS Has the same meaning as :New Symbols Yes on the Lisp Machine. Not
giving this option has the same effect as :New Symbols No on the Lisp
Machine,

The options /NUMERIC-MC, VERBOSE-MC, /LISP-GRAPH, and /VERBOSE-GRAPH are
mutually exclusive; only one of these options may be given. If none of these options are given,
/NUMERIC-MC is assumed. As on the Lisp Machine, these four options affect the default extension

for Object-file. As an example, the command

ID-COMPILE <SABROBST>EXPER1 /VERBOSE-GRAPH
will try to compile the file <SABROBST>EXPERLID into a verbose abstract graph file
<SABROBST>EXPER1.VAG and a listing file SSABROBST>EXPER1.LISTING.

RIC works by trying to find an FLA Lisp Machine that is willing to accept a compilation
request, and then establishing network connections for the source, object, and listing files to that
machine. With the exception of LIVE-OAK, the FLA Lisp Machines will not accept a compilation
request if the console has not been idle for at least one hour. This is done so that people doing work
on Lisp Machines will not be slowed down by the compiler. Since LIVE-OAK is not really a user
machine, it will accept a compilation request even if the console has not been idle. To avoid
disturbing people working on OAK, RIC will only try to use OAK if all the other machines refuse.

3.2. A Note to Lisp Machine Users

If your console is idle more than an hour, your machine might be used by RIC to compile 1D
programs. Itis a very good idea to make sure to save your work {editor buffers, etc.) if your console
will be idle for more than an hour, in case the compiler docs something bad to your machine {uses up

the last cons cell, for example).

There are certain cases when you might want to prevent remote compilations from taking
place on your machine even if the console is idle for a long time. An cxample might be if you start a

long number-crunching program on your machine. The following variable will then be of interest:



1D COMPILER USER'S MANUAL (FEBRUARY 7, 1986) 11

id:sv*minimum-console-idle-time Variable

The Lisp Machine will only accept remote compilation requests if the console idle time is
greater than the value of id:sv*minimum-console-idle-time, measured in 60ths of a second, The initial
value of this variable is 216000 (1 hour).

By setting id:sy*minimum-console-idle-time to some large value ((setq id:sy*minimum-
console-idle-time (* 60. 60. 60. 24. 365.)) will set it to one year, for example) you can prevent remote

compilations from disturbing your machine. You should not do this unless you have good reason.



12

ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)



ID COMPILER USER’'S MANUAL (FEBRUARY 7, 1986) i3

4. ID Syntax

This chapter attempts to define those features of the ID language that the ID compiler
compiles properly. Other features of the language are implemented by IDSYS, and even by the

syntax checker of this compiler, but they are not given here.

Uppercase and lowercase letters are interchangeable in ID.
4.1, Basic Syntactic Units

4.1.1. Whitespace and Comments

Whitespace (blanks, tabs, and/or line breaks) is required to separate adjacent constants,

identifiers, and keywords.

Comment:
V any text not containing an exclamation point |

4.1.2. Constants

There are two kinds of constants in ID, as described below,

4.1.2.1, Numeric Constants

All numeric constants in 1D are base 10. A numeric constant is any sequence of digits,
possibly including a decimal point, and possibly followed by an exponent. An cxponent is indicated

by the letter E followed by an optional minus sign (-} and then a sequence of digits.

Examples:
90 3.14159 .677 6.023E-23 10e80

4.1.2.2. Boolean Constants

The boolean constants true and false may be used.

4.1.3. Identifiers

Identifiers in ID are used to stand for expressions, procedure names, and formal parameters.
An identifier is a sequence of letters, digits. and underscores, of any length, that begins with a letter

or underscore. The following keywords may not be used as identifiers:



14 ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)
abs cos float max return
all decrement_rc from ‘min returns
allocate do if new select
allocrac each imports not sin
and else in or sqrt
append endir increment_rc pass_left thean
atan end_let init proc to
but false initial procedure true
by f1i Tambda remainder until
compose first log repsat while
cons fix Tet rast
Examples:

X bottom_r _s1ze ald7

‘4.2, Expressions

The types of expressions are presented here in a way that explicitly shows the precedence

and associativity of operators.

In ID, an expression may denote several values. The arity of an expression is the number of

values denoted by that expression, and may be any positive integer.

4.2.1. Primary Expressions

Primary expressions group left to right. Thus, x[ 1][ 3] is equivalent to (x[1])[J]-

Primary-expression:
Constant
Identifier
O
( Expression)
Primary-Expression[ Expression]
Builtin- Function-Name( Expression)
ldentifier( Expression)
Identifier( Expression) raturns Constant
Block-Expression
Conditional- Expression
Loop-Expression

Constants and identificrs are of arity 1.

The primary expression <> denotes a new I-structure of size 100, and is of arity 1. ‘Thisis an

obsolete construct; allocate( 100) should be used instead.



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986) 15

The primary expression s[ 1] denotes the ith element of the I-structure §. A multiple-
expression as subscript is syntactic sugar for a series of individual subscripts; thus s[1,J,k] is
equivalent to s[1][ j1[k] which is equivalent to ((s[1])}[JI)[k]. The primary-expression s
must evaluate to an I-structure; the selectors must evaluate to integers. The arity of such a primary

expression is 1.

The primary expression p(x) returns c¢ denotes the result of invoking procedure p.
which returns ¢ values, with argument(s) x. The form without the returns ¢ portion may only be
used if the procedure returns one value or if the name of the procedure appears in the import kst of
the procedure in which the calt occurs (see Section 4.4). The arity of this primary expression is the

number of values returned by the procedure.

The following built-in procedures exist, all of which are of arity 1:

Name Description
abs Absolute value. (1 argument)
allocate Allocate a new I-structure of a given size. allocate(3) returns an I-structure

of size 3, whose indices run from 0 through 2. (1 argument)

allocrec Allocrec is exactly the same as allocate; it exists solely for the benefit of those
doing type-checking experiments. (1 argument)

append Append(s,1,,1,,..,9, ,v) is equivalent to s + (4015001, Iv. Bor
more arguments) '
atan Inverse tangent of a quotient. (2 arguments)
- cos Cosine. (1 argument)

decrement_rc Decrement_rc(s,1) returns s, which should denote an I-structure, and adds
1 to its reference count. Note that ¥ should be negative to actually decrement the
reference count. Unlike 1increment_rc¢. decrement_rc returns s
immediately, without waiting for its reference count to be adjusted. (2 arguments)

fix Floating point to integer conversion. (1 argument)
Tloat Integer to floating point conversion. (1 argument)

increment_rc Increment_rc(s,1) returns s, which should denote an I-structure, after
adding 1 o its reference count.  Unlike decrement_rc, increment_rc
retarns § only after the adjustment to the refercnce count has been acknowledged.

-



16

Tog
max
min

pass_left

remainder

selact

sin

sqrt

1D COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

(2 arguments)

Natural logarithm. {1 argument)

Greater of two arguments. (2 arguments)
Lesser of two arguments, (2 arguments)

Pass_left(x,y) retumns x after both x and y arrive. This is useful for
introducing additional dependencies into graphs. (2 arguments)

Remainder from dividing two numbers. (2 arguments)

Select(s,1,.1,,..,1,) is cquivalent to s[1,,1,,...1,]. (2 or more
arguments)

Sine. (1 argument)

Square root. (1 argument)

4.2.2. Arithmetic Expressions

All arithmetic expressions are of arity 1.

4.2.2.1. Unary Expressions

Unary-expression:

Primary-expression
+Primary-expression
- Primary-expression

The primary expression must be of arity 1. The arity of a unary expression is 1,

4.2.2.2. Exponent Expressions

Exponent-expression:
Unary-expression
Exponent-expression t Unary-expression

4.2.2.3. Multiplicative Expressions

Multiplicative-expression:
Exponent-expression
Multiplicative-expression ® Exponent-expression
Multiplicative-expression I Exponent-expression



ID COMPILER USER’S MANUAL (FEBRUARY 7, 1986)

4.2.2.4. Additive Expression

Additive-expression:
Multiplicative-expression
Additive-expression + Multiplicative-expression
- Additive-expression - Multiplicative-expression

4.2.2.5. Relational Expressions

Relational-expression:

Additive-expression

Relational-expression { Additive-expression
Relational-expression {= Additive-expression
Relational-expression > Additive-expression
Relational-expression >= Additive-expression
Relational-expression = Additive-expression
Relational-expression ~= Additive-expression

4.2.2.6. Not Expressions

Not-expression:
Relational-expression
not Relational-expression

4.2.2.7. And Expressions

And-expression:
Not-expression
And-expression and Not-expression

4.2.2.8. Or Expressions

Or-expression:
And-expression
Or-expression or And-expression

4.2.3. I-structure Expressions

All I-structure expressions are of arity 1.

4.2.3.1. Append Expressions

Append-expression:
Primary-expression
Append-expression + [ Expression] Primary-expression

17

An append-expression that is just a primary-expression should be of arity 1 and denote an



18 . ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

I-structure. An expression like s+[ 1]v denotes the I-structure denoted by s with the value denoted
by v stored in element 1. The primary-expression v must be of arity 1. If 1 is of arity #, the meaning
of the append-expression is n - 7 selects followed by an append, consistent with the interpretation of

higher-arity subscripts (see Section 4.2.1).

4.2.4. Expressions

Expression:
Or-expression
Append-expression
Primany-expression
Expression , Or-expression
Expression , Append-expression
Expression , Primary-expression

The arity of a group of primary expressions separated by commas is the sum of the arities of

the individual primary expressions.
4.3. Compound Expressions

4.3.1. Conditional Expressions

Conditional-expression: ' :
(1T Expression then Expression @1se Expression ) (This is the preferred syntax.)
if Expression then Expression 1se Expression and1f
1T Expression then Expression @1se Expression 1

The first expression must be of arity 1. The arity of the entire expression is the arity of the

second and third expressions, which must be consistent,

4.3.2. Block Expressions

Block-expression:
(Vet Block-binding-list in Expression ) {This is the preferred syntax.)
1ot Block-binding-list 1n Expression end_let

Block-binding-list:
Block-id-list - Expression
Block-binding-list ; Block-id-list <= Expression

Block-id-list:
fdentifier
Block-id-list , ldentifier



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986) 19

The number of identifiers in each block-id-list must be equal to the arity of the
corresponding expression. The bindings define the values corresponding to the identifiers in the
block-id-lists. These bindings hold not oaly for the expression following the keyword 1n, but also for
the expressions in the binding list itself. Thus it is syntactically possible to express a circular binding,
but the compiler will flag this as an error. The arity of a block expression is the arity of the expression

following the keyword 1n.

4.3.3. Loop Expressions

Loop-expression:
( Loop-iterator Loop-binding-list return Expression )
(initial Block-binding-list Loop-iterator Loop-binding-list return Expression )

Loop-iterator:
while Expression do
for Identifier from Expression to Expression do
for Identifier f rom Expression to Expression by Expression do

Loop-binding-list:
Loop-id-list - Expression ‘
Loop-binding-list ; Loop-id-list {- Expression

Loop-id-list:
Loop-id
Loop-id-list , Loop-id

Loop-id:
Identifier
new /dentifier
Primary-expression[ Expression]
new Primary-expression[ Expression]

Identifiers used on the right hand sides of the bindings following the keyword 1nitial
always refer to identifiers defined outside of the Loop-expression. Note that this is different scoping
than for the bindings of a Let-expressions, in which identifiers on the right hand sides refer to
bindings defincd within the Let-expression, if those identifiers are defined there. Naturally,
identifiers appearing in the expressions of the Loop-iterator, in the right hand sides of the bindings in
the body of the Loop-expression, and in the Expression following the keyword return tefer to

bindings made within the Loop-expression, if those bindings exist.



20 ID COMPILER USER’'S MANUAL (FEBRUARY 7, 1986)

When there is no new kcyword preceding an identifier, the binding establishes an
intermediate value for use in the current iteration. When an identifier is preceded by the new

keyword, the identifier is bound for use in the next iteration.

All ex;ﬁressions in the loop-iterator must be of arity 1. The number of loop-ids in each
loop-id-list must be equal to the arity of the corresponding expression. The arity of a loop expression

is the arity of the expression following the keyword return.

4.4. Procedure Def'mitions

Procedure-definition;
proc Identifier ( Formal-list) Procedure-body
procedure Identifier ( Formal-list) Procedure-body
proc Identifier ( Formal-list) imports Import-list Procedure-body
procedure Identifier ( Formal-list) imports Import-list Procedure-body

Procedure-body:
Primary-expression
Or-expression
Append-expression

Formal-list:
Identifier
Formal-list , Identifier

Import-list:
Identifier raturns Constant
Import-fist , Identifier returns Constant

The arity of the procedure body is the number of values returned by the procedure. The
import-list may be used to indicate the number of values returned by procedures called within the
expression. An invocation of a procedure whose name appears in the import-list need not be suffixed

by returns Constant. The constants in the import list must be positive 'integers.

4.5. 1D Source Files

An ID source file consists of one or more procedure definitions. Each procedure is compiled

separately; the procedures are linked together by whatever program reads the object file.



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

5. Compiled Code Considerations

The following is a collection of useful facts about the code produced by the 1D Compiler.

¢ The code generated for procedures and procedure invocations enforces the requirement
that procedures be strict in all their arguments: execution of the procedure will not begin
until all arguments have been received. Similarly, the returned results will not be made
available to the calling procedure until all results are ready.

¢ When compiling a loop, the code for the loop body and return expression will be placed
in a separate code block from the code block of the surrounding code. This loop code
block will be invoked in much the same way as a procedure is invoked, except that
strictness is not enforced as it is for procedures. The expressions in the init{al part of
the loop will be compiled into the code block invoking the loop. The exception to this are
initial bindings which contain either <> or allocate(Expression), which are
compiled into the loop code block itself,

o Inthe body of aloop, new s <- s + [1]v,s[1] <~ v,and new s{1] <~ vare
semanticaily equivalent, but there is a difference in code generation. In the first case, the
I-structure descriptor for s will be circulated along an arc, while in the second and third
cases the descriptor will be stored in Constant Area. If the :Constant Area no
option is given to the compiler while compiling the second or third cases, they will be
exactly the same as the first,

21



22

ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986) 23

6. Bugs

Nobedy claims that the ID compiler is entirely bug free. If you think the compiler is
producing incorrect object code, bring the source file, object file, and what you think the object file
should be to either Steve Heller or Ken Traub. If the compiler enters the Lisp Machine error handler
while it is compiling, hit the ABORT key and send the source file to either Steve or Ken. Note that

whenever you abort out of the compiler, it deletes the object and listing files it was producing.



24

ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)



ID COMPILER USER’'S MANUAL (IFEBRUARY 7, 1986) 25

Appendix I
Sample Output

To get a feel for what kind of output the compiler can produce, this appendix gives a short
ID program, the listing file generated therefrom, and the four kinds of object files that can be
obtained through various compiler options. This example is intended to show the different types of
compiler output, not to illustrate programming in ID. See Appendix II for examples of 1D programs.

Actual object files have several blank lines before and after the text of the file. These blank

lines are not indicated here,

L.1. ID Source File

procedure test (x,y)
x+y

1.2. Listing File

The abbreviation AG stands for Abstract Graph, and the abbreviation MC stands for
Machine Code. ’ '

1 procedure test (x,y)

F] x+y
----- TEST (PO0D3): 3 AG Ops; 19 MC Ops; 147 Bytes
----- Total 3 AG Ops: 19 MC Ops: 147 Bytes
------------------------ COMPILER STATISTICS --~-==-w--cmeccmccncaaa.
Total Procedures: i
Total Code Blocks: 1
Total AG Ops: 3
Total MC Ops: 19
Total Bytes: 147
| Procedure | Code Block | AG Op | MC Op
———————————————————————— L et o et el
Average Bytes per | 147.0 | 147.0 | 49.00 | 1.74
Average MC Ops per | 18.0 | 19.0 | 6.33 |
Average AG Ops per | 3.0} 3.0 |
Average Code Blocks per | 1.00 |



) 26 ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

1.3. Numeric Machine Code (NMC)

BEGIN

CODE~BLOCK EXTERNAL PROCEDURE TEST P0003 147 2 1 0 0 0 C ©
PARAMETERS 0 0 4 64 1 00 0

MANAGERS *SUPER* 1 135

INTEGERS 8128 2 113 1 106 0 99 -1 79 2 64 1 52 -1 34 ¢

122 73 241 102 0 26 1 0 10 0
114 85 0 113 5 0 106 5 0 99 6
114 65 0 52 4

114 65 0 34 1 0 41 4

74 7397 0 0 41 6

114 65 0 79 1 0 64 1 0 52 6
125 25 87 0 0 94 B
00000

74 7397 0 0 71 0

114 65 0 21 5 0 142 4

74 73 97 0 0 86 0

114 65 0 21 7 0 142 6

114 65 0 120 0

126 25 97 0 0 94 4

76 121 97 0 0 99 4

76 121 97 0 0 106 6

67 86 0 128 0
000

121 133 97 0 0 135 0

120 132 196 0 0 0 O

197 0 113 6

END



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

I.4. Verbose Machine Code (VMC)

BEGIN
Code for procedure TEST
Unigue name is P0003
Expected number of arguments; 2
Number of returned valuas: 1
Maximum subdomain size: 4
Maximum bytes per PE using maximum subdomain size: 64

Disp Const  Dest Dest/ConstSpec Dest
Addr Opcode T1 T2 € Source Flag NT/ PNum/ Addr/ Flag
Length Class Value

0 EXPAND 1 0 2 0 1 1 15 192
‘ 0 0 26 1
0 0 10 0
10 IDENTITY 1 0 0 0 1 1 0 113 1
. 1 D 108 1
1 1 98 0
21 IDENTITY : 1.0 0 0 1 1 0 62 0
26 IDENTITY 1 0 0 0 1 0 0 24 1
1 0 41 0
34 FORM-ADDRESS-I-FETCH 1 0 2 ¢ 1 1 6 0
1 1 41 0
41 IDENTITY 1 00 0 1 0 0 78 1
0 ] 64 1
1 1 52 o
52 DECREMENT-RC 6 1 2 ¢ 1 1 6 -1
1 1 84 0
64 FORM-ADDRESS-I-FETCH 10 2 0 1 1 6 1
0 0 71 0
71 IDENTITY 1 0 0 0 1 1 0 21 1
1 1 142 0
79 FORM-ADDRESS-I-FETCH 10 2 0 1 1 6 2
0 0 86 ]
86 IDENTITY 1 0 0 0 1 1 1 21 1
1 1 142 0
94 TDENTITY 1 0 0 0 1 0 0 120 0
99 DECREMENT-RC 0 1 2 0 1 1 6 -1
i 0 94 0
106  FORM-ADDRESS-I-STORE 1 3 2 ¢ 1 1 6 0
1 0 98 0
113 FORM-ADDRESS-I-STORE 1 3 2 0 1 1 B 1
' 1 1 106 0
120 EXTRACT-TAG 10 0 0 1 0 0 128 0

128  COMPRESS 2 0D 1 0 1 1 6 2



28

138
142

END

USE

+C

ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986}

0 0 135 0
0 4 12 *SUPER*
1 1 1 113 0



ID COMPILER USER’'S MANUAL (FEBRUARY 7, 1986) 29

LS. Lisp-Style Abstract Graph (LAG)

Note that the .LAG file in this example has been formatted for easy readability. The actual

output from the compiler has no line breaks or extra whitespace.

( (CONS-CODE-BLOCK (NAME = TEST )
(U-NAME = P0003 )
(TYPE = PROCEDURE )
(EXT-OR-INT = EXTERNAL )
{(PREVIOUS = *SUPER* )
(EXTERNAL-PROC = NIL )
(ARGS-8-RET = (2 . 1) )
(ESSENTIALS = (*UNDEFINED®) )
(NO-OF-ESSENTIALS = (°*UNDEFINED*) )
(CODE = 64 )
(END = 65 )
(A-L-LIST = NIL )
(CONSTANT-LIST = NIL )
(ESSENTIAL-LIST = NIL )
(UNCONNECTED = (*UNDEFINED*) )
(HEADER-OPS = (*UNDEFINED*) )
(MACRO-NODES = NIL ))
(CONS-OPERATOR (INSTR-NO = 64 )
(OPCODE = BEGIN )
(CONSTANTS = NIL )
(OUT-LIST =
(LIST (*EMPTY®*)
{CONS-OUTPUT (NAME = X )
(DEST-LIST =
(LIST
(*EMPTY*)
(CONS-DEST
" (DESTINATION
66)
(PORT

. 1330
(CONS-QUTPUT (NAME = Y )
{DEST-LIST =
(LIST
(*EMPTY®)
(CONS-DEST
(DESTINATION
66)
{PORT

2)))))
(CONS-OUTPUT (NAME =
ID*TRIGGER)
(DEST-LIST =
(LIST
' (“EMPTY*))))))
{ALTERNATE-LIST = (LIST (%EMPTY*) } ) '
(IN-LIST = (LIST (*EMPTY*) } )
{MARK1 = T )
(MARKZ = (*UNDEFINED*) ))
(CONS-OPERATOR (INSTR-NO = 65 )
(OPCODE = END )
{CONSTANTS = NIL )
(OUT-LIST = (LIST (*EMPTY®*) ) )



30 ID COMPILER USER’S MANUAL (FEBRUARY 7, 1986)

(ALTERNATE-LEST = (LIST (*EMPTY*) } )
(IN-LIST =
(LIST (*EMPTY*)
(CONS-INPUT (NAME =
{(*UNDEFINED*))
(ORIGINATOR = 66 )
(PORT = 1)
(WEIGHT =
(*UNDEFINED*)))))
(MARK1 = T )
(MARK2 = (*UNDEFINED®*) ))
(CONS-OPERATOR (INSTR-NO = 66 )
(OPCODE = + )
(CONSTANTS = NIL )
(OUT-LIST =
(LIST (*EMPTY+)
(CONS-OUTPUT {NAME =
{*UNDEFINED*))
(DEST-LIST =
(LIST
(*EMPTY®*)
(CONS-DEST
(DESTINATION
65)
(PORT

NN
(ALTERNATE-LIST = (LIST (®EMPTY®) ) )

(IN-LIST =
(LIST (*EMPTY*)
(CONS-INPUT (NAME = X )
(ORIGINATOR = &4 )
(PORT = 1)
(WEIGHT =
(*UNDEFINED*)))
(CONS-INPUT (NAME = Y )
(ORIGINATOR = 64 )
(PORT = 2 )
(WEIGHT =
(*UNDEFINED*)))))
(MARK1 = T )
(MARKZ = {*UNDEFINED*) )))



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986) 31

I.6. Verbose Abstract Graph ((VAG)

COBE FOR PROCEDURE TEST
UNIQUE NAME 1S POOOD3
NUMBER OF EXPECTED ARGUMENTS = 2
NUMBER OF RETURNED VALUES = 1

~-= INSTRUCTIONS =--
NO. OUTPUT OPCODE DESTINATIONS CONSTANT/ SOURCE
NAME INPUT NAME
1 BEGIN
X . TO 2 M
Y T0 2 8z
2 +
X @1 FROM 1
Y 8 FROM 1
TO ae
3 END



R

1D COMPILER USER'S MANUAL (FEBRUARY 7, 1986)



ID COMPILER USER’S MANUAL (FEBRUARY 7, 1986) 33

Appendix II
Sample ID Programs

This appendix contains several examples of ID programs that demonstrate various features

of the ID language. The preferred syntax is used, and we recommend that you adopt our indentation

style.

IL.1. Arithmetic Expression

Expr is an arithmetic expression.

-
Expr computes the discriminant of a quadratic polynomial whose

coefficients are a, b, and c.

1
procedure expr (a, b, c)
b*b - 4*a*c

IL.2. Block Expression

Let_expr is a block expression. Note the scoping structure; x and y are defined and used in
the same block binding list. If the order of the bindings were changed, there would be no semantic
difference. Also, semicolons are used as bihd.ing separators, not terminators, so there is none after the

last binding,

1

Let_expr shows how variables can be used to name intermediate
raesults.

It

procedure let_expr (a, b, c, d)

{(let x <- a*b;

y <= c*d;
§ <- Xty;
t <= x-~y

in s/t)



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

IL.3. If Expression

If_expr returns two values based on the input. Foo calls if_expr and indicates the arity

inline; Bar calls if_expr and indicates the arity in the imports list.

111
If_expr computes both the larger and the absolute value of the

difference of its inputs.
!
procedure if_expr (a, b)

(if a>b
then a, a-b
else b, h-a)

procedure foo (a, b) .
(let x, y <- if_expr (a, b) returns 2
in 2+x, 3+y)

procedure bar (a, b)
imports if_expr returns 2
(let x, y <= if_expr (a, b)
in 2+x, 3+y)

1L.4. For Loop

For_loop demonstrates a for loop. The variable sum_increment does not circulate, and

hence has no new keyword. The variable sum does circulate and therefore usecs the new keyword to

specify the value for the next iteration.

1!
For_loop computes the nth triangular number (the sum of the
integers from 1 to n}.
1!
procedure for_loop (n)
(initial sum <- 0
for 1 from 1 to n do
sum_increment <- sum + 1i;
new sum <- sum_dincrement
return sum)



ID COMPILER USER’S MANUAL (FEBRUARY 7, 1986) 35

11.5. While Loop

While_loop uses a while loop to compute square roots using Newton’s method, Note the
usage of new_sqrt. new_sqrt gives us a handle on the newly computed sqrt value which is normally
referred to as sqrt in the next iteration. A similar-technique can be used to save old values from a
fixed number of previous iterations (e.g., to code a higher order recurrence relation). It was necessary
to bind sqrt as float(x) rather than x in case the user provided an integer as input. Then epsilon
would always be a non-zero integer due to round-off error (unless the input were a perfect square),

and the loop would never terminate,

1!
While_loop computes the square root of its input using Newton's
mathod.
11!
procedure while_loop (x)
(initial sqrt <- float(x):
epsilon <- T
while epsilon > .001 do
new_sqrt <- ((x/sqrt)+sqrt}/2;
new epsilon <- abs (x - new_sqrt*new_sqrt);
new sqrt <- new_sqrt
return sqrt)

I1.6. Simple Use of Arrays

Conz demonstrates the use of arrays.

1!

Conz uses a structure to perform cons. "Cons" is not used as it
is a keyword.

111

procedure conz {a, b)

allocate (2) + [0]Ja + [1]b



36 ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

I1.7. Array Calculation

Array_expr demonstrates an array based calculation. Note the zero based indexing and

allocation. By the way, all the calls to f'can proceed in parallel.

1
Array_expr fi11s an array of size n by calling the function f
for each position. Then the array is consumed by adding together
the elements. The producer and the consumer of the array should
be able to proceed in parallel. Since f is the square procedure,
array_expr computes the sum of the first n squares starting
with 0.
L _
procedure array_expr {n}
(let x <- (initial x <- allocate(n)
for i from 0 to n-1 do
x[i] <= F (1)
! £i11 the array by calling f for each position !
return x); :
sum <- (initial sum <- 0
for i from 0 to n-1 do
new sum <- sum + x[1i]
| consume each position in the sum !
return sum)
in sum)

procedure T (i)
i* i



/ : {D COMPILER USER'S MANUAL (FEBRUARY 7, 1986) 37

11.8. Complex Use of Arrays

Wave demonstrates the use of an array of arrays to encode a two dimensional structure.

R

Wave allows matrix computation to proceed in a wave fashion,
First the top row is loaded up with integers corresponding
to their positions. Then the rest of the rows are defined
by initializing the leftmost element to the index of the

row and letting A[1,}] <~ 1+min(A[i-1.31, A[1,j-11).

The wave proceeds from upper 1eft to lower right in a
diagonal fashion. The values in the matrix correspond
roughly to the order in which computation proceeds. The
matrix produced for a call with high=5 looks 1like:

WMo
O W N
oo bW
-~ Oy O I
M~ DO

Wave returns the element stored in the highest position, which
will turn out to be 2(n-1).
'
procadure Wave (high)
(initial ocean <- allocata (high)
+ [0](initial row <- allocate (high)
for i from 0 to high-1 do
row[{1] <= 1
return row)
for i from 1 to high-1 do
ocean [i] <- (initial row <- allocate (high) + [011
for j from 1 to high-1 do
row[j] <~ 1 + min (ocean{1-1,j], row[j-1])
. return row)
return ocean)[high-1,high-1]



1D COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

38

11.9. Simple Recursive Program

program that unfolds into 2 balanced binary recursion.

Recursive isa recursive

”» i : ossible until each call
divides its input as evenly as p Dl e ree e

ML U

receives gnh:nce -1 totd] invocat10ﬂ5 1

leaves an
11!

procedura

(if n = i

then 1 X

else (let fix

in recursive

)

recursive (n)

n < fix(n/2)

(fixn) + cocursive (0~ fixn)

11.10. Higher Order Recurrence

Recur is a 4th order recurrence relation. The variables bit0, bitl, bi2, bit3, and bit4 form a

software history of past computation.

N
Recur returns an array containing the. first n pseudo random

numbers of a particular sequence,. Numbers are generated by
shifting a five bit binary register to the right, and shifting
in the exclusive nor of two of the bit positions.
R
procedure recur (n)
(initial sequence <- atlocate (n);
bitld <-
bitl <-
bit2 <~
bitd <~
bitd <-
for i from 0 to n-1 do
sequence[i] <- 16*bit4 + 8*bit3 + 4*bit2 + 2*bitl + bit0;
new bit0 <- bitl;
new bitl <- bit2;
new bit2z <- bit3;
new bit3d <~ bit4;
new bitd4 <- (if bit2=bit0 then 1 else 0)
return sequence)

e ws wr ws

ocoocoo0oo



1D COMPILER USER'S MANUAL (FEBRUARY 7.1986)

Table of Contents

1. Introduction
1.1. Overview
12. The 1D Compiler
7. Using the Compiler
3. The Remote ID Compiler

3.1. Using RIC on MIT-XX
3.2. A Note to Lisp Machine Users

4, 1D Syntax
4.1. Basic Syntactic Units
4.1.1. Whitespace and Comments
4.1.2. Constants
4.1.2.1. Numeric Constants
* 4.1.2.2. Boolean Constants
4.1.3. Identifiers
472. Expressions -
42.1. Primary Expressions
42.2. Arithmetic Expressions
42.2.1. Unary Expressions
4.2.2.2. Exponent Expressions’
47.2.3. Multiplicative Expressions
42.2.4. Additive Expression
42.2.5, Relational Expressions
4.2.2.6. Not Expressions
4.2.2.7. And Expressions
4.2.2.8. Or Expressions
42.3. I-structure Expressions
4.2.3.1. Append Expressions
424, Expressions
4.3. Compound Expressions
43.1. Conditional Expressions
4.3.2. Block Expressions
4.3.3. Loop Expressions
4.4, Procedure Definitions
- 4.5. 1D Source Files

5. Compiled Code Considerations
6. Bugs
Appendix [. Sample Output
1.1. 1D Source File
1.2. Listing File
1.3. Numeric Machine Code {(NMC)
1.4. Verbose Machine Code (VMC) -

(=
GuE\o O U W e

13
13
13
13

13

14
14
16
16
16
16
17
17
17
17
17
17
17
18
18
18
18
19
20
20

21

25
26
27



1.5. Lisp-Style Abstract Graph (LAG)
L6. Verbose Abstract Graph (VAG)

Appendix 11. Sample ID Programs

IL.1. Arithmetic Expression
11.2. Block Expression

11.3. If Expression

I1.4. For Loop

11.5. While Loop

IL6. Simple Use of Arrays

I1.7. Array Calculation

1L8. Complex Use of Arrays
IL9. Simple Recursive Program
11.10. Higher Order Recurrence

{D COMPILER USER'SM

ANUAL (FEBRUARY 7. 1986)

29
31
33

33
33

34
35
35
36
31
38
38



ID COMPILER USER'S MANUAL (FEBRUARY 7, 1986)

List of Figures

Figure 1-1: The ID Compiler and Related Facilities

ii



