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Abstract

As research proceeds in the area of multi-processor systems, more emphasis is being placed on the
networks needed to connect many processors into a single system. In this paper we examine a
restriction on networks that are based on boolean n-dimensional hypercubes [6, 4]. while preserving
the important characteristics of the networks. We restrict communication paths between adjacent
nodes to be unidirectional. The restricted networks use as littie as half the communication paths
and much smaller switches while achieving similar performance. As a result, much larger networks
can be constructed for a given switch using the n-cube paradigm.

Key words and phrases: computer architecture, multiprocessor, n-cube, network, packet
communication, store-and-forward network






Directed Cube Networks -1- Introduction
Directed Cube Networks:
A Practical Investigation

1. Introduction

n-Cube networks' [6, 2] provide an elegant mechanism for connecting processors: inter-processor
distances are small, and routing algorithms are both simple and flexible. n-Cube networks allow an
exponential number of processors2 o0 be connected for a given switch. The problem is that
moderately large switches are difficult to build, and for that reason, current state of the art switches
are small. The BBN Butterfly Switch [5] (a 4-input 4-output switch) allows us to build an eight
processor network (8 = 24'1), as we will see. So, a number of processors exponential in the size of
the switch is not very many at this time.

Cube Connected Cycles (CCC) [4], a variation on the hypercube theme, allows an arbitrarily large
number of processors to be connected using fixed size switches, but we sacrifice path length, routing
flexibility, and resilience to node failure.

CCC can be thought of as a restriction on an n-cube network. We will examine a different
restriction allowing us to connect many more processors than in an n-cube while preserving many
important properties of the n-cube (e g, average path length, fiexibility and simplicity in routing,
and resilience to node faiture). We restrict the direction of communication between adjacent nodes
in the n-cube 1o be unidirectional, without otherwise changing the structure of the n-cube. In this
way, a hypercube of twice the dimension can be constructed for a given switch.

2. Graphs Versus Networks

Graphs are a convenient and powerful abstraction for dealing with communication networks, but
we must be careful to consider all the practical implications of our abstract models. Nodes (in the
graph) correspond to switches (in the network), and directed arcs correspond to links, Several
caveats remain:

» dealing with undirected arcs
o integrating processors into the network

o finding paths in the network

Network links are typically unidirectional hardware, In order to establish a bidirectional path,

1thworks based on boolean n-dimensional hypercubes.

2expom:mial in the number of switch inputs
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two anti-paraltei3 links are needed. This is certainly true if information is to be sent both ways at
the same time. More importantly, bidirectional links require a sender and receiver at each end. We
will "impiement™ undirected arcs as bidirectional links, or equivalently {from the point of view of
the end connections), as two anti-parallct unidirectional links.

Integrating processors into a network is a more subtle task. We might view a network as separate
from the processors; the processors sit on one side of the room, and the network on the other.
However, we will view processors as integrated parts of the network. A processor will be modeled
as having a single input and a single output; the input and output can attach to any switch output
and input (possibly two different switches).

Can't we just build a network of switches and simply associate a processor with some or all
swilches? The processor can then siphon off appropriate messages and inject its own on the
outputs. Absorbing messages is easy, but the ability to inject messages implics that the underlying
n? switch has an input and output port devoted to the local processor and is thercfore an (n-f~1)2
switch, Since this is the case, we will model the processors explicitly.

One possibility is to put a processor in every arc. If we replace each arc of an n-cube by a
dual-ported processor 2], n2"1 processors can be connected using an n? switch. However, this
requires switching at the processors in addition to switching at the switches (see Figure 2-1).

Must irﬁplement a
" Y .
— switching element
\

50T
-~ ~ e
/[ g/
>\{ A )
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Figure 2-1: A Processing Element (PE) at Each Arc of an n-Cube

However the switching is done, buried in these additional switches will be the electrical
arbitration of signals"‘. Since this is a fundamental limit in a switching network (one we are

3Between the same nodes but oriented in opposite dircclions.

This is true even if two PEs are associated with cach arc, one for each direction,



Directed Cube Networks -3- Graphs Versus Networks

concerned with). all path lengths effectively double. We favor connecting one processor to each
switch by reserving an input and output port. Examples of this technique will be given (see Figures
3-2 and 3-4).

In a graph, there are usually several paths from one node to another, and several techniques for
finding a path. We can find some or all paths in advance and build a table or function that provides
paths between two given nodes. This information can be compressed into incremental form; a table
or function can tell us the next step of our path. These techniques will be referred to as complete
path generation and incremental path generation, respectively.

Now that the path information is available, how should we decide which path to take? We could
pick a path in advance for each pair of nodes (or choose a path at random on demand), or we might
make a decision based on traffic and congestion caused by other pathsS. We call these techniques
static and dynamic routing, respectively.

While complete path generation and incremental path generation are variations on a theme, static
and dynamic routing are fundamentally different. Suppose two messages are to be routed
simuitaneously; we would like to find two arc-disjoint paths. Intuition tells us that dynamic routing
will have a much better chance since we have no a priori knowledge of which messages will occur

simultaneously,

The following is an example of incremental path generation and dynamic routing: a switch
considers the set of incoming and queued messages and all possible next destinations. The switch
now sends the largest set of messages that can be sent on distinct output ports. Although this
example may be too complicated to implement, the technique appears to be quite powerful. Cube
nctworks are quite flexible and lend themselves to this type of routing. '

3. Directed n-Cubes

All the cube networks are based on the graph of the boolean n-dimensional hypercube. We begin
by presenting the graph for the n-cube of dimension n, NC" {1].

3.1. n-Cubes
The n-cube [6] is defined as follows, Each of 2" (N) nodes is labeled from 0 to N-1 by a unique
binary string of length n. There is an arc between nodes i and j if i and j differ in exactly one bit

position.

5ln general there are several paths of concern at any given time.
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NC" = (V, E)
where

{1{05_ 2"1}
E={(1J)l J€

=]/ /q° for some q suchthat 0 < q < n

Now we can build a network from the graph. Each node of the n-cube graph is replaced by an n?

switch, and cach arc is replaced by a bidirectiona! link. The n-cube network requires N n-switches,
and neN communication links (bidirectional links count twice). The n-cube of dimension 3 is

shown in Figure 3-1.

110 111

010 011

100 101

000 001

Figure 3-1: n-Cube Network of Dimension 3 (n=3)

If each node of the n-cube were replaced by an (n+1)2 switch, a Processing Element (PE) or
external processor7 could be attached to each switch using the extra pair of input and output ports.
In this way, the n-cube can be used to send messages among 2" external processors. This kind of
network will be referred to as an n-Cube Processor Network. An n-cube processor network of
dimension 3 is shown in Figure 3-2.

Although the number of processors that can be connected using the n-Cube Processor Network is
exponential in the size of the switch, moderately large switches are difficult to build®. For example,
the BBN Butterfly switch [5] (a 4% state of the art switch) allows n-+ 1 (the exponent) to be as large as
4, Hence we can build a 241 = 23 = 8 processor network using the n-cube. So even an

exponential number of processors is not very many at this time,

8//q is j with the qth most significant bit flipped.

7a processor external 1o the switch itself

8Each switch must acl like a{n+ 1)2 crossbar.
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Node

Node

Dby{n+1)
Crosspoint
Switch

Processor

n-Cube (n=3) Node Structure
Figure 3-2: A Switch’s View of an n-Cube Processor Network

3.2. Directed n-Cubes

Key Idea: Why not direct all the arcs of the n-cube, cutting the in-degree and out-degree of each
node in half, In that way, cubes of larger dimension (twice} can be built to connect more processors
(N?) with the same size switch (log,N by log ,N). Conversely, the same number of processors can be
connected with half the wires and much simpler switches.

The following questions immediately arise. Can we assign directions to the arcs in a simple and
uniform fashion? Is the resulting graph connected? Will the derived network retain the following
desirable properties?

« short inter-node distances
¢ many paths that are easy to generate

o resilience to node failure

Before defining the graph for the directed n-cube, DC", we define the parity of a node and the
parity of an arc for n-cubes.

« If a node has an even number of ones in its binary label, the node has even parity.
Otherwise, the node has odd parity.

o Each arc connects two nodes whose labels differ only in the qth Most Significant Bit
(MSB) (0 < q < n-1). If qis even, the arc has even parity. Otherwise, the arc has odd
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parityg.

Node Alternation Lemma: All even nodes are adjacent to odd nodes only, and vice-versa,
Equivalently, all arcs have an even node at one end, and an odd node at the other end. {ie., Parity
partitions DC" into a bipartite graph.)

Proof: Adjacent nodes differ by exactly one bit. Traversing an arc must therefore
change the parity of a node. [J

The graph for the Directed n-Cube of dimension n, DC", is derived from NC" as follows:

o Orient all even arcs from the even node to the odd node, and

e orient all odd arcs from the odd node to the even node,

pc" = (V, E)
where
Vv={i]0<1<2"1}
E= {1} 11, 1€V

even-node (i) = i =j//q for some even q such
that 0 < q<n '

odd-node (1) => 1 =j//q for some odd q such
that 0 < g < n

The Directed n-Cube Network is constructed by replacing all nodes by (11/2)2 switchesw, and by
replacing all arcs by unidirectional links. The directed n-cube network requires N (n/2)2-switches,
and n*N/2 communication links. In comparison with the n-cube network of the same dimension,
the directed n-cube uses moch smaller switches (perhaps 174 the size) and haif as many links.

10 11

<
T

00 > 01

Figure 3-3: The Directed 2-Cube

9As pointed out by Professor Charles Leiserson, any texicographic division of the bits, for example low order versus
high order bits, is equally acceptable.

]OFor simplicity. assume that n is even. Odd dimensioncd directed n-cube networks will be discussed in Section 6. n
corresponds o the dimension of the hypercube (as opposed 1o the size of the swilch) in both the bidirectional and the

unidirectional cube networks,
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To use the directed n-cube to connect external processors, use (n/2 + 1)2 swiiches at cach node.
Establish a bidircctional link between the switch and the local PE. but maintain unidirectionality on
all links that traverse dimensions of the hypercube. This Directed n-Cube Processor Network
connects 22D processors using an equal number of k? switches. Using a 42 switch, 224D = 26 =
64 processors can be connected (see Figure 3-4).

)
&,

from 4th
dimension

from 2nd
dimension

to 3rd
dimension

Figure 3-4: A Switch's!! View of a Directed 4-cube Processor
Network

The directed n-cube can be thought of as an n-cube with half of the links uniformly removed.
There is no longer as much flexibility in routing packets. However, there are still very many paths,
and nodes are about as close as they were in the n-cube, as we shall sce.

In the n-cube, any dimension can be traversed from any node, but this is not true in the directed
n-cube. How will routing be done? From any even node we can immediately traverse any even arc
to an odd node, and from any odd node we can immediately traverse any odd arc to an even node.
However, it may not be clear that there is a path from every node to every other node.

Connection Lemma: If s and t are nodes in the directed n-cube (n>2), there is a directed path
froms tot.

Proof: First we give an inductive construction for Dck,

nTne switch portrayed is resident at an odd network node.
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o Basis: The basis is provided by the directed 2-cube in Figure 3312

e Induction: Given that we can construct n-cubes of dimension k (k>2). construct
an n- cube of dimension k+1 as follows. Construct two directed k-cubes, pck
and DC Re\erse the parity of the nodes and arcs (and hence the direction of the
arcs) in DC Replace the label of each node in DC by the old label with a "0"
comalcnated on the left. Replace the label of each node in DC by the old label
with a "1" concatenated on the left (now the parity of the nodes and ares of DCX
are assigned as in the original construction). To synthesize a directed n-cube of
dimension k-+ 1. connect the corresponding nodes of DC and DCk (those
differing in only the k+ 1st bit) from the even node to the odd node |f k+1is
even, and from the odd node to the even node if k+1 is odd.

We can sce inductively hat there is a path between cvery pair of nodes in the n-cube
of dimension k since there is in the directed 2-cube, and since constructing a larger cube
from two smaller ones orients half of the arcs in each direction between the sub-cubes.
|

4. Routing in the n-Cube and the Directed n-Cube

Following a cube arc!? corresponds to traversing a dimension in the boolean n-space of the node

labels. Since following an arc changes exactly one bit of the node label we can think of each
traversal as a one bit correction in our travel to any destination. So, finding a path from one node to
another simply involves changing one bit at a time until we arrive at the destination Le., the start
node label has been transformed into the destination node label by flipping one bit at a time.

Suppose we are at node s and wish to travel to node t by moving along cube edges. After taking r
steps we will have reached node s™. Let A7 be the bitwisc difference between the current node and
the destination, a binary vector of length n. A? = @1, the bitwise exclusive-or of s and t, and AT
= s"®t. The ones in AT correspond to the dimensions that remain to be traversed after r steps. If
we traverse dimension 7! in the -+ 1st step, s will be s7/7q7*1), and A™*! can be derived
from A" as follows:

.A'r+l = AT//q"

If we reach t after y steps, q'q? ... qYis the path'* we followed.

17‘]'he basis could have been a directed O-cube (a single node of even parity labeled 0) for the purpose of the
construction. However, the Lemma is only true for n-cubes of dimension 2 or higher.

]3An arc of either the n-cube or the directed n-cube,

‘MA path from a node is denoted by a sequence of dimensions,
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It is inconvenient, however, to work with index vectors™. Let QT be the set of integers whose
index vector is A7 (q" € Q7 = the q"th MSB of AT is 1). As we move along edges of the cube. Q7
will be the set of dimensions in which s” differs from t (the set of dimensions in which the current
node differs from the destination node). If we traverse dimension q™* 1 in the =+ 1st step, Q"*1
can be derived from Q7 as follows:

e Q™! = Q- {q"H1}ifq"t! € Q7 (correct the g7 th bit)

Q™1 = QT U {q" 1} if " ¢ QT (introduce an artificial transition on the q"*lth bit
to be corrected later)

Let's derive a path from s to t in an n-cube'S. If we choose g™+ € Q7. we will get closer to t, and
if we choose "1 ¢ Q7, we will get further away from t. Any permutation of the clements of Qis
a shortest path. The n-cube allows us to correct in any order the bits in the source node that differ
from those in the destination node. The directed n-cube, however, only allows us 1o correct even
bits from even nodes and odd bits from odd nodes, so there are some constraints on the order in
which bits can be corrected.

For any r, let Q7 be the even subset of Q", and let Q7 be the odd subset of Q. Q;’ and Q]
enumerate the even and odd dimensions that still need to be traversed after the rth step.

The following lemmas will be helpful in our discussion.

Path Alternation Lemma: All legal paths in the directed n-cube alternate between even and odd
nodes and between even and odd arcs.

Corollary 1: The number of even traversals in any directed n-cube path is within one of the
number of odd traversals,

Corollary 2; The length of any directed n-cubé path is even if the source and destination nodes
have the same parity, and odd if the source and destination nodes have different parity.

Proof: The lemma and coroliaries follow directly from the Node Alternation Lemma.
&

n-Cube Lemma: The shortest directed n-cube path between two nodes is bounded below by |Q0|
= 1% + QY.

Proof: |Q0| is the length of the shortest path in the n-cube. The lemma follows since
the set of paths in the directed n-cube is a subset of the set of paths in the n-cube of the
same dimension, and since Qg and Qg partition QO. O

Directed n-Cube Lemma: The shortest directed n-cube path between two nodes is bounded below
by 2-Max(/QJ). 1Q3D - 1.

ISAT is the index vector for the dimensions in which s” differs from t.

16Wandering about the n-cube is well undersiood. This section is 1o develop intuition for the newcomer.
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Proof: The lemma follows from the first corollary of the Path Alternation Lemma and
the fact that every dimension in the larger of Qg and Qg must be traversed. O

Corollary: The shortest directed n-cube path between two nodes of the same parity is bounded
below by twice MAX(IQY, IQY).
Proof: This tighter bound follows from the lemma and the second corollary of the Path
Alternation Lemma. O

Parity Lemma: If the source and the destination in a directed n-cube have the same panty |QO| +
|Q0] is even. If the source and the destination in a directed n-cube have different parity, IQ | + IQ |
is odd

Proof: |Q2| + |Q2| = IQol, the length of the shortest path in the n-cube. The lemma
follows from the Path Alternation Lemma. O

How to get from s to t. 17" Assume w:thout loss of generality (w.Lo.g.) that s is an even node. We
can traverse any (e»cn) dimension q € QO (deleting the traversed dimension from 0%, then any
(odd) dimension in Q alternating until we cannot proceed because one of the sets is empty. If we
are at t, stop. Otherw1se when this happens (say after = steps), we will be at either an even node
with QT empty, or an odd node with Q" empty (or else we would not be stuck). Assume w.Lo.g. that
the former is true. Now choose any even dimension 2g {0 < 2g < n-1). Traverse 2g while adding
2g both to Q7 to get Q7+ and to Q7 to get Q"’” (normally we would delete the dimension being
traversed). Then traverse a member of Q"“, and once again traverse 2g. If there were exactly one
(odd) dimension feft at time = (when we got stuck), we are now finished. If there is more than one
dimension left, traverse another odd dimension. Then if necessary, choose a new 2g, and repeat the
last step until you reach L.

How long a path is generated? If |Q°| IQY). the length of the path is IQOI + |QOI the same as
the shortest path in the n-cube. However if IQ | = [Q°| a more detailed 'malysm is necessary,

Suppose t, the destination, is also an even node. When we are ready to chose our first 2g, we are
in one of two situations:

o 1. We are at an even node. Since we have made 2+ IQ | (say ) steps so far 1Q7| must be
even (by the Parity Lemma, [QY] + |Q | = an even *pumber = 2¢ IQ P+ 1Q7D. The
length of the remaining path w:if be 2 IQTI so the length of the entire path w1ll%e p Q
(since lQol + IQ"I = IQ | when we got stuck), the lower bound as specified by the
Directed n-Cube bemma.

¢ 2. We are at an odd node. Since we have made 2+ IQOI + 1 (say 7) steps so far, |Q"! must
be odd (by the Parity Lemma. IQ | + |Q | = an even number = 2+ |Q |+ 1 + |Q"'|)
The length of the remaining path w1ll be 2 IQ"l + 1, so the length of the entire path is
2-!Q0| (since 1 + |Q0| + IQT! IQ | when we got stuck), the lower bound as specified
by the Directed n- “Cube Lemma.

17me this point unti Section 6, we will only consider even dimensioned hypercubes.
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Suppose t is an odd node. When we are ready to chose our first 2g, we are in one of two
situations:

e 3. We are at an even node. Since we have made 2« |Q0| {say 7) steps so far, [QT] must be
odd (by the Parity Lemma). The length of the remaining path will be 2+ IQTI + 1, so the
length of the entire path is 2+ |Q0| + 1, larger than the derived lower bound

e 4. We are at an odd node. Since we have made 2+ |Q°| + 1(say ) steps so far, IQ”’l must
be even (by the Parity Lemma). The length of the remaining path will be 2+ IQTl so the
length of the entire path is 2+ IQ | - 1, the lower bound as specified by the Dlrected

n-Cube Lemma.

By the Directed n-Cube Lemma, this procedure generates shortest paths in cases 1, 2, and 4, We
will consider case 3 more carefully. Since Qg is larger than Qg, more odd transitions are indicated
than even transitions. However, since s is even and t is odd, both the first and last transitions must
be even and there is one more even transition than odd transition in every path from s to t. Since
there must be at least IQOI odd transitions, and at least one more even transition than that, the
shortest path must be at least of length 2. |Q0| + 1, the length -of the path constructed above.
Hence, the above procedure only generates shortest paths.

We have generated the paths in an incremental fashion to provide intuition. Also, we have left
the extra transitions until the end. But there is no reason why we cannot introduce and correct the
necessary dimensions at any time. With this modification, all shortest paths can be generated.

5. N-Cube / Directed n-Cube Tradeoffs

5.1. Average Distances

What have we given up by restnctmg the directions of the arcs? The longest route!® in the n-cube
is of length n. The longest routes in the directed n-cube (from case 3 above with ]Qol =n/2-1and
|Q0| = n/2, for example) are of length n+ 1.

How many nodes are at the maximum distance from a given node? All longest routes are
between nodes of different parity. Assume w.Lo.g. thatsisevenand tis odd. For along route, |Q0|
must be n/2, but IQ0| can take on the values n/2 - 1, n/2 - 3, etc. down to 0 or 1, and any choice i for
[QOI can be realized in (“’ 2y ways.

F01 n/2 even, the number of far nodes {nodes at the maximum distance) for a given node is:

1<i<n/2
n/2
(M)
oddi

18Roule refers to a shortest path between two nodes.
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For n/2 odd, the number of far nodes for a given node is:

0<i<n/2
(")

even i

Both of which can be rewritten (by reversing a summation, using the identity (E) = (g_k), and
doing some algebraic manipulation):

/471

n/2
20

i=1

This is a binomial expansion. The number of far nodes from a given node 5221 The number
of far nodes from a given node in the n-cube is 1.

What about average path length? Number crunching19 gave the results in Table 5-1.

Table 5-1: Table of Average Distances for Directed n-Cubes

n n/2 Average Distance
2 1 1.5

4 2 2.75

6 3 3.9375

8 4 509375

16 5 6.23046875

The average path length in the n-cube is n/2. And as we will show, the average path length in the
directed n-cube? is bounded above and closely approximated by n/2 + C+n for some constant
C. Since all even dimensioned graphs are symmetric, the average distance over the whole network is
the same as the average distance from any single source, say an even node. The distance to any even
destination is 2+ MAX(lQOI |QOI) (call this quantity 2«Max). The distance to an odd destination is
2+Max-1 if |Q0| > IQol and 2-Max+] if IQOI < IQOI an equal chance. So the expected distance
between nodes is 2+ Max We tumn to probablhstlc analy31s to find the expected value for Max.

Suppose P(i, m) is the probability that there are i ones in a binary string of length m. (i
corresponds 1o either IQOI or |QO| and m = n/2 corresponds to the potential maximum sizes of Q0
and QO) P(i,m)isa bmomlal probablhty mass function (PMF):

19AI] path lengths were computed directly from the graph for the direcied n-cube.

2 0For simplicity, we are still only considering even dimensioned directed n-cubes
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P(i, m) = (") (1/2)' A - 172)™

= (/)™ (™)

The variance o of this binomial is m(1/2)(1-172) = m/4, and the standard deviation ¢ is
(1/2)v m,

Assume w.lo.g. that we are calculating the expected distance from the node labeled 0. P(i, m) i 1s
the PMF for both |QO| and IQol We would like the expected value for the maximum of two trials??

with PMF P(i, m).

The probability that there are i or less ones in a string of length m (P <(l m)) is calculated by
taking the cumulative sum (integrating discretely) from O to 1,

j=i
P (,m) = (172" 2(7)
j=0

The probability that the maximum of two trials is less than or equal to i F"“M of 2, m), is {P <
m))%. Pma" of 2(i, m) is known as the second order statistic for a sample of s:ze two with PDF P(j,
m) [3]. Fl'ence the probability that the maximum of two trials is exactly equal to i (P™* of 2(1 m)) is
calculated by taking the stepwise difference (differentiating discretely).

pmax of 2 (i, m) = Prgax of 2 (i, m)- Pn<lax of 2 (i-1, m)

= [P (. mP - [P (-1, mP?

ji=i
= W™ M2 =M
j=0

The Table of Average Distances (Figure 5-1) was generated by finding and then averaging all
shortest distances in directed n-cubes. The expected values of P™* ©T2 (i m) (Exp(m)) for various
vatues of m should correspond to the Figure 5-1 entries as follows. Let E(n) be the expected
distance in the directed n-cube of dimension n {the expected value for 2+Max).

21’I‘he following is an analogous problem (suggested by Professor Morton Tavel of Vassar College). Assume that you
know the probability distribution for the time until the first failure of a machine. Given two of these machines, what is
the expected time until both machines have failed.
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i=m
Exp(m) = 2 iP™*f2( )
i=0

E(n) = 2¢Exp(m) = 2-Exp(n/2)

n/2 i=i
Bn) = (12" 2i+ ()42 (- ()
i=0 i=0

The expected distances in the directed cube (E(n)) were calculated and are displayed as predicted
distances in Table 5-2.

Table 5-2:
Table of Predicted Distances
{rounded to 3 significant figures)

n E(n) n E(n)

2 15 40 22.507
4 275 50 27.807
6 3.938 60 33.077
g 5.094 70 38.326
10 6.230 80 43.337
12 7.354 9% 48.774
14 8.466 100 53.979
16 9.571 110 59.175
18 10.669 120 64.361
20 11.762 130 69.540
30 17.167 140 74.712

The values in Table 5-2 match those in Table 5-1 exactly (the unrounded values, that is) as we
expected. Butis E(n) bounded by n/2 + Cv n? Table 5-3 gives values for {E(n)-(n/2)}/(+ n).
E(n) is approximated and bounded above for all n < 140 (up to 2140 nodeszz).

E(n) <n/2 + 399 vn

Does the form of this bound make sense? n/2 is the expected value for a single trial (the first
order statistic for a sample of size one, and the distance in the undirected cube), and vn is
proportional to o the standard deviation.

22Dr. Larry Stockmeyer is credited with the following observation: 2”0 is approximately the number of proton sized
objects it takes to compactly fill the known universe, We do not expect 1o build any networks with more nodes than this.
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Table 5-3: Table o determineC
(rounded to 3 significant figures)

n E(n)-{n/2) n E(n)-{n/2)

vn vn
2 354 40 396
4 375 50 397
6 383 60 397
8 387 10 398
10 .389 30 .398
12 391 90 .398
14 392 100 .398
16 .93 110 398
18 393 120 398
20 394 130 J98
30 .396 140 398

We have a bound for the average distance, but how good an approximation is it?39 Table 5-4
gives the difference between our bound and the actual expected value (bd(n) - E(n), where bd(n) =
n/2 + .399 v n), and the percentage error ({bd{n)-E(n)}/E(n)). '

Table 5-4: Table to check out C
(rounded to 3 significant figures)

n bd(n)- E(n)  %error n bd(n)- E{(n)  %error
2 0643 428 40 0161 0715
4 0480 1.75 50 0145 0521
6 0398 1.01 60 0133 0402
8 0348 683 70 0124 0323
10 0313 502 80 0116 0267
12 0287 390 90 0110 0226
14 0266 314 100 0105 0195
16 0250 261 110 0101 0171
18 0236 221 120 00973 0151
20 0224 J91 130 00940 0135
30 0184 107 140 00910 0122

Table 5-4 shows that we not only have an upper bound but a good approximation for the average

23 We used 399 instead of 4 (o avoid an apparent inconsistency due to roundoff error that would crop up.
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distance for all directed cube networks that we can ever build.

5.2. Other Performance Measures

How fast can the directed n-cube route a permutation? [ suspect about as fast as the n-cube can,
but more study is required to show this, A permutation is not a very taxing test for an n-cube (or a
directed n-cube for that matter),

What about throughput? First we must define what we mean by throughput. Define the
throughput of a network as the number of messages delivered per unit time. in some abstract sense
the directed n-cube has about half the potential throughput of the n-cube of the same dimension
(due simply to the number of wires), but it is not at all clear that the additional capacity the n-cube
provides is in any way usable. | would like to perform the following tests while recording times and
queue sizes.

1. Permutation: Send a packet from each node to a distinct destination

2. Pipelined permutation: Start a permutation every j steps

3. Random routing: Send a packet from each node to a random destination
4, Pipelined random routing: Start a random routing every j steps

5. Local random routing: Send a packet from each node to a random destination in such a
way that local destinations are more likely

6. Pipelined local random routing; Start a local random routing every j steps
Another variation of these tests is to return an acknowledge message for each message sent.

While these measures are difficult to derive analytically, they would provide insight into the
meaning of throughput in this scenario. A network simulator would help.

5.3. Resilience to Node Failure J

What happens to the average path length when a node can no longer be used to route packets?
Even though the directed n-cube was generated by deleting links in an n-cube, it is still resilient to
node failure. Even if a switch dies, processors can communicate using other paths, Table 5-5
contains information about distances with a failed node.

The percent increase in the average path length goes quickly to zero. Why is this so? There are
many paths in a cube. For longer paths, a failed node can be avoided easily, The only pairs of
nodes that will be further away are ones that are very close and require the broken node to achieve
the shortest path. The fraction of paths that require a specific node is small, and diminishes quickly
in larger cubes.

Table 5-6 compares n-cube processor networks with directed n-cube processor networks of the
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Table 5-5:
Table of Directed N-cube Distances with a Single Node Failure
(rounded to 3 significant figures)

n average average distance A in last % increase
distance with one two columns in path
node down length

4 275 2.809 0589 2.14

5 3.438 3.459 0214 622

6 3.937 3.946 00808 205

7 4593 4,596 00269 0586

8 5,094 5.095 000906 0178

same dimension. The dimension of the hypercube is n.

Table 5-6:
~ Comparison of Undirected and Directed
n-Cube Processor Networks

Aspect n-Cube Directed n-Cube
Switch Size (n+1)? ((n/2)+1)2
Number of Processors 21 2"

Number of Links n«2" ne2"1

Maximum Distance n n+1l

Average Distance n/2 <n/2+ .399vn

5.4. Decomposability

All sub-cubes of an n-cube are proper n-cubes. This is not true in general for directed n-cubes.
For a sub-cube of a directed n-cube to be a directed n-cube, the number of even dimensions (that
the sub-cube spans in the original cube) must be within one of the number of odd dimensions.

6. Odd Dimensioned Directed n-Cube Networks

As long as we are prepared to provide buffering at each switch, there is no reason that we cannot
build directed n-cubes for odd dimensioned hypercubes as well. Letn™ = rn/27and n” = Ln/2J.
Replace even nodes by n™-input by n™-output switches, and replace odd nodes by n™-input by



Directed Cube Networks

n T -output switches. The Directed 3-cube is pictures in Figure 6-1.
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Figure 6-1: The Directed 3-Cube
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It turns out?* that the longest path for odd n is n+1 for even sources and n+2 for odd sources.
Furthermore, both the number of distance n+1 nodes from a given even node and the number of

distance n+2 nodes from a given odd node seem to be 2

(n-1)/2

, and the average distance in the

directed n-cube of odd dimension seems to be E(n+1)-1/2. Table 6-1 is a chart for average path
length (obtained by number crunching) including hypercubes of both even and odd dimensions.

Table 6-1: Table of Average Distances

n n/2 Average
Distance
(overali)

2 1 15

3 15 2.25

4 2 275

h 25 34375

6 3 39375

7 335 4.59375

8 4 5.09375

Average
Distance
{even source)

15

2

275
325
3.9375
4.4375
3.09375

Average
Distance
(odd source)

15

25

275
3.625
3.9375
4.75
5.09375

In a directed n-cube with odd degree, odd nodes will have more incoming arcs than outgoing
arcs. Are these nodes in danger of being overrun by packets? 1s the pipeline balanced? This should
not be a problem since all odd nodes are fed by even nodes suffering from the reverse problem.
Suppose that all of the output arcs from all of the odd nodes are fully occupied. The output arcs

24These results from number crunching,
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from the even nodes will be on the average (n-1)/(n-+ 1) full, not enough to overload the odd nodes.
so the pipeline is balanced.

7. Directed Cube Connected Cycles

Cube Connected Cycles (CCC) 4] are in a sense a restricted class of n-cubes. But the technique
of directing arcs is an orthogonal restriction that can be applied to CCC as well. First we review
CCC briefly. Then we show cursorily how the technique of directing arcs can be applied to CCC
networks.

Construct a CCC as follows. We will need a new building block, a ring. Form a ring of size n by
connecting n nodes in a circle. Label the nodes from 0 to n-1 so that consecutive numbers label
adjacent nodes. Now, given an n-cube graph as defined above. replace all nodes by rings of size n.
The qth node of each ring should be attached to the arc that corresponds to the gth bit changing
(spans the qth dimension).

More precisely, each node labeled (r, p) has an n-bit ring fabel (r, indicating which ring we are
on), and a llog(n)1 bit position label (p, indicating our position within the ring)zs. The node
tabeted (r, p) is connected to (r, p+1), (r, p-1). and (1//p, p); the two nodes adjacent in the same
ring (forward and backward connections) and the corresponding node in another ring (lateral
connection). The CCC of dimension 3 is shown in Figure 7-1.

The CCC presented here differ slightly from those presented in [4]. Preparata and Vuillemin only
use rings whose size is a power of 2 (expzrlogzdimension'l, the least power of two greater than or
equal to the dimension of the cube). As a result, the number of nodes in their networks is a power
of two. While this is important for their construction of the ASCEND and DESCEND algorithms, their
CCC has some nodes with lateral connections and some without. Here, the nodes with no lateral
connections have been deleted, and all nodes are equivalent,

CCC provide a technique for building networks that can emulate n-Cube networks while
restricting the size of the switches to 32, CCC Processor Networks can be constructed from CCC
networks in the obvious way using switches of size 42,

Routing is accomplished in the CCC in two stages:

1. Choose either the increasing or decreasing direction to shift around the rings (the choice
will remain in force for the duration of this stage). At any node (say (r, p)) we can either
correct the pth bit of r using the lateral connection to {r//p, p), or shift around the ring
in the chosen direction: take the forward link to {r, p+1) or the backward link to (r,
p-1). In this way, we shift through the values of the ring position p, correcting any bits
of r at the appropriate time. In general we will need to shift all the way around the ring
(n steps), but we need only correct the bits that are wrong (a maximum of n steps, and
an average of n/2 steps). This stage will take 2n steps in the worst case and about 3n/2

a1 arithmetic with p is mod [NMog(n) 1.



Directed Cube Networks -20- : Directed Cube Connected Cycles

N

1st
Dimension

V/

000 / 001

e . 2nd . Oth
Dimension

Dimension

Ring label = 001

Ring Position = 0

Figure 7-1: The Cube Connected Cycle of Dimension 3

steps on average.

2. At this point we must be on the right ring (r has been corrected), but we may be at the
wrong ring position (the current value of p is wrong). Simply take the shortest path
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around the ring to the destination (at most n/2 and on average n/4 steps).

The directed CCC (DCCC) is constructed using unidirectional rings {only forward connections,
no backward connections) and bidirectional lateral connections, The switch labeled (r, p) is
connected to {r, p+1) and (i//p. p). The DCCC is more restricted in its routing than the CCC. In
stage 1, we cannot choose the direction to circulate around the ring (and hence the order in which
we correct the bits of the ring label). This restriction does not have much effect on path length, but
there are fewer paths. In stage 2, however, we will always have to go the same way around the ring
for the final correction, doubling both the worst case and average distances for stage two.

There is a trick that allows us to construct a more clever CCC. Replace the undirected transverse
arc by two directed arcs to the neighbors: connect {r. p) to the forward and backward nodes as
before, and connect to {r//p, p+1) using a directed arc. In this way we can shift around the rings at
the same time as we correct or leave untouched successive bits.

Similarly, there is a more clever directed version. Connect {r, p) to (r, p+1) and (r//p, p+1)
using directed arcs. Since the clever CCC can only shift in one direction, the clever DCCC only

loses ground in stage 2.

Table 7-1 compares CCC processor networks with directed CCC processor networks of the same
dimension. The dimension of the hypercube is n.

Table 7-1:
Comparison of Undirected and Directed
Cube Connected Cycle Processor Networks
(These are approximate figures)

Aspect CCC DCCC Clever CCC  Clever DCCC
Switch Size 4? 3 4 3

Number of Processors ne2" n-2" n+2" ne2"

Number of Links 2n=2" n+2" 2n-2" n-2"
Maximum Distance 25n in 15n 2n

Average Distance 175n 2n 125n 15n

8. Conclusion

By restricting the direction of communication between adjacent nodes of the n-cube, directed
n-cubes with many more nodes (x2 where we used to have x) can be built. Nodes in directed
n-cubes are almost as close as they are in undirected n-cubes (the average distance is bounded
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above by n/2 + .4 v/ n), and resilience to node failure is maintained. Also, the technique of
directing edges carries over to Cube Connected Cycles.

Simulation or mathematical modeling must be done to understand the impact of the topological
restrictions and the choices for routing.
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