MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

Computation Structures Group Memo

25

ON THE EQUIVALENCE OF TWO ASYNCHRONOUS COMPUTATIOKN DRESCRIPTICON SCHEMES

Fred L. Luconi

December 1966

On the Equivalence of Two Asynchronous Computaticon Description Schemes

The advent of multi-processing computing facilities has given rise to
tiw problem of how to describe programming systems consisting of several
interacting sub-systems. Systematic procedures are needed to specify the
necessary nature of these interactions and to determine their effect
on total system performance.

Two recent doctoral dissertations at Project MAC have dealt with this
problem using seemingly diffcrent approaches. Jorge Rodriguez has used
a class of directed graphs called 'program graphs' to represent computatiomal
processesl, whereas Earl Van llorn has develped an abstract automaton-like
model which he calls an 'MCM', Machine for Coordinated Multiprocessing. Both
of these multi-process computational description schemes estahlish a
set of primary building blacks and rules for the interconnection and control
of networks built from these blocks. The property of well-formed structures
in both systems is that, given identical initial conditiens, the sequence of
different values appearing at any storage position (links in a Program Graph,
cells in an MCM) during operation of the structure is uniquely determined
and is independent of the trelative computational processing times taken by any

sub-computations.

I. The Two Structures Studied

a) Program Graphs (1) represent a c¢lass of directed graphs. Corresponding
to the branches of graphs are two types of links, i.e., contrisl links or
data links. Corresponding to the graph nodes are three twvpes of program

graph nodes, 1.e., operators, selectors, or junctions.

An operator is a node which has twe or more inmput connectors and omne or

mors oubtput connectors. The set of input connectors of an operator shall be

considered to be ordered so that we may uniquely identify a connector by its
ordinal npumber in the set. Similarly for the set of output connectors.
Operators will be represented im a program graph by a circle: (O)

A selector is a mode which has two or more input connectors and precisely
2 output connectors. The sets of input comnmecters and the set of ocutput
connectors cf a selector arec also ordered sets, In particular one output
connector af a selector will be labeled + and the other will be labeled -,
Selectors will be represented in a program graph by a diamond-shaped symbel. (&)
Operators and selectors have a zeroth inpubt connector which is distinguished
in that it can only be the tip of a control! link, furthermore it is not required
for such a link to exist at all. All zeroth input connectors which remain

unlinked are called free zeroth connectors.

1. Much of the description of program graphs is taken verbatim from reference 1.

A junction is a node which has twoe or more input comnnectors and ome
output connector. T[he set of input conmnectors of a junction is not ordered.
Junctions will be represented in a program graph by a rectangle. ([J)

A link is a directed line segment having a root and a tip. The
direction specified in a link by means of an arrowhead is from the root to
the tip.

In a program graph a link always conneets an output connector of a node
to an input connector of some other node. That is to say that the root
of a link lies at some culput counector while its tip lies at some input
connector.

A control link is ome which is rocoted at an output ceonnector of a selector

or at the output connector of a junction whose input connectors are tips of
control links.

A data link i=s one which is rooted at an output commector of an operator
or at the output connector of a junction whose input connectors are tips of
data links.

A program graph is a finite set of operators, selectors and junctions

interconmected by means of control and data links according to the following

rules:

a. Ewery input connector of an operator or selector must be the
tip of one data link except for the zeroth connecter which may

cnly be the tip of one contrel link.

b. Lvery input conmnector ¢f a junction is the tip of one data link
or one contral link. However, for any given junction all input
connectors must be tips of the sawme type of link. We shall

accordingly distinguish between data junctions and control junctions.

¢. Any ocutput connector may be the root of any number of links.

Links are capable of holding walues which thev receive from terminals
or output comnectors and give to the input connector at their tips.

The status of an input connecteor may assumc two possible conditions which
are called status 0 or status 1. When all the input connectors are in:
status 1, the operator or selector is applied and all input commnectors are put
in status 0. Such an occurance is called an A-event. When the application of
the operator or selector has yielded a new set of values, a B-event occurs
placing all output dependent input comnectors in status 1.

A junction is applied whenever oune or more of its input conmectors are in
status 1.

Under Rodriguez's interpretation, events may only occur at discrete time
intervals as determined by an independent clock. Associated with each operator,
selector and junction is an integer t 2 1 specifying the number of intervals

elapsed between the occurance of event A and event B for the node.

A program graph is deterministic if any two applications of the graph

to the same set of input values yields execution sequences such that the

same sequence of pperators andfor selectors generates the values appearing

on any specified link regardless of the time interval assignments to nodes of
the program graph. Since all nodes are assumed to be deterministic, i.e.,
they always yield the same ocutput values for a given set of input values,
this means that the seguence of different values appearing on every data

link is apecified completely by the initial conditioms.

For a thorough discussion of the properties necessary to insure the
determinism of a graph, the reader is referred to reference 1. For the model,
we will develop it is sufficient to say that every junction must have
mutually exclusive inputs i.e., no two input connactors may ever be in status
1 simultaneously.

b) Machines for Coordinated Multiprocessing, MCM's, are the automata-like
structures developed by Earl Van Horn to study the problem of multiprocess
determinism. There are three basic unit types to an MCM structure, the cell,
the control matrix, a2nd the scheduler.

The cell represents the basic storage unit of the MCM, It corresponds
to the memory cell, segment, hand regﬂéter, etc. of a computcr. However
an MCM cell may be either a value cell or a clerk cell. When a cell. is a
value cell, its contents represent data which may be used or changed by
qualified clerk cells. When a cell is a clerk cell, its contents specify

a particular entry in the transaction table associated with cach cell.

There must be one such enkry in the transaction table for every possible

value that can be held in the clerk cell. Twe types of transaction entrys

are
get i replace with f£(-}
put i with v replace with £(-)

When activated a clerk cell specifying a get will fetch the contents of cell i
and its contents will he changed according te f{-) which can have as arguments
the current contents of the clerk cell and the fetched value. One thing this
replacement can be used for is to sequence the actions of a clerk cell by
loading it with the wvalue necessary to specify the next instruction to be used.
When a clerk cell specifying a put is activated, the value v will be placed in
cell i and the contents of the elerk cell will be altered according to £(.).

The control matrix is Van Horn's means for controlling communication between
processes. If there are n cells in a particular MCHM, then the matrix will be
n x n. If cell i has read-capability for cell j, i.e., cell 1 will be allowed
to do a get 3, them matrix element (1,j) must contain a number greater than or
equal to 1. If cell i has write capability for cell j, i.e., cell i wiil be
allowed to do a put j, then element (i,i) must be the only element in colum j
whose contents are greater than 0. Because a clerk cell must read its own
value to specify a transactiom and must write into itself becausc of the
replacement function, a clerk cell is defined as a cell which has both read and
write capabilities for itself. The three matrix altering instructions which may

appear in a tramsaction table are:

send 1 to e replace with w
done i replace with w
bye to e replace with w

The send will add one to matrix element. (e,i), thus giving cell ¢ read
capability for cell i. The done performed by clerk cell x will subtract
one from matrix element (x,1), representing the relinquishing of read
capability for cell i by clerk cell x. The bye performed by clerk cell x
subtracts one from matrix element {(x,x) and adds one to(e,x), representing
clerk cell x yiclding write capability for itself to cell e.

The scedhuler's job is to activate (by sending go-pulses to) those clerk
cells which will be allowed to make their next transaction. Only enabled
clerks receive go-pulses, where by enabled we mean a clerk that has all the read,
write capabilities needed for the next transaction. Of the enabled clerks
the scheduler selects a choice set, in which no two clerks will try to alter
the same control matrix element if activated. The number of enabled, non-conflicting
clerks the scheduler activates is completely at the choice of the scheduler and may
even be chosen randomly if desiredjas long as each enabled cell eventually does
receive a goepulse. Once activated a clerk is allowed to make exaclly one
transaction. After all activated clerks have completed their single transaction,

4 computational state exists and the scheduler selects the next choice set.

Van Horn proves that a properly constructed MCM displays complete
functionality. By complete functionality is meant that given ldentical
initial conditions (initial values in all cells and the control matrixh
the ordered history of sucessive values obtained by each cell without
regard to time, must be the same (where defined) for all executions of
the MCM regardless of the relative pProcessing Limes assigned to various
transactions.

The next sections of this paper will show how an MCM can be modeled
by a program graph and vice-versa. After this correspondence has been
established, the remainder of the paper will discuss some properties of
interacting computational processes which appear in both MCM's and

Program Graphs and seem necessary to provide determinism.

1T,

An MCM Model of a Particular Deterministic Program Graph, PG 1

To esgtablish a time correspondence between the two representations, we

will say that both Lhe program graph and the MCM scheduler have access to

a clock with peried T, where T >»> operation time of any clerk cell tramsaction.

a) All links, control or data, will be modeled as a single value cell
having the same name as the medeled link. No difference will be made
between data value cells and coutrol value cells. They will be
differieniated only by what kind of c¢lerk cells can read and write
their values..

b) All operators as shown in figure 1 will be modeled as two MCM cells,
n.A and n.B, with the following properties.

i} ¢ell n.A has the following transaction table.l

get n.1l replace with next transaction and retain

the value of n.l

put ns.1l replace with next transacticn

send ns.1 £o n.B " "

done ms.1 n "

L1 1L

get n.2

n LA

put ns.2

gend ns.? to n.B " "

11} "

get n.P

puL ns.FP

send ns.P to n.B n "

1)

The puts are here assumed to store the value obtained by the last get

-1}~

done ns. P . "
done n.1 : 2

dong n.2 0 H

do

s

c n.P replace with first transaction

The timing nmust be such that if all read-write capabilities
are available, all of the above actions can take place within
one T-interval. The scheduler will allow the clerk containing
to proceed only at a T-instant.

ii) cell n.B has the following transaction table

get ns.P replace with next transaction

fﬁﬁpplication of node-n's function using the values in cells
ne.l —» ns.P. This function must always be a pure procedure
‘ﬁ in fhat it always yields the same results for identical input

values. When it is finished, it puts the output values on the

1 output 11 i i I .

\~ P ce]u, B 15 s P ip

send ns.l to n.A -

done ns.l. b e

send ns.2 to n.A " “

done ns.2 " a
done ns.p o "

¥ send X,i Lo & "

gend B.1, to B

send p-ip to p replace with first transaction

-11-

The scheduler will allow clerk containing * to proceed onlj
at a T-instant.

We can now examine how the above clerk cells can simulate the action of

operator n in PG 1. As values are presented to operator u, so cell n.A
receives read capability for the cells n.l thru n.p. This cell n.A having
read capabilicy for all n.i corresponds to input corrector i of n in PG 1
being in status 1.

At the first T-interval when n.A has received all necessary recad-capabilities,
it emables cell n.B (by giving it the read-capability necessary for its first
transaction) and relinguishes its read capabilities for cells n.l then n.p. This
action corresponds to the A-event in PG 1, where, at the T-interval when operator
n first has all status 1 inputs, it sets all these inputs to status 0 and proceeds
to apply the function fh to the wvalues received.

Once enabled, cell n.B must eventually apply fn to the values in ns.1
then ns.p. DMNote that this intermediate storage allows the function to be
sequentially calculated if necessary. Ag wvarious output values are obtained,
they are placed into the cells corresponding tothe output links of operator n.
Cell n.B will have write capability for these cells at this time because PG 1 is
a deterministic program graph which implies that the dependent input connectors
of all output links of an actiwve operator must be in status 0 any time that operator
can be applied.and its outputs are needed. At the first interval when all output
values have been calculated and placed, n.B gives read capability of the output

link cells to all dependent operator, selector and junction representatives. This

-12-

action, of course, corresponds to an event B in PG 1 where at the first T-interval
that fn has all output values, these wvalue are placed on the output links and

correspending input cennectors are sek to status 1.

c¢) All selectors as shown in figure 1 will be modeled by two MCM cells,
B-A and B.B, with the same set of properties as an operator model.
The only difference would be that B.B will write inte two control
value cells.
d) All junctions as shown in figure 1 will be modeled as three MCM cells
J:Al, J.AZ2 and J.B with the following properties.
i) cell J.Al has the following transaction table.

get J.1 replace with next transactien

put J5 replace with next transaction

* done J.1 “ *

send JS to J.B replace with first transaction

ii) similarly cell J.AZ has the following tramsacticn table

get J.2 repiace with next transaction

put JS replace with pext transaction

*! done J.2 e n

send J5 to J.B replace with first tranmsaction

iii) Cell J.B has the following transaction table

cet J5 replace with next transaction

done J5 replace with next transaction

put G. ia N "
*#' gend G.i_ te & replace with first tramsaction

The scheduler will enable clerk cells containing *, *', or *"

only at a T-interval.

“14-

Te clarify what iz meant by saying that the MOM just defined simulates
the behavior of PG 1, we must define how the two cowmputational representatives
are to be compared. 8Siven corresponding initial conditions (corresponding
constants and input values are equivalent), the sequence of values foumd
in any link n.i of PC 1 at the times when its dependent input connector
is in status 1, will be axactly the same sequence of values found in
the corresponding value ecell n.i of MCHM when no ¢lerk cell has write

capability for n.i.

-15-

ITI. A Deterministic Program Graph Model of a Particular MCM

To establish a time correspondence between the two representatives, we will
say that the clock rate of the program graph synchronizer is so great compared
to the functioning time of an MCM element that for all purposes we can think
of the program graph as operating continuously.

Some of the modules might seem unnecessarily complex but this results from the
seemingly more complex elements of an MCM. For example a’cell may either a
clerk cell or a value cell. Whereas a clerk cell can fetch any values it needs
and has read capabilities for, an operator must have all input conmectors in status 1
before its function becomes applicable. Whereas a value cell can be referenced
a8 many times as possible by as many clerk célls as have yead capability for it,

a link can give its walue to only one-node one time; because after the value is
accepted the commector is returned to status zero.

Keeping the properties of a deterministic program graph in mind, the models
shown in figure 2 were developed. We will examine in detail how, the control
matrix, the cells, and the scheduler are represented {n.this model.

a) The CONTROI MATRIX

The control matrix is represented implicitly in this model. The status
of the control matrix, can, of course, be represented by a single number
which we will call C. The current value of the contents of any cell M

will correspondingly be represented by a number v.M.

-13-

When J.Al or J.AZ receives and gets read-capability for a value, it gives
this value to J.B through JS and relinquishes its read capability for J.1 or J.2
at the next t-interval. This corresponds Lo the operation in PG 1 where junction
J upon receipt of a value over either J.1 or J.2 takes that value and sets the
status of the input comnecter to 0.

When J.B gets a value through JS, it puts value on a.ia and gives regad
capability for this value te & at the next T-interval. This, of course,
corresponds to a B-event im junction B, where the value received at the input

is placed on the output links and the status of corresponding Iinput connector is

set to {.

Note that there can be no conflict as to who has read-write capability for JS.

Bince we are modeling a deterministic program graph, J.Al can never get read
capability for J.1 at the same time that J.A2 gets read capability for J.2.
e) Constants and initial input values are represented simply as value
cells for which all dependent clerks intially have read capability.

£) Initial conditions are represented by hawving all constants and initial

inputs values placed in their respective value cells for which all

dependent clerks have read capability. All clerks are cnabled ordisabled,

i.e., all cells modelling a node have read, write-capability for themselves.

Finally, all event-B modelling clerk cells (ecells whose name ends in .B)
have write capability for all ocutput link value cells, and all event-A
modelling clerk cells have write capabilities for intermediate storage

cells, ns., JS.

~16-

b) The SCHEDULER

The scheduler is modeled primarily by the operater, SCHEDULE. There

is one input link to the scheduler from every cell of the modeled MCHM.

T
The wvalue from cell M can be thought of as a pair, iv,m, C‘}

containing the current contents of cell m and the contrel matrix

as seen by cell M. When all 1inksicell 2.i}are in status 1, the

scheduler has an A-event and proceeds to apply its rather complex

function to this representation of a computational state. Decause

of an MCM's struckure the control matrix indicates whether a cell is

a value cell or a clerk cell, and the contents of a clerk cell

uniquely specifies the action it is to perform. With the available

information the scheddler performs the following functicons:

L

By comparing all the matrix representing values returned [rom the
cells against the matrix value at the last computation state, MATRIX,
SCHEDIILE can decide if any of the clerk cells had performed an
cperation which changed the contents of the control matrix. If there
were no changes, then the matrix remains unaltered and the value of C'
given to all CELLl,i outputs and MATRIX will be the same as hefore.
If some cells have indicated non-cenflicting changes of the matrix,
then the value of C' given to all CELLL.i ocutputs and MATRIX will
reflect the composite effect of all these changes. If two clerks
have attempted to alter the same matrix cell, then SCHEDULE allows

only one change to become effective (using the same selection

2)

3)

-17-

algorithm as the modeled MCM uses in its choicing of a choice set).
So that the effect of the unselected clerk cell's request is not
lost, its CELL1l.i link will receive, besides v.i and ¢' a note
about the matrix change it desires amd a KEEP.i control will be
given to retain the information until the next computation state.
As soon as the scheduler can allow the necessary matrix change

by this cell, its action will be effected and the cell will again

become enabled, i.e., it will receive a go.i control.

If {V.M, C] indicates that cell M is a value cell that can only

be read, the scheduler gives i‘vlﬁ, C'} to link CELLI.M and a
control signal to KEEP.M so that the present contents of the cell
will be retained until the next computation state.

ifiv. M, €} indicates that value cell m can be written into, the

scheduler looks at the contents of all clerk cells and determines if

the one with write capabilityis indeed going to write into cgll M
(this lookup is deterministie because of the static information
in tramsaction tables). If m is going o receive a new value,
the scheduler merely puts gv.M, C'} on CELL1 M. If the
contents of M are not to be changed before the next computation
state, [v.M, C'} is put on link CELL1.M and a contrcl signal

is given to KEEP.M.

-15-

4y If {-v.M, C} indicates that cell m is an ¢nabled clerk cell,
then the scheduler puts {v.M, C'} on CELLL.M and a control
signal is given to go.M} if it is disabled then KEEP.M is activated
instead of go.M. Moreover if v.M indicates that peli Mwill do
a get k and m has read-capability for k, then the scheduler puts
v.k on line get.k (these lines just receive some unused null
value otherwise). At first glance this policy might seem more
regtricted than the possible random set of enabled clerk cells
which Van Horn allows the scheduler to select. But since the
rules for an MCM are such that an enabled clerk cell must eventually
receive a go-pulse and since the contents of any cells which an
enabled clerk cell may wish o read-out of or write-inte
cannot be altered at least until that clerk cell receives a
go-pulse, nothing can be gained or lost by mot holding up the
sending of a go-pulse to this cell.
When all the aforementioned decisions have been made, SCHEDULE has B-event and
a transition is begun to the next computational state.
¢) THE CELL
One of three things may happen to a cell,m, in the transitions between
computational states.
1) If it is a value cell that is not to be changed during this transition
or & not-to-be-activated clerk cell, it will receive a KEEP.M

control which will shunt the wvalue on CELLl.M to link CELLZ.M.

2)

3)

-19=

If it is a value cell whose value is to be altered during this
transition, then some cell i will send a new value via link p.iM,
which will then appear on link GELLZ.M as M's mew content value.

If a cell is activated clerk cell, it will receive a go.M control
from the scheduler and i_v.M, CE will appear as an input to f£.M.

f.M will cause the same effects as if the corresponding cell in the
modeled MCM conteined wv.M. Since every function performed by a
clerk cell always replaces the cell contents according to some
replacement function, the new contents v'.M will be placed on

the link to J.M. If cell M would effect a change in the matrix
value (from C to C'), thenm f£.M sends i V.M, C'} to CELLZ.M

If cell M would do a put k, then put.MK would be set to the value to
be placed. If cell m would do a get i, then £.M will recelve the
necesséry data through link GET,TM. Whenever a get is not performed,
some null value, ¢ , is given to f.M which is accepted but ignored.
The fact that £.M would he activated only if C indicated that M had
read-capability for i guarantee that CELL2.i = CELLi.i and f.M will
receive a unilque value of v.i regardless of the relative timing of

the elements making up cells M and 1.

The operation of the links, operators, and junctions will allow each program
graph modelled cell to return a EV.M, C.i pair to the scheduler wvia links CELLZ.
which will correspond to the next computatiomal state of the mocelled MCM.

Thus the correspondence of values between the MCM and its Program Graph model
is that the sequence of values passing through any cell v of the MCM will be the

sgme as the sequence of values attained by v.M in link CELLL.M,

-20-

1t appears as though our program graph model of the MCM could be used
to prove Vam Horm's result of the complete functiomality of MCM styxuctures.
To do this we must first show that the program graph implied by our modelling
procedure is always deterministic. Although it will not be proved in detail,
this is indeed the case. One can convince himself that all of Rodriguez's
rules for determinism are satisfied: all nodes are deterministic, all junctions
have mutually exclusive inputs, and all cycle structure constraints are
satisfied. 8ince a deterministlc program praph implies a unique sequence
of values through eact link for a given initial configuration, and since to each
modelled MCM cell, n, there corresponds a link CELL2.n which obtains the same
values ag the cell, it must be true that the sequence of values appearing In every
cell of the MCM is determined upiquely by the initial conditioms. This, of course,

implies that complete functionality of the MCM.

-71-

IV. Comments on Deterministic Struectures

In both representations, the computational elements of processors and data
are displayed explicitly. In the program graph, each processor (node) is ablc
to receive and transmit data along a limited set of directed links to other
processors. The MCM allows cach cell to be either a processor or a repository
of information for other processor cells. The status of each cell may change
from clerk- to value-cell and back again many times during any run. The
contraol matrix structure allows potentially any cell to communicate with
any other cell. Moreover, unlike the directed link, a value cell used ag a
commmicating link between clerk cells can allow information flow in any
direction between these ceclls according to the status of the control matrix.

Two controls of the intercommunication between processors Appear mecessary
to assure determinism: 1) A process must wait until all values necegsary for
the computation are available, 2) Once a procesdor - decides to give a value to
anothér processor that value cannot be altered until the receiving processor
has decided for itself that it no longer needs this value. There is also the
problem of concurrence, i.e., if there is ever a cheoice, between two or more
processors, about which should be allowed to effect a change of the computational
status, then this choice must be deterministic in that regardliess of system
timing: the same choice will always be made, the result of the choice must not
affect the functionality of the system, or such a echoice must never occur. Each

of these rules for determinism is satisfied in the two representatives examined.

-22.

The operation of the control matrix and the corresponding enabling rules properly
satisfy the rules of intercommunication. The only concurrence probiem that arises
1s the possibility of simultaneous modification of a matrix clement; this

Van Hotn prevents by having the scheduler restrict the activation of certain

clerk cells unt{l their actions no longer imply conflict. As the above mentioned
communication restraints imply a necessity of fecdback from receiving to sending
processor, a general program graph is not guaranteed to be deterministic as the
input comnector status manipulations allow only feed forgard of information from
sending processor to receiving processor. The determinism of a program graph

can therefore be established only if its particular structure is such that the
communication rudes are satisfied. A sufficient set of conditions on the structure
has, as we have stated, becn developed by Rodriguez.

Other schemes for representing asynchronous computation have also been developed
for example, by D. Muller, R. MeNaughton, and €. Petri. FEach of these structures
can satisfy the rules of communication and could be restricted to conflict free
realizations. Of these the MM model, alone , secms to allow possible communication
in cither direction to be established between any pair of processors, and, in fact,
handles communication as a special kind of process im which the processor ie in a
particular mode, i.e., it does nat have write capability for itself and so the
transactign table may he thought of as either being diéabled or as supplying an
identity operator and replacement function.

Work will continue to establish =a unifying notion of deterministic asynchronous
operation. The problem of concurrency and the generalization of the communication

procese particularly lend themselves to continued study.

[:";-Qi ra A Gl’ai;alﬁ l\lu-{Jﬂ.

Gl,)t r'm"fd.ﬂ

Types

To all
O_)-Lgrﬂ
cells

FFUM atl
a"’l\‘:.-
callg

Model of Cell

s

KEER M CELLL . M o.M

CeLL2.m PUT.MA PULME

N —

To ali o“'n:r C‘»C”:}

PuUtT. Me

r/{ocjci g_J_‘E SCL\Eafuicf*

——

CELL2. 4 CELZEB ¢ELLa, 2
T T

(T

’ | ,
‘ ¢ 0 3 v
Go.A keers gad Ketp F CEull g DELLIZR CELLLE

'F“J ure Z

R)

:I i‘ 15 an

o J|D[<:n+(+j

qprea toe

