LABORATORY FOR MASSACHUSETTS
INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

~ ' R

VLOE: A VAL Language-oriented Editor

Computation Structures Group Memo 255
September 1984

Steven C. Markowitz

Thesis submitted in partial fulfilment of the requirements for the S.B. degree of the

Department of Electrical Enginecring and Computer Science of the Massachusetts
Institute of Technology.

L Y,

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSEI'TS 02139

VLOE: A VAL Language-Criented Editor

by
Steven C. Markowitz

Submitted to the
Department of Electrical Engineering and Computer Science
on September 4, 1984, in partial fulfillment of the requirements
for the Degree of Bachelor of Science

Abstract

Structure-Oriented program editors have been designed for several languages, in
order to reduce or eliminate the edit-compile cycle of program development. These
editors operate directly on parse tree representations of programs, rather than
textual representations, and aid the programmer in detecting or avoiding syntax
errors during program construction.

This thesis describes the design and capabilities of a strctured program editor for the
language VAL. The VAL editor is based on the use of templates for common
program constructs. For each type of VAL expression (e.g. LET-IN, IF-THEN-
ELSE. FORALL-CONSTRUCT), the editor provides a template’ which contains
the keywords for that program construct and ‘placcholders’ for fields to be filled in
by the user. These ficlds (e.g. conditional and consequent fields in an IF-THEN-
ELSE expression) can be filled in with additional templates, entered via. editor
commands, or with 'phrases’ of text typed directly by the user. The editor
automatically parses program phrases, and notifies the user of any syntax errors.
This makes it possible to detect and correct errors, without having to compile the
program being edited.

-

Table of Contents

Chapter One: Introduction

1.1 Edit-Compile Cycle
1.2 Semantic Trees

Chapter Two: Two Types of Structure-Oricnted Editors

2.1 Free Form Editors

2.1.1 General Description

2.1.2 Advantages and Disadvantages of the Free-Form Approach
2.2 Template-Based Editors

2.2.1 Templates, Placeholders and Phrases

2.2.2 The Current Focus

2.2.3 Parsing

2.2.4 Advantages and Disadvantages of the Template-Oriented

Approach

Chapter Three: Overview of VLOE

3.1 Selection of a General Approach
3.2 Construction of a Simple Program Using VLOE
3.3 Additional Editor Commands

3.3.1 Cursor Motion

3.3.2 Editing Phrases

3.3.3 Inserting and Deleting Templates

3.3.4 Opening Space

3.3.5 Comment Facility

3.3.6 Help Facility

Chapter Four: Design

4.1 The Main Modules
4.1.1 The Driver Loop
4.1.2 Help
4.1.3 Workspace
4.1.4 Window and Screen
4.1.5 Prog
4,1.6 Template
4.1.7 Field

16

16
17
22
23
23
24
24
25
25

26

26
26
26
28
28
29
29
3l

4.1.8 Phrase

4.1.9 Parser and Scanner

4.1.10 Buffer, Line and Fragment
4.2 Semantic Checking
4.3 Interface to File System

Chapter Five: Implementation

5.1 Representing the Current Editor State
5.2 Screen Mapping Problem
5.3 File Implementation

Chapter Six: Evaluation

Chapter Seven: Possibilties for Future Work
Refcrences

Appendix A: Subset of VAL Handled by YLOE
Appendix B: Complete List of VLOE Commands

33
33
34
34
34

35

36
38
41

42
43

45
46

Figure 1-1:
Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:
Figure 4-1:
Figure 5-1:
Figure 5-2:
Figure 5-3:

lines

Table of Figures

Tree representation of plusl program

Template for PL/I IF statement

Abs_plus_1 Program

Initial Configuration of VLOE

The cursor has been moved to the ID field.

The cursor is now pointing to the [D placeholder.

The first character of the function name has been typed.
The entire function name has been entered.

The function header has been completed.

The IF template has been inserted.

Almost finished.

Module Dependency Diagram for VLOE

Tree Representation of Absolute Value Program

Cursor stack configuration

Organization of absolute value program into fragments and

12
18
18
18
20
20
20
21
21
21
27
37
39

Chapter One

Introduction

1.1 Edit-Compile Cycle

One time-consuming task faced by programmers is the detection and removal
of syntax errors. Typically, a programmer will write a program using some
conventional text editor, compile it, and discover that syntax errors arc present. In
order to remove the error, the programmer must re-edit and recompile his program,
and he may make new errors while trying to correct the old ones. Even after all
syntax errors have been removed, new errors may be introduced as the programmer
modifies his program to make it run correctly. This process of editing and

recompiling a program several times has been termed the "edit-compile cycle” [2].

During the past few years, a tool has been developed to help programmers
avoid the edit-compile cycle. This tool is the structure-oriented program editor.
Unlike conventional text editors, a structure-oriented editor continually parses a
user’s program as it is being constructed, and notifies the programmer of syntax
errots as soon as they are made. This makes it possible to cotrrect syntax errors
immediately, before the program is compiled. Normally, these editors are designed
to deal with programs written in one specific programming language, although
attempts at language-independence have been made [5, 7). Ideally, this type of
editor would eliminate the edit-compile cycle complctely, allowing the programmer
to write programs much more quickly. In practice, some syntactic or scmantic errors
might not be detected by the editor; in this case, the effect of the edit-compile cycle

would be reduced, but not eliminated.

In this thesis, 1 will describe the design and implementation of a stucture-

oriented editor which [have been developing. This editor is designed to facilitate
the construction and modification of programs written in VAL (Value-Oriented
Algorithmic Language), a functional programming language developed by the
Computation Structures research group at M.LT.'s Laboratory for Computer
Science. The VAL Language-Oriented Editor (VLOE) allows a user to construct
and manipulate programs written in a subset of VAL, and could (in principle) be

extended to handle the entire language.

1.2 Semantic Trees

Unlike conventional text editors, a structure-oriented cditor does not operate
directly on a text representation of a user's program. Instead, this type of editor
maintains a parse tree of the program being constructed. Although the user's
program is displayed on a terminal screen in the usual manner, editor commands are
not defined in terms of lines or characters on the screen. Instead, the editor
provides operations to make specified changes to a program’s syntactic structure.
Commands for cursor motion, and insertion and deletion of program elements are

specified in terms of the program’s scmantic tree,

The tree structure of the following program is shown in Figure 1-1.

FUNCTION plusi (i:Integer RETURNS Integer)
;N;Féﬂ
The program’s semantic tree has a single FUNCTION node as its root. At next
lower level, there are a series of nodes, one for each field of the FUNCTION: an ID
(function name), ARG _LIST (argument list), TYPESPECS (return value types), and
EXPR (the expression whose value will be returned). This tree describes the

abstract syntax of the program; alternatively, a parse tree of the program’s print

syntax could be used. The lowest level program constructs {e.g. the expression
"I + 1") generally would not be stored in parse tree form, Moving DOWN from
the root node brings us to the [D node, i.e. to the root’s first child node. Moving to
the NEXT node brings us to the ARG_LIST; moving from the ARG_LIST to the
PREVIOUS node brings us back to the ID. Finally, moving UP from from the ID
leaves us back at the root. These terms {(UP, DOWN, NEXT and PREVIOUS
element, HIGHER and LOWER level) will later be uscd to describe the operation

of different editor commands.

Figure 1-1:Tree representation of plusl program

F(/NCTION

Ip MG.LI.fT x‘ \

| YPESPE?:I EXPR

P’VS l 'LTCJ& I#eﬂep L + /

Chapter Two

Two Types of Structure-Oricented Editors

2.1 Free Form Iiditors

2.1.1 General Description

The structure-oriented editors that have been designed can be divided into
two general classes: free-form editors and template-oriented ones. One example of
the former is the Pascal editor designed by Joseph Morris and Mayer Schwartz of
the Applied Research Group at Tektronix [4]. This editor allows a user to construct
and modify programs character by character, in the same manner as a conventional
editor. The user’s program is formatted by the editor according to its syntactic
structufc, and displayed in pretty-printed form at all times. The editor
incrementally parses the user’s program as each character is entered and as each

modification to the program is made.

As soon as a syntax error is detected, the user is notified. When an error is
detected, it does not have to be corrected immediately, but the editor’s cursor is
confined to the program region before the first error, until the error is corrected. If
a new error is made before the first one is corrected, then the editor's cursor is
confined to the (smaller) region before the new error. In this way, the editor
guarantees that the program region from the beginning of the program up to the

cursor is a viable prefix for a Pascal program.

Morris and Schwartz’s Pascal editor maintains a set of several parse trees, cach
of which represents a region between discontinuities in program structure. (These

dicontinuities may be caused by errors, or they may be present temporarily while a

program is being modified). When the user attempts to move the editor’s cursor
across the boundary between regions described by different parse trecs, the editor
attempts to rejoin the parse trees on either side of the border. If the error has been
corrected, then the editor will be successful in rejoining the two trees, and the cursor

can be moved past the location of the error which has been corrected.

2.1.2 Advantages and Disadvantages of the Free-Form Approach

The free-form approach to structurc-oriented editing has two principal
advantages. One of these is its similarity, from the user’s point of view, to
conventional text editing. Because programs are entered and modified character by
character, in the same manner as with conventional editors, it may be less difficult
for a new user to adjust to this type of editor than to an editor which is very different
from conventional ones. Another advantage is the ease of modifying programs
using a free-form editor. In order to change the first program fragment shown
below into the second one, it is only necessary to delete the first and last lines, and
the keyword THEN. This simple modification is more difficult when other types of
structure-oriented editors are used. The features and advantages of free-form

editors are more fully described in [4].

First fragment:

IF x>0
THEN y = z + w
a:=b*c
f:=g/h
END

Second fragment:

b N
[|
o oON
~ &+
o0k

10

Along with these advantages, however, the free-form approach has several
drawbacks. A free-form editor can only notify the user of an error which has
already been made; it cannot actually prevent the user from making an error in the
first place. Typically, the editor’s cursor is confined to the program region before
the first syntax error; this prevents the user from examining, and correcting errors
in, later portions of his program, until the earlier error has been corrected. In
addition, the free-form editor must be capable of parsing the all of the language in
which the user's program is written; this, combined with the need to be able to
incrementally reparse the user’s program and rejoin program subtrees could increase

the size and complexity of the editor.

2.2 Template-Based Editors

2.2.1 Tempiates, Placeholders and Phrases

The other class of structured program editors can be termed “"template-
oriented”. Some examples of this type of editor are the Cornell Program
Synthesizer [6] for PL/I programs, ALBE/P (A Language-Based Editor for Pascal,
developed at Yale) [3], and the Pascal Structure-Oriented Editor developed by
Abraham Lederman at M.LT. [2]. Instead of requiring the user to enter his program
character by character, these editors provide a set of "templates” for common
program constructs, which can be inserted by user command. Each template
contains the keywords and punctuation for a particular kind of statement (e.g. 1F-
THEN-ELSE, WHILE-DOQ), as well as spaces called "placcholders”, to be filled in
by the user. For example, a tcm_plate for an TF statement (would contain the
keywords IF, THEN, ELSE, END, along with placeholders for the
conditional,consequent and alternative clauses (See Figure 2-1). A single command

would cause the entire template to be inscrted into the user's program at the current

i1

position of the editor’s cursor. (If it would not be legal to insert the specified
template at the current cursor position, the user would be notified, and the template

would not be inserted.)

IF { Expression }
THEN { Statement }
ELSE { Statement }
END;

Figure 2-1:Template for PL/[IF statement

These editors allow the user to insert additional templates into placeholders,
or to type text directly into them. A line of text typed directly by the user is called a
"phrase” [2, 6]. Only the simplest types of program constructs, such as arithmetic
expressions, identifier names and assignment statements, can be entered as phrases;
more complicated constructs must be built up from templates. It is possible for the
user to line-edit the text within a phrase, by moving the cursor forward and
backward inside the phrase, and by inserting and deleting individual characters.
However, the user is not permitted to line-edit beyond either end of the phrase. For
example, when editing the phrase "x > 0" in the program fragment
"IF x > 0 THEN", it is not possible to delete individual characters in the keywords
IF and THEN, or to move the cursor to characters in the middle of those keywords.
(In fact, it ts never possible to delete the individual characters within keywords; each

keyword is a part of some template, which must be treated as a single unit).

The commands that template-oriented editors provide for cursor movement,
program construction and program modification are based the tree structure of the

program being edited. PSE, for example, provides commands to move the cursor up

12

or down one level in the program’s semantic tree. However, PSE does not have

commands to move up or down a specific number of lines.

2.2.2 The Current Focus

The operation of a template-oriented editor is based on the idea of the
"current focus" [2]. The current focus is a subtree of the program being edited, to
which the editor’s cursor is pointing. For example, when the cursor on the screen is
pointing to the "{" in the keyword IF, which is the first character in an IF statement,
the current focus is the entire 1F statement, not just the character "[". If a delete
command was typed when the cursor was pointing in this position, the entire IF
statement would be deleted. Whenever the cursor is pointing to the beginning of a
template, that template is the current focus. If the cursor is inside a phrase, then

that phrase is the current focus.

2.2.3 Parsing

’

Unlike the free-form editors, template-based editors do not parse a region of
the user’s program after each character is typed. Instead, these editors parse the
current focus when an attempt is made to move the cursor away from it. If the
current focus is a phrase, then it is parsed at this time, to verify that it is synactically
correct and legal within the context of the enclosing template. For example, the
conditional field of an IF statement must be a legal expression; the name field of a
procedure must be a legal identifier name, If any syntax errors are present in the
current focus, then the user is notified. The Cornell Synthesizer does not permit the
user to move the cursor outside of the current focus until all of the errors inside it

have been corrected.

Lederman’s Pascal Structure-Oriented Editor also notifies the user of any

syntax error within the current focus when the user tries to move away from it

13

However, if the user immediately issues the command to move away a second time,
then this second command will be obeyed. Thus, PSE notifies the user of errors, but
allows him to move away from the current focus and correct the error later. This
feature of PSE seems quite desireable. If the editor detects the use of a variable of
the wrong type, for example, it is possible that the variable was actually used
correctly, but not defined properly. PSE would permit the user to move directly to
the erroneous variable definiton and correct it; the Cornell Synthesizer would force
the user to change the current phrase (the expression containing the variable) before
permitting him to move the cursor to the variable declaration. In addition, the user
would have to move back to to the old current focus, to undo the changes that the
editor forced him to make. For this reason, the approach use in PSE would appear

to be preferable to the one taken by the Synthesizer.

2.2.4 Advantages and Disadvantages of the Template-Oriented Approach

The ternpléte—based approach to structure-oriented editing has several
advantages. When this approach is used, the editor not only detects errors, but
actually prevents certain errors them from being made. A template-based editor can
make it impossible for the user to misspell keywords or to have missing or extra
END statements in his program, because keywords and END statements are
inserted by the editor as a part of templates. The use of templates should also
enable the user to enter programs more rapidly, because the keywords and
punctuation in templates do not have to be typed. A template-based editor would
also provide some flexibility for the user, because the editor’s cursor would not be
restricted to the program region which precedes the first error (the free-form editor

described in [4] imposes this restriction on the user).

There are two main disadvantages to the template-oriented approach.

Although a template-based editor facilitates program construction, it can make

14

modification of an existing program more diffifcult. Consider the two program
fragments shown below. Transforming one into the other is very simple if a free-
form editor is used; the unwanted text can be deleted just as if a conventional editor
was being used. In order to perform the modification using a template-oriented
editor, however, each of the assignment statements in the THEN clause would have
to be saved in a special buffer provided by the editor. The cursor would then be
moved to the beginning of the IF-statement, and the whole statement would be
deleted. Finally, each of the assignment statements would have to be retreived from

the buffer and reinserted into the program.

First fragment:

IF x > 0
THEN y := z + w
a:=b+c
f :=g/Nh
END

Second fragment:

y =z +w
a:=b +c¢
f:=g/h

The other disadvantage of the template approach is its dissimilarity to
conventional editors. I[n order to use a template-based editor, it is necessary to learn
a set of commands which are quite different from those provided by conventional
editors. [t is also necessary to lea_m to think in terms of a program’s tree structure,
rather than its printed representation, Because the commands provided by a free-
form editor more closely resemble those of a conventional editor, it may be easier
for a new user to learn to operate an editor which is free-form than an editor that

makes use of templates.

15

Chapter Three

Overview of VLOE

The editing systems described in the previous chapter provided the basis for
my own work in designing and implementing the VAL Language-Oriented Editor
(VLOE). VLOE is a structure-oriented editor designed to manipulate programs
written in a subsct of VAL (Value-Oriented Algorithmic Language, a functional
programming language developed at M.LT.s Laboratory for Computer Science).
The language subset handled by VLOE includes most common types of VAL
expressions, including FUNCTION's, TAGCASE’s, LET-IN, IF-THEN-ELSE, as
well as a restricted form of the FORALL expression. A more detailed description of

this subset can be found in Appendix A.

3.1 Sclection of a General Approach

The first decision that had to be made in the design of VLOE was the selection
of the general approach to be used: free-form or template-oriented. For several
“reasons, | decided that a template-based approach would be preferable. A template-
based editor would not only detect syntax errors, but would actually prevent some
of them from being made at all (e.g. misspelled keywords). Use of the template-
based approach would also facilitate program entry by climinating the need for the
user to type the keywords and punctuation for each template. Because the purpose
of the editor is to prevent errors and to reduce the time spent in editing and

compiling, these would appear to be significant advantages.

A template-oriented editor should also use less computational resources than

one that is free-form, because the latter would have to parse a portion of the user's

16

program after every character was typed. A free-form editor would require
additional time to try to rejoin the parse trees of different regions of a program
when the cursor was moved across the boundary between them (i.e. when an error
was corrected, and the cursor was moved past its former location). The need to
perform incremental parsing and to rejoin separate parse trecs would also increase
the size and complexity of the editor. Finally, if a template-based approach was
used, the editor would not have to contain a parser for the entire VAL language; it
would only be necessary to parse the simple expressions which could be found in

phrases. This would further reduce the size of the editor.

3.2 Construction of a Simple Program Using YLOE

To provide an illustration of the operation of VLOE, I will show how the
editor could be used to construct the program in Figure 3-1. This program consists
of a single function, which computes the absolute value of a given real number, and
adds one to the result. At the beginning of the cditing session, VLOE constructs a
single function template, with placeholders in all of its fields, to serve as a starting
point for constructing the program.This function template is displayed on the screen
of the user’s terminal, as shown in Figure 3-2. The cursor on the screen (represented
by an underscore in the figure) points to the beginning of the FUNCTION
keyword. |

The first step in constructing the program is to move the cursor DOWN into
the tree structure of the function template. (The terms UP, DOWN etc. were
defined in Section 1.2} This is done by typing the DOWN command. (The word
"DOWN" is not actually typed; commands are entered as control characters or
escape sequences.) This command moves the cursor.to the next lower level of the
program’s tree structure, i.e. to the first field of the function template. The screen

now appears as in Figure 3-3. At this point, the current focus of the editor is the

17

FUNCTION abs_plus_1 (x:Real RETURNS Real)
IF x > 0
THEN x
ELSE -x
ENDIF
+ 1
% This 1ine contains an irrelevant comment.
ENDFUN

Figure 3-1:Abs_plus_1 Program

FUNCTION { ID } ({ ARG_LIST } RETURNS { TYPESPECS })
{ EXPR }
ENDFUN

Figure 3-2:Initial Configuration of VLOE

entire ID field, not any particular line within the field. This distinction becomes
important when a field contains many lines. In order to notify the user that the
current focus is an entire field, a >’ character is displayed at the current cursor
position. This field marker is not a part of the user’s program; it will be removed as
soon as the cursor is moved to a new position.

FUNCTIONM{ ID } ({ ARG_LIST } RETURNS { TYPESPECS })

{ EXPR }
ENDFUN

Figure 3-3:The cursor has been moved to the D field.

18

Issuing the DOWN command a second time moves the cursor down one more
fevel in the program structure, to the placcholder labelled { 1D }. (VLOE displays
placcholders as capitalized words enclosed in braces.) When the cursor is moved,
the field marker disappears, and the screen appears as in Figure 3-4. The user can
now fill in the placcholder with the name of the function being constructed. As
soon as the first character of the function name is typed, the label for the
placeholder disappears, and is replaced by the character that was typed. The
remaining text on that line is shifted to the right, as in Figure 3-5, to leave a single
blank space between the identifier name and the next character on the line. The
remainder of the function name is then typed, and the text to the right of the cursor
is automatically shifted one space to the right as each character is typed. The screen
now appears as in Figure 3-6. If the characters in the function name were all
deleted, by typing the delete command once for each character, the symbol for the

placeholder would reappear, and the screen would appear as in Figure 3-4 again.

After the function name has been entered, the user moves the cursor to the
ARG_LIST placeholder, to type the list of the function}é formal parameters. To do
this, the cursor is first moved UP one level in the program structure (via. the UP
command), making the current focus be entire ID ficld. Next, the NEXT command
is issued, the cursor is moved to the ARG_LIST field). Finally, the DOWN
command is tyed, moving DOWN to the ARG_LIST placeholder. The list of
function arguments could then be entered, by typing "x:Real”. Similarly, the user
could move the cursor to the TYPESPECS placeholder and type "Real”, to enter

the type of the return value. The screen now appears as in Figure 3-7.

In order to construct the IF expression, the cursor must first be moved to the
EXPR field of the FUNCTION template, via. the UP and NEXT commands. Next,
the INSERT_ TEMPLATE command is typed. A message appears at the top of the

screen, asking the user to indicate the type of template to be inserted. (This message

19

FUNCTION ID } ({ ARG_LIST } RETURNS { TYPESPECS })

{ X —}\Cvl‘fﬂr‘
ENDFUN

Figure 3-4:The cursor is now pointing to the ID placeholder.

FUNCTION a{ { ARG_LIST } RETURNS { TYPESPECS })
{ EXPRINcoisor
ENDFUN

Figure 3-5:The first character of the function name has been typed.

FUNCTION abs_plus_1{ { ARG_LIST } RETURNS { TYPESPECS })

{ EXPR } N v 5o
ENDFUN Corgen

Figure 3-6:The entire function name has been entered.

does not interfere with the display of the program text, because the top line of the

screen is is only uscd for editor messages.) The user then types the keyword [F,

followed by a carraige return. VLOE would verify that [F is a valid template type,

which can be inserted at the current location, and the templatc would be inserted.

The screen now appears as in Figure 3-8. The conditional, consequent and

20

FUNCTION abs_plus_1 (x:Real RETURNS Real,

{ EXPR }
ENDFUN cursor

Figure 3-7:The function header has been completed.

FUNCTION abs_plus_1 (x:Real RETURNS Real)
IF { EXPR } :
THEN { EXPR }
ELSE { EXPR }
ENDIF
ENDFUN

Figure 3-8:The IF template has been inserted.

FUNCTIOH abs_plus_1 (x:Real RETURNS Real }
IF x > 0
THEN x
ELSE “Xn - B
ENDIF & V7
ENDFUN

Figure 3-9:Almost finished.

alternative clauses of the IF expression are filled in by moving the cursor to each of

21

these fields, and typing the phrases to be inserted. The result is shown in Figure 3-9.

After the IF expression has been constructed, it is necessary to open space for
the two remaining lines of the program. In order to this, the cursor is moved to the
beginning of the IF template, and the OPEN_AFTER command is issued. This
command opens up space for a new line within the FUNCTION’s EXPR field,
immediately after the IF template, and moves the cursor to this line. The user types
"+ 1" to fll in this line of the program, and issues the OPEN_AFTER command
again. The editor opens a new line, immediately after the current one, and the

comment can be inscrted. The abs_plus_1 program is now complete.

3.3 Additional Editor Commands

VLOE provides many editing commands in addition to the ones mentioned in
the previcus section. Some of these functions are briefly described below. A lst of
alt of the VLOE functions, and the specific control characters used to invoke them,

can be found in Appendix B.

The functions performed by VLOE can be divided into several classes: cursor
motion; line-editing phrases; inserting and deleting tempilates; interfacing to the file
system; and providing assistance to the user. In order to make it less difficult for a
new user to learn the VLOE functions, I have tried to make the command characters
for them be the same as the characters which invoke the corresponding functions in
the conventional text editor TED. (This was not always possible, because some

VLOE functions do not correspond to any TED function).

22

3.3.1 Cursor Motion

VLOE provides commands to move the editor’s cursor to different nodes in
the tree structure of a VAL program. Cursor motion is specified in terms of a
program’s syntactic structure, not its representation on the screen. The basic cursor
commands are UP, DOWN, NEXT and PREVIOUS. UP, DOWN and NEXT were
described in Section 3.2: PREVIOUS moves the cursor to the preceding element in
the current level of the program's tree structure. In addition to these basic
operations, VLOE provides commands to move the cursor to the next {or previous)
phrase, placeholder or syntax error in the program. These commands can cut across
a program’s tree structure. They move the cursor to the appropriate phrase,
regardless of its level or position within the program tree. These commands can
make it easier to place the cursor in a particular position, without having to first
move up and then move back down to get there. These operations also provide a
simple way of for the user to determine whether there are any syntax errors or

placeholders remaining in a program,

3.3.2 Editing Phrases

VLOE provides a few commands which are needed for editing phrases. These
operations are similar to those provided by conventional text editors. Two of these
commands are FORWARD and BACKWARD, which move the cursor one
character forward or backward one character within a phrase. VLOE also provides
operations to delete the character immediately before or after the cursor. These
commands cannot be used to move the cursor beyond the beginning or end of the

current phrase, or to delete text outside the phrase.

23

3.3.3 Inserting and Deleting Templates

The main commands for inserting and deleting templates are
INSERT____TEMPLATE, DELETE____CURRENT FOCUS, and
FOCUS_TO_PLACEHOLDER. The INSERT_TEMPLATE operation has already
been described. DELETE_CURRENT_FOCUS cuts the current focus out of the
program, and stores it in a buffer. FOCUS_TO_PLACEHOLDER replaces the

current focus with an appropriate placeholder, and stores the old current focus in

the buffer. The program fragment saved in the buffer can later be reinserted at a
new location, by using the PASTE command. (Note: the PASTE command has not
been implemented yet) The DELETE_CURRENT_FOCUS and PASTE
commands are useful for rearranging different sections of programs. The program
modification described in Section 3.2 could be carried out by using these

commands.

3.3.4 Opening Space

There are two operations provided by VLOE to open space for new lines.
These are the OPEN_AFTER command, mentioned in Section3.2, and
OPEN_BEFORE. OPEN_AFTER inserts an appropriate placcholder into the
program being edited, at a point immediately after the current focus. OPEN-
BEFORE inserts a placeholder immediately before the current focus. After the
placeholder has been inserted, the cursor is automatically moved to it. These
operations can be used to insert additional fields into a template. They would be
used, for example, to add tag arms to a TAGCASE expression, or ELSEIF clauses to

an [F expression.

The OPEN_AFTER and OPEN_BEFORE commands can also be used to open
space for additional lines within a field. The new line appears either immediately

before or immediately after the current focus, depending on which command is

24

used. If the OPEN_BEFORE command is used when the cursor is inside a phrase,
then the phrase is split at the current cursor position, and the second half of it is
placed on a new line of its own. Thus, when a phrase is being edited,
OPEN_AFTER produces the effect that a carriage return would, if a conventional

editor were used.

3.3.5 Comment Facility

VLOE allows the user to insert comments into programs, by associating each
comment with a particular template. A comment can be attached to a tcmplate by
moving the cursor to the beginning of the template, invoking the
INSERT_TEMPLATE function, and typing the word "comment” instead of a
template type. The comment associated with a template is displayed immediately
above the rest of the template. Each line of the comment is preceded by a percent
sign, which the convention used to denote comments in VAL. A comment is treated
exactly like any 6ther field of the template; the same commands that are used to
move to ordinary fields and edit them are used to access and edit comments. In
addition, a comment can be inserted within a phrase, by preceding it with a percent

sign,

3.3.6 T1elp Facility

At the present time, VLOE provides only a limited help facility for its users.
VLOE's HELP function displays a list of basic VLOE commands on the terminal
screen, along with brief descriptions of each. A second function, CURSOR_HELP,
provides a description of some additional commands that deal with moving the

cursor and deleting sections of a program.

25

Chapter Four

Design

Tn order to make the construction, testing, debugging and modification of
VLOE more manageable, 1 have attempted to design the editor in a fairly modular
fashion. The editor’s design calls for a main driver loop (VLOE), screen manager
(Window), parser, and data structures representing the current editor state and the
tree structure of a program being edited. The functions of each module are
described below. The relationships between the different components of the editor

are shown in the following module dependency diagram. (Figure 4-1).

4.1 The Main Modules

4.1.1 The Driver Loop

The top level module of the VAL Language-Oriented Editor is simply called
VLOE. When the editor is run, this module prompts the user for the name of a file
containing the program to be edited. (In order to construct an entirely new
program, the user types a carriage return without specifying any file name). VLOE
reads editor commands from the keyboard of the user’s terminal, and calls the
appropriate workspace procedures to execute them. VLOE is also responsible for

the reading and writing of files.

4.1.2 Help
The help module is used to provide assistance to the user. It displays a list of

VLOE commands on the terminal screen, along with descriptions of them. The help

26

A

VILOE

(Driver Loop)

|

J \

’rog

1i,_

\[\ VBuffc rl |

Tem p[a'fLC
y

WorﬂSpace

Help

Window

y

: SC/‘Gen

Field

Phrase

J Ll'ﬂc,

N

\

2

Parser

canner)

?Fagmenf

Figure 4-1:Module Dependency Diagram for VLOE

27

procedure operates directly on the screen object, to avoid unwanted interactions
with the window. The screen can be repainted by VLOE (using the window's
REPAINT operation) when the user is finished examining the information on the

screen.

4.1.3 Workspace

The workspace is a data structure (or “cluster”) containing most of the
information describing the current editor state. It includes the semantic tree
representation of the program being edited, a pointer to the current focus, a pointer
to the specific character at which the cursor is located (if the cursor is inside a
phrase), the cut buffer, and the window (screen manager). There is roughly a one-
to-one correspondence between editor commands and workspace functions. Most
editor commands can be executed by calling a single workspace function. In
addition to functions for editor commands, the workspace provides a set of
operations which are identical to the window functions of the same name; these
operations simply call the appropriate window function. They are included in the
workspace so that the driver loop will not need to have Idirect access to the window;

this was done to maintain the modularity of the design.

4.1.4 Window and Screen

The window provides an interface between the workspace and the terminal
screen. It is used to ensure that the appropriate portion of the program being edited
is displayed on the screen at all times. The window provides operations to add
characters to the scrcen, to erase characters, to insert or remove a group of lines
from the screen, to repaint selected regions of the screen, and to display command

arguments (e.g. filenames, template types) as they are being entered and line-edited.

The window performs its functions by calling the appropriate operations of

28

the screen module. The screen module is a simple cluster of operations which sends
escape sequences to the terminal. The use of a separate screen cluster allows the
window o ignore the details of different termino! types; the window specifies a
simple screen operation (e.g. clear screen, scroll up) and the screen cluster transmits

the character sequence for the type of terminal being used.

4.1.5 Prog

The prog is a cluster (data structure) which represents the top level of a
program’s semantic tree. A prog is essentially a list of the function templates at the
top level of the structure of the program being edited. Prog operations are provided
to add new function tem piates to the list, to cut out existing functions, to access the
current function, and to obtain a pointer to the next or previous function template in
the list. (The prog contains the actual function templates as its elements, not a list of

function names).

4.1.6 Template

The template data type corresponds to the abstract concept of a template, on
which VLOE and other template-oriented editors are based. Templates are used to
represent common VAL program constructs, such as FUNCTIONs, LET-IN
expressions, IF-THEN-ELSE, and FORALL-CONSTRUCT. A complete list of the
terplates used by VLOE can be found in Appendix A.

A template is essentially a list of fields, which correspond to items to be filled
in by the user (e.g. conditional, consequent and altcrnative in an IF expression;
decldefs and expression to evaluate in a LET—IN). The information associated with
each field of a template can be accessed by the template and altercd when necessary,
as programs are constructed and modified. The following (incomplete) list of

template operations provides an indication of the capabilities of the template cluster.

29

make_<{template_type>

Constructs and returns a template of type <template_type>, with
placeholders in all fields.

is (template_type> Returns true if the template is of type <template_type>,

get current field

get next

get_previous

open_after

open_before

cut_field
clear field

insert.comment

otherwise, returns lalse.

Each template has one field which is designated as the
"current field". A template created using the make operation will
have its first non-comment field as its current field. The
get_current_field operation returns the current field of a given
template.

Constructs and returns a new template identical to the old one
with the exeption of having a different field designated as
“current field". The field after the current ficld of the old
template will be the current field of the new template.

Similar to get_next, but the new current field is the field before
the old current field, not the one after. Note that
teurrent__field = tprevious.nextcurrent_ field and
tcurrent__ field = tnextprevious.current__ field, but
t ~= t.previous.next.

This operation inserts a new placeholder field into the template,
at a position immediately before the current field. The new field
is then becomes designated as the current field, This makes it
possible for a template to have an indefinite number of fields;
this feature is necessary because some templates (e.g. TAGCASE,
FORALL) can have an arbitrary number of fields.

Obvious

Removes the current field from the template, and returns that
field. One of the adjacent fields will be designated as current.

Replaces the current field with a placeholder field of the same
type.

Adds a comment field to the template, if one is not already

30

present,

4.1.7 Field

A field is a portion of a template which must be filled in by the user after the
template is created. A LET-IN template, for example, contains an optional
comment field, one or more decldef fields (to be filled in with variable declarations
and definitions), and an expression field to be filled in with an expression to be
evaluated. A field consists of a list of components, each of which can be either a

template or a phrase.

The designs of some other template-based editors do not include a separate
data structure to represent fields. PSE, for example, requires every field of a
template to be cither another template or a single phrase. An editor for VAL,
however, cannot impose this requirement. The syntax of VAL permits expression
types represented by templates to be included in arithmetic expressions. For
example, "2 * IF x=0 THEN 3 ELSE 4 ENDIF + 1" isa valid VAL expression,
whose value is 7 when x =0 and 9 otherwise. This type of expression is permitted by
some other languages, such as ALGOL 60, but not by Pascal of PL/1. An template-
based editor for VAL (or ALGOL) would have to allow IF templates, as well as

other expression templates, to be inserted into the middle of phrases.

In VLOE, the combination of phrases and templates in a single field is
accomplished through the use of a separate data type representing fields. A field
object consists of a tag identifying its type (e.g. expression, comment, identifier), and
a list of components, each of which may be either a template or a phrase. Field
opcrations arc provided to access components, to insert and remove components,
and to insert temp]atczs into com ponents which are placcholders. With the exception

of this last operation, most field functions are similar to the corresponding template

31

operations. The opcrations that templates provide to insert and remove ficlds are

provided by the field cluster to inscrt and remove components. Some of the more

important field functions are listed below.

make_placcholder

Constructs and returns a ficld of the appropriate type, with a
placeholder phrase as its only component.

get_current_ component

is <field_type>

get_previous, getn

insert_template

clear_ component

Returns the current component of a field. (Each field has one
component which is designated as the "current component”.
Fields created with the makeoperation have their first component
designated as current. In this respect, fields are similar to
templates.)

Returns true if the field is of the specified type; otherwise,
returns false.

ext

These operations return a new ficld derived from the old one by
designating a different component as current, Their behavior is
similar to the operation of the corresponding template functions.

If the current component of a function is a placeholder phrase,
then this operation will insert a given template into that phrase, if
it is legal to do so. (Actually, the current component, which is a
phrase, is removed from the ficld and replaced by a new one
which contains the template.

Changes the current component into a placeholder phrase.
Inverse operation to insert template. Similar to the
corresponding template operation.

cut.component, open_before, open_after

Similar to the corresponding tempiate operations.

32

4.1.8 Phrase

A phrase is a piece of program text typed dircctly by the user, occupying atl.or
part of a single line. Phrases may not contain templates or other subcomponents.
Each phrase contains a fragment of text typed by the user, as well as a default string.
The default string is the text to be displayed if the phrase is a placeholder. If the
phrase does not contain any text (L.e.itis a placeholder), then this default string can
be displayed on the terminal screen, to indicate the presence of a placeholder phrase
of the appropriate type. The fragments of text enclosed in braces in previous

illustrations (Figures 1-1 and 2-1) are examples of default strings.

The phrase data type provides operations to create a placehoider phrase with a
specified default string, to insert or delete characters from the phrase, and to split a
phrase into two separate ones. These operations are used for line-editing of phrases.
Other phrase functions are provided to return the text of a phrase, and to change the

a phrase’s default string.

4.1.9 Parser and Scanner

The parser and scanner are responsible for parsing the programs constructed
by the editor. It is not necessary for the parser to be able to handle the entire VAL
language; only phrases and simple field types need to be parsed. The scanner reads
the text of the field or phrase being parsed and converts it into tokens, which can be
passed to the parser; the parser can then determine whether or not the text is
syntactically correct. [f the text is not syntactically correct, or is not legal in its
context, then the user is notified of the error, so that it can bé corrected, (Note: the

parser and scanner modules for VLOE have not been implemented yet.)

33

4.1.10 Buffer, Line and Fragment

The buffer, line and fragment clusters are used to organize the fragments of
text stored in the program tree into a form which can conveniently be displayed by
the window. Essentially, a fragment is a string of text which makes up a keyword or
a phrase; a line is a list of fragments which should be displayed on the same line of
the terminal screen; the buffer is a data structure which liﬁks together all of the lines
in a program. Because the sole purpose of these clusters is to facilitate the mapping
of the program tree structure onto the terminal screen, these data structures will be

described in Section 5.2, which deals with screen mapping issues.

4.2 Semantic Checking

At the present time, VLOE does provide any facilities for semantic checking.
Although there are several types of semantic checking which it could be useful for
VLOE to perform, I believe that including semantic checking would be beyond the

scope of this thesis.

4.3 Interface to File System

VLOE provides a set of three commands to interface to the file system:
WRITE, WRITE_TEXT and READ. WRITE and WRITE_TEXT make a copy of
the program being edited and write it to a specified file. The WRITE command
produces a normal text copy, which can be printed or compiled; WRITE_TEXT
produces a reprentation of a program’s tree structure, in a form which can be read
back by the editor. The READ command reads a file which has been constructed
using the WRITE operation. The tree structure of the program stored in this file is

reconstructed by the VLOE, and the user can then continue to edit the file.

34

Chapter Five

Implementation

The VAL Language-Oriented Editor was implemented in CLU. This
programming language provides powerful mechanisms for creating abstract data
types (CLUSTERS); this facilitates the construction of highly modular programs.
Each of the modules of VLOE shown in Figure 4-1 was implemented as a single
CLUSTER, with the exception of the driver loop and help functions, which were

implemented as procedures.

At the time of writing (September 4, 1984), a substantial part of the editor has
been implemented. Commands fo_r cursor motion, inserting and deleting templates,
cditing phrascs, and reading and writing files all appear to work coniecily. However,
the PASTE command has not been implemented yet, and the parser and scanner
have not been written. These functions will probably be added to the editor during
the fall,

In the remainder of this chapter, I will describe a few aspects of the VLOE
implementation that might not be evident from the design. In particular, I will
discuss the manner in which VLOE represents progfram trees and keeps track of the
cursor position within them, the implementation of the file system interface, and the

way in which changes to the program tree are reflected on the terminal screcn.

35

5.1 Representing the Current Fditor State

There are two main components of the editor state that need to be
represented. These are the tree structure of the program being edited and the
position of the editor’s cursor within this program. The program tree and the cursor

information are both stored in the workspace module of the cditor.

In order to represent the tree structure of programs, VLOE uses a hierarchy of
data abstractions. The abstractions used are the prog, template, field and phrase
clusters, which were described in the previous chapter. Each prog, template and
ficld object contains a pointer to a linked list whose elements are the object’s
components. The prog, for example, coﬁtains a pointer to a linked list of function
templates. Fach template contains a pointer to a linked list of its fields; every field
has a pointer to a list of its components. In addition, templates may contain
additional pointers; thesc are used to point to any lines of the template which do not
contain fields. The most common example of this is the END line at the end of

many templates,

Unlike progs, templates and fields, phrases do not have a linked list structure.
Each phrase contains only a string of text typed by the user. (Actually, phrases do
not directly contain strings of text. Each phrase has a pointer to an object called a
"fragment” which contains the phrase’s text. This will be explained in Section 5.2.)
The prog, template, field and phrase data types together make up the program tree.

A short program and its tree representation are shown in Figure 5-1.

In addition to the program tree, the editor's workspace contains a
representation of the current cursor position. The cursor position is represented by
a stack of pointers, which is called the "cursor stack”. The top element of the cursor
stack points directly to the current position of the cursor within the program tree

(i.e. to the current focus). The other clements of the stack point to the program

36

FUNCTION abs (x:Real RETURNS Roal)

IF x>0

THEN x
ELSE -x
ENDIF
ENDFUN
frog
Template
(FuncTaon)
F;'GIJ . F;E'cl F.Iﬂ,C!
(D) (ARd— 7? (TYPEFPECSJ 7
A
fev] f”"‘%n V’é’%)

Templdfe
(ZF)

Fleld
(EXPR)

v

Phrase

(x>o)

Field
(EXPR)

Fiel d
(EXPR

)

A

Phrese
X

Fleld
(EXPR)

W

Phrase
—X

Figure 5-1:Tree Representation of Absolute Value Program

37

constructs surrounding the current focus. This organization of the cursor stack
makes it possible to move UP one level in the program tree merely by popping the
stack. To move DOWN, an additional pointer would be pushed onto the stack.
Moving to the NEXT or PREVIOUS program element at the current level involves
popping one pointer off of the stack and pushing a new one on. If the cursor is
moved to a phrase, then an extra element is pushed onto the stack, to indicate which
character of the phrase the cursor is pointing to. When the cursor is moved away
from the phrase, this extra element is popped off of the stack. Figure 5-2 shows the
configuration of the cursor stack, when the cursor is positioned at the last phrase of

the program in Figure 5-1.

5.2 Screen Mapping Problem

One of the requirements for VLOE was that the editor should be screen-
oriented. Every time the cursor is moved, and every time that text is inserted or
deleted, the change should be reflected immediately on the screen. In order to do
this, it is necessary to have a convenient way of mapping from the tree

representation of a program to its positions on the terminal screen.

There are two basic approaches which can be taken to deal with this problem.
One of these is to search through the program tree each time a change is made, to
determine what should be displayed on the screen. The other solution is to maintain
a representation of the program which is based on lines of text, rather than tree
structure. VLOE takes the second approach to solving this problem. Instead of
trying to translate from the tree structure to lines on the screen every time a change
is made, VLOE maintains a set of data structures which organize the program into
lines. These data structures are the buffer, line, and fragment data types, which

were mentioned earlier.

38

ijr‘qm ‘rfee

Ff‘aj CUF_S'OI‘ STq ch’
emplat —
(-:;Ufg}ﬂ;oy)é' %

[Feld \ Freld Feld | |
| () e
f - o

! N

Tenvlite |
(ZF) |

T

Field Field Feld

(EXPRH (ExFR) K (exeR) |
'\1'/ ! " "17' P}mr‘gej/dwr.na
= I}

\

()

Figure 5-2:Cursor stack configuration S

39

A fragment is a string of characters which should always be grouped together.,
A phrase, for examnple, keeps all of its text together in a single fragment. Each
phrase object contains a pointer to the fragment associated with it. A phrase does
not contain a separate copy of'its text; in order to access its text, the phrase obtains it

from the fragment.

Fragments of text which should appear on the samc line of the screen are
linked together into lines. The line cluster provides an operation which returns a
single string containing ail of the text in a line, This operation simply concatcnates
the pieces of text stored in the line’s fragments. All of the lines in the program are
linked together in a single buffer object. The organization of a program into lines

and fragments is illustrated in Figure 5-3.

,_QI_E_'K—%T:‘W&:: »

L;C‘) X 20 [

. ine_- . >
Tne_K—BPEM

\—/V'*‘/ _/‘\/\ By

Lines jnthe Bffer Fragm ents

Figure 5-3:0Organization of absolute value program into fragments and lines

When changes are made to the program tree, the appropriate changes are also
made to the affected lines in the buffer. The opcrations for updating the screen can

then be specified in terms of lines in the text buffer, instead of elements of the

program tree. The screen can be updated through the use of procedures that repaint
specific lines on the screen with text from the buffer. As a result, the screen
management cluster (window) does not need to know about program trees, or even
about fragments. The screen manager for a conventional text editor would be able
to perform all of the necessary functions. This simplified the construction of the
VLOE window.

5.3 File Implementation

Implementation of the file system interface for VLOE was fairly
straightforward. In order to write text files (when the WRITE_TEXT command is
invoked), VLOE simply outputs each line in the text buffer. This means that writing

text files is no more difficult for VLOE than for a conventional editor.

Because VLOE does not ha\"c the capacity to read ordinary text files, it was
necessary for the editor to be able to write files in some other form, which it could
read back. These files are written by using the WRITE command. The file
representation of a program produced by VLOE is a string of characters which, if
typed from the terminal keyboard, would cause the editor to construct the program
again. A file produced in this way is approximately the same length as an ordinary
text file for the same program. In order to read a file, it is only necessary for VLOE
to disconnect its input stream from the terminal keyboard, and attach it to a stream
from the file. VLOE executes the commands in the file as though they were typed
from the keyboard. (VLOE does not update the screcn until the entire file has been
read and executed: this eliinates unwanted terminal output.) When the end of the
file is reached, the input stream is"reconnected to the keyboard, and the user can

begin to edit the program.

41

Chapter Six

Evaluation

Because the parser for VLOE has not been written yet, [have not been able to
measure the effectiveness of the editor in helping a programmer avoid Syntax errors.
However, I have obtained some idea of the performance of VLOE, by using it to
construct several programs, and then constructing the same programs with a
conventional editor. I have found the time needed to construct a program using

VLOE to be comparable to the time needed when a conventional editor is used.

One problem that 1 have found in using VLOE is the difficulty of adjusting to
using a structure-oriented editor for the first time. It was necessary to learn to think
in terms of programs’ tree stiuctuics, rather than lines and characters on the screen.
It was difficult, at first, to determine which commands should be used to move the
cursor to some desired location. [found it particularly confusing that the UP
command, for example, could cause the cursor to move in any of three physical
directions on the screen (up, left, and down), while moving UP in the program
structure. This problem was alleviated, to some degree, by the addition of
commands which cut across the tree structure of a program (e.g. next phrase, next
placeholder). Hopefully, continued usage of VLOE, or experience with other

structure-oriented editors, would further reduce these difficulties.

42

Chapter Seven

Possibilties for Future Work

The are a number of areas for future work in the development of VLOE.
First, the implementation of the existing design could be completed. The PASTE
function could be made operational, and the parser could be written.
Implementation of the parser would involve writing the grammars describing each
type of field or phrase that VLOE might have to parse. Separate grammars would
describe the phrases which could legally appear at the beginning, middle or end of
different kinds of fields.

Some other useful changes to VLOE would be the inclusion of semantic
cheeking and the cxtension of VLOE to handle the entire VLOE language. It would
also be desireable to enable VLOE to read ordinary text files and reconstruct the
structure of programs from them. This would make it possible to use VLOE to edit

programs that have already been constructed with conventional text editors.

43

(1]

(2]

3]

[4]

[5]

6]

[

References

Ackerman, William B. and Dennis, Jack B.

VAL -- A Value-Oriented Algorithmic Language: Preliminary Reference
Manual.

Technical Report 218, M.L.T. Laboratory for Computer Science, June, 1979.

Lederman, Abraham.
A Pascal Structure-Oriented Editor: Design and Implementation Issues.
Master's thesis, Massachusetts Institute of Technology, 1981.

Lewis, J. W. and Porges, D. F.

ALBE/P: A Languaged-Based Editor for Pascal.

In Procedings of the Eighth Texas Conference on Computing Systems, pages
5A-1510 5A-19. IEEE, 1979.

Morris, Joseph M. and Schwartz, Mayer D.
The design of a Language-Directed Editor for Block Structured Languages.
SIGPLAN Novices 16{6):28-33, June, 1531,

Stromfors, O. and Jonesjo, L.
The Implementation and Experiences of a Structure-Oriented Text Editor.

SIGPLAN Notices 16(6):22-27, June, 1981.

Teitelbaum, T. et. al.
The Why and Wherefore of the Cornell Program Synthesizer.
SIGPLAN Notices 16(6):8-16, June, 1981,

Wood, Steven R.
Z - The 95% Program Editor.
SIGPLAN Notices 16(6):1-7, June, 1981.

Appendix A
Subset of VAL Handled by VLOE

At the present time, VLOE can only edit programs written in a subset of VAL.
This subset includes the following types of VAL expressions: FUNCTIONS, IF-
THEN-ELSE expressions (these expressions can contain ELSEIF clauses),
TAGCASE expressions (ordinary tag arms and OTHERWISE arms are both
allowed) and LET-IN expressions. A restricted form of the FORALL expression is
also allowed. The FORALL expression may only contain one variable in its header;
FORALL'’s involving more than one loop variable must be implemented by nesting
two or more of FORALL expressions. The editor does not permit a FORALL to
have a decidef-part. In addition to these restrictions, VLOE does not yet accept the
TYPE, EXTERNAL or FOR-ITER constructs.

For a detailed description of the VAL language, see the VAL Preliminary

Reference Manual [1].

45

Appendix B

Complete List of VLOE Commands

The section contains a brief description of-each VLOE command,
along with the specific control characters needed to invoke it:

Command: Character to invoke command: Pescription:
DOWN : +@, break, or ESC-B (Down arrow);
Move down one level in the
program structure.
FIRST: TA Move to the first character
of the current phrase.
BACKWARD: B Move the cursor back one character
within a phrase.
DELETE_CHAR: 1D Delete the character at the
current cursor position.
END: 1E Move to the end of the current phrase.
FORWARD: 1F Move the cursor forward one character
within a phrase.
QUIT: +G Quit from typing a command,
HELP: tH Print this help file.
OPEN_BEFORE: +J Open space before the current focus.
REPAINT: 1L Clear the screen and redisplay.
OPEN_AFTER: ™ Open space after the current focus;

split a phrase at the cursor.

NEXT: tN, or ESC-C (Right arrow); Move to next program
element at current level

PREVIOUS: tP, or ESC-D (Left arrow); Move to previous program
element at current level.

READ: 1R Read file,

UP: tU, or ESC-A (Up arrow); Move up one level in the

Text/Cursor Move: 1tV

program structure.
Used to precede cursor commands.
A 1ist of these commands is on the next page.

WRITE: W Write VLOE file, which can be used
for further editing.
EXIT: X7 Exit from VLOE.

INSERT_TEMPLATE: +Y

Insert template or comment.

WRITE_TEXT: ™ Write a text (human-readable)
copy of the program,
DELETE: detete key Delete the character before the cursor.

Text/Cursor Commands (must be preceded by TV}):

Command character:

tA

+B
1D
+E

+F
1G
K
+N
tP
T

U
tv

Command description:

Move to the first program element
at the current level.

Move to the previous placeholder.
Change the current focus into a placeholder,
Move to the last program elTement

at the current level.

Move to the next placeholder,

Quit from command.

Delete the current focus.

Move to the next phrase.

Move to the previous phrase,

Move to the top of the program tree.
{(This command is T, not *T)

Change template to non-flat form
Change template to flat form

{The tU and *V cursor commands only apply
to IF, FUNCTION and FORALL templates)

Print this help fila.

47

