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I. Fixpoint Equations
Definition I3 Lét :D — D be a function that maps a set D to itself. An equation of the

form x = fx) is called a fixpoint equation. If x; is an element of D that satisfies this
equation, it is said to be a fixpoint of f.

A function f:D — D can have zero, one or many fixpoints.

2

Example Consider f: R — R where f{x) is 4x2 + 2. Verify that f has no fixpoints fe, the equation x = 4x” + 2 has

no solution in R.

How many fixpoints do the trigonometric functions sin(x) and tan(x) have ?

Fixpoint equations arise naturally in computer science because a convenient way to describe an
infinite set or a function is by recursive programs.

Example: Consider lhc.following recursive program which computes McCarthy's 91 function ;
def F(x) <= if x > 1'00 then (x - 10) else F(F(x + 11))

While this program does not look like a ﬁxpoim'equation, we can translate it into the following equation -
f = [Ag.Ax. if x > 100 then x -10 else g(g(x + 11))] f

The expression within square brackets has the functionality (N — N) — N — N- ie, it takes a function from N'to
N and returns a function from XN to N. Sueh functions are sometimes called functionals or more generally higher-order
functions. The 91 function is a fix-point of the functional shown above.

Exercise: Verify that the following function h; N — Nsatisfies the fixpoint equation for the 91 function.

h = An. if n > 100 then {n - 10) else 91

To see how fixpoint equations can be used to define sets, see [4] where it is shown that the
. language described by a context-free grammar can be expressed as the solution to a fixpoint
equation. In formal language theory, this result is known as the Ginzburg-Rice theorem.

2. Two Fixpoint Theorems

There are a wide variety of fixpoint theorems in the literature. The basic idea behind all of them
is to give conditions on both the set D and the function f:D — D that are sufficient to guarantee
that f has a fixpoint and that the fixpoint can be determined by some simple algorithm. Of
particular interest in computer science is the case when the set D is a partially ordered set. The main
result in this area is attributed to Tarski who proved a particular fixpoint theorem in the case that D
is a complete lattice [7]. Of more interest to us is the case of general partial orders. Before giving the
theorem, we motivate some of the technical machinery we need by proving a simpler fixpoint
theorem for the case when D is a finite, partially ordered set.

Theorem 2: First Fixpoint Theorem : Let D be a finite, partially ordered set with one



least element! and let :D — D be a monotonic function. For some finite k >0, fk(_L) is
the least fixpoint of f.

Proof: Since L is the least element of D, L C f{L). From the monotonicity of f, we
can conclude that f{_1.) C fz(_L). Inductively, then, we have the following chain :

tCcuCcuc..cfu)c..

However, since D is finite, there must be some k > 0 such that f*(.l.) is the largest
element of the chain - Le,

L) = ) ...

Hence, fk(J.) must be a fixpoint of f.

Moreover, if p is any other fixpoint of f, then L C p. Since f is monotonic, f{.L) C f{p)
= p. Inductively, then, forall i > 0, /(L) C p; in particular, f*(J.) C p. Hence, fk(.L) is

the least fixpoint of f.
O

Unfortunately, this theorem is not very useful because of the restriction that D be a finite set.
Notice that the proof breaks down if D is an infinite set because then the chain

LCRLCAUL)C..CHLUC..
need not have a largest element.

To prove a similar (and more useful) fixpoint theorem when D is an infinite set, we proceed as
follows. A natural extension of the idea of the largest element of a chain is the idea of the least upper
bound of a chain,

Definition 3: Let D be a partially ordered set and let X € X; .. € X, C ... be achain in
D. y € Dis said to be the least upper bound or lub of the chain iff :

1. for all i, x; €y - Le, y is an upper bound of the chain

2. if z is an upper bound of the chain, theny C z- i.e., y is the /east upper bound.
0

Notice that this is essentially a restatement of the familiar idea of the limit of a sequence of real
numbers, although in a more general context.

Example Let D be the [0, 1) interval of the real line. This is a totally ordered set. The lub of the
chain0 C 174 C 3/8 € 7/16 .... is 1/2. The chain 0 C 1/2 C 374 C 7/8..... in D does not have a lub
(notice that 1 is not a member of D). Notice that if D" is [0, 1], the chain0 C 1/2C 3/4 C 7/8 ....in
D’ has a iub.

This example suggests that if we want to talk about lub’s of infinite chains, it is convenient to

]wc denote the least element by L



restrict our attention (o partially ordered sets in which every infinite chain has a lub.

Definition 4: An w-complete partial order is a partial order in which every chain has a

lub,
(]

Let us add the condition that D must be an w-complete, partially ordered set and reconsider the
chain

LCRUCAL)C..CciL)C..

We can now assert that this chain must have an lub, and we can denote the lub by Uif"(_l.).
However, we still cannot assert that it is a fixpoint of f,

Exercise Show that I’(Uif"(_L)) must be an upper bound of the chain L C L) C f‘z(.L) .. We
woulid like a stronger condition - that f(UiF(_L)) is UiF(.L) Le., the least upper bound of the chain.

To ensure that Uifi(.L) is the least fix point of f, it is sufficient to require that f must not only be
monotonic but also continuous. :
Definition 5: Let D be an w-complete partial order with one least element. 1D — D is
said to be continuous iff for every chain X% S %, Cx,....in D, RUx) = Uif(xi).

As before, this definition of continuity corresponds closely to the definition of continuity in
analysis. The following diagram may help the reader to appreciate this fact.

’F(U;_x-;) + -
U fox) |
'F(x}.)
£04)
‘F()(o)

L}

L \

Xp Xy dg - - - l}.‘\:
Figure 2-1: Continuity

Exercise Verify that if f is continuous, then f(UiIi(.L)) = Uit"(.L).

Finally, we have

Theorem 6: Second Fixpoint Theorem : If D is an w-complete, partially ordered set
with one least element and £:D — D is a monotonic and continuous function, then
U,f(L) is the least fixpoint of .

Proof: Left as an exercise. Follows simply from the discussion above.
This method of finding the least fixpoint of f is sometimes called Kleene’s iterative method.

This theorem can be extended quite easily to deal with the case when the function f can take more
than one argument: for example, if f has functionality D X D — D. A further extension is to



systems of fixpoint equations of the form
x = f{x, y)
y = a(x, y)
where x and y are both clements of D. Once again, the extension is simple and the interested
rcader is referred to Manna [6].

3. An Application of the Second Fixpoint Theorem

The second fixpoint theorem is often used to give an abstract ("denotational") semantics for
programs. For example, see Manna [6] and de Bakker [2] for expositions of how the theorem can be
used to give a semantics for recursive programs such as the one for McCarthy's 91 function which
was given in the introduction. We take up a different cxample that is more in keeping with the spirit
of this course.

3.1. Networks of Communicating Processes

Consider a network of computing stations which can communicate with each other by means of
message buffers. There is no global clock and there are no constraints on the relative speeds of the
stations. The message bufTers are idealized in the sense that they are infinite in size, no message is
ever lost and messages sent by a station (say P) to a station (say Q) are received by Q in the order in
which they were sent by P, Certain of the message buffers are considered to be input or output
buffers on which messages can be sent into and sent out from the network. Figure 3-1 shows an
example of such a network.

o

Figure 3-1: A Network of Stations Communicating via Message Buffers

An operational semantics for such a network can be given by first defining the concept of an
"instantaneous state” for the entire system. Usually, this is taken to be a state vector in which there
is one element for the state of each computing station and message buffer. The behavior of the
network is then characterized by giving a transition (or "next-state™) relation which specifies the



permissible state transitions of the system. Figure 3-2 shows an example of a state transition
diagram. Notice that since stations operate asynchronously, this relation is not, in general, a
function; i.e. in operational terms. a system in a given state makes a transition to some state which
is one of many possible states. Thus, the network can exhibit non-deterministic behavior.
Nevertheless, it ntay still be possible that the network exhibits deterministic 1/0 behavior, in the
sensc that for a given set of input messages, the output messages produced by the network are
uniquely defined. A natural question then is whether one can place sufficient conditions on such a
network for ensuring deterministic 170 behavior,

Figure 3-2: An Example of a State Transition Diagram

In 1974, Gilles Kahn gave a fairly general solution to this problem [S]. He imposed three
conditions on the computing stations, two of which are the following :

L at any given time, a station is either computing or waiting for a message on one of its
input lines

2, each computing station follows a sequential program.

Hence, no two stations may send messages on the same buffer, and no station may "poll” two or
more input buffers for messages. If a station attempts to read from an empty message buffer, it gets
"stuck” until some station sends a message on that buffer. Notice that since buffers are infinite in
size, a station can never get stuck while outputting a message.

Kahn then defined the history of a message buffer to be the sequence of messages seen by an
observer monitoring the messages sent on the buffer. | f every message must come from some set M



(for example the sct of integers and booleans), then the set of message scquences is the set M“
which is the sct of all finite and denumerably infinite sequences of elements over M. The empty
message scquence (written as [ ]) is assumed to be an element of this set. A natural ordering on the
set of message sequences is the so-called "prefix” ordering - for example. the message sequence [3,5]
(the message sequence in which the first message is 3 and the second message is 5) is below the
message sequence [3,5,8] in the partial order. Note that the scquence (3.6] is incomparable to the

sequence [3,5].
The third requirement that Kahn imposed on stations was :

3. under the prefix ordering on histories, each station is a monotonic. and continuous
function from histories to histories

Thus, with every station, we can associate a monotonic and continuous function from sequences
to sequences that determines the 170 behavior of the station. The intuitive meaning of
monotonicity in this context is that a station never retracts a message - giving a station more input
can only cause it to produce more output (ie., send out zero or more messages). The intuitive
notion of continuity is that the behavior of a station when it is given a infinite sequence of messages
can be determined by the limit of its behavior on all finite prefixes of that input sequence - for
example, a station cannot decide to send some output only after it receives an infinite amount of
input.

Kahn asserted that a network in which every computing station satisfied these three conditions
has determinate 170 behavior regardiess of any "internal" non-determinacy it may have. Moreover,
the 170 behavior can be determined by solving a set of fixpoint equations that we can associate with
a network in a straight-forward way. For example, the set of equations for the network shown in
Figure 3-1is shown below -

x = f(1, y)
Yy = g(x}
o = h(x)

The functions f, g and h are the (monotonic and continuous) functions from histories to histories

- that characterize the 170 behavior of stations F, G and H respectively. The variables x, y, i, and o

represent the histories of the corresponding message buffers,

Using the fixpoint theorem, we can assert that this set of equations has a unique least solution.
Kahn asserted that this solution corresponds exactly to the 170 behavior that is determined by the
operational semantics®

Exercise : The iterative method of computing fixpoints corresponds to following a particular
path in the state transition diagram of the network. Does this path correspond to some particular
way of scheduling the execution of the stations? Is it a fair schedule? Prove that the output
produced by any other way of scheduling stations will produce a prefix of the output specified by
the least fixpoint of the semantic equations (this part is difficult - see [1, 3]).

2A historical note of some interest is that Kahn never actually proved the equivalence of the two semantics - he merely
asseried that they were. A rather detailed proof of the equivalence in a slightly more peneral context was first given by
Fuusting [3].



The reader who is intercsted in a rigorous treatment of this discussion is referred to Kahn [5).

What makes all this interesting is that Kahn's work solved not only the problem of giving
sullicient conditions to cnsure determinacy, but also provided a way of delermining the /0
behavior of such a network. Moreover, by relating all this to work by Scott and others, he gave some
very powerful proof rules that can be uscd to reason about such networks, such as determining the
equivalence of two networks. Of course, we should not expect any miracles - the halting probiem
still remains undecidable, but we at least have a framework for proving properties of programs in
which irrelevant internal details of the system are hidden from the theory.

The most powerful proof rule is Scott’s rule of induction :

Scott’s Rule of Induction: Let D be an w-complete partially ordered set with one least element
and let f:D — D be monotonic and continuous. If P(x:D) is a predicate; then if

1. P(.L) holds, and

2. P(x) = P(f{x))

then P(U,(1)).

Unfortunately, this rule is not valid for any predicate, but only for a class of predicates called
admissible predicates. For a definition of these predicates, the reader is referred to Manna [6].
Notice that ordinary induction suffices to prove that P(fk(J.)) for all finite k. To make the jump to
least upper bound of the sequence, we need Scott’s rule,

For the kind of equations for Kahnian networks that we have been considering, we can restate
Scott’s rule of induction in the following, more convenient form. To avoid introducing more
notation, we consider the network of Figure 3-1. Let 3, %, 9 and O be the histories of the buffers I,
X. Y-and O that are determined by the least fixpoint solution. Let x, y and o be the histories of lines
X, Y and O at some point in the computation. Scott’s rule of induction can be rephrased for this
network as follows: If P(I, X, Y, O) is an admissible predicate, and

LP(,{1.111D holds and

2.P(3, x. y, 0) = P(4, (4, y), g(x), h(x))
then P(3, %, 9, 0) holds.

in other words, to prove a property P of some network, we must show that P is true initially when
the inputs are supplied and all other message buffers are empty and that if P is true at some point in
the computation, then P is true at the next step after all stations have fired simultaneously, As
usual, this applies only when P is admissible. In operational terms, this can be interpreted as
follows. If P is true at the beginning of the computation, and P is true at every step of the "fair
schedule” that corresponds to iteratively finding the fixpoint, then P is true at the end of the
computation,

Exercise: What if some other schedule is followed 7 Argue that P need not hold at "intermediate”
steps of the computation, but that P will hold at the end of the computation as long as the schedule
is a fair one.



We now demonstrate the power of this rule by showing how it can be used to prove the basic
result about the Queued and Unraveling Interpreters for dataflow graphs,

3.2. An Application of the Theory in Dataflow

Qur interest in Kahn's result arises from the fact that any dataflow graph can be translated
trivially into Kahn's framework. For definiteness, let us consider Dennis's graphs in which every
node represents an operator from the set {T-box, true-gate, false-gate, (deterministic) merge}. By
making each node in the dataflow graph into a computing station and making every arc in the graph
into a message buffer, we get a network of computing stations. We leave it (o the reader to verify the

following facts :

« for the Queued interpreter, the history of a line is a sequence of zero or more messages.
if these sequences are ordered by the prefix ordering, then each operator in the graph
represents a monotonic and continuous function from histories to histories,

e for the Unraveling interpreter, the situation is more complicated because the physical
order in which messages are sent down a line need not correspond to the logical order of
the messages. For example, the message with logical number i can be produced before
the message at logical position i-/. In opcrational terms, we would have to tag every
message with its logical position number. Once messages are tagged, the exact physical
order in which messages are sent down a line becomes irrelevant, and the the history of
a line can be considered to be a set of lagged messages. For example, one possible
history is {<3, 1>, <4, 2>, <8. 3>} which represents a history of 3 messages in which the
first message is 3, the second is 4 and the third is 8. Another possible history is {<3, D,
<7, 4, <4, 2>} - in this history, the message at logical position #4 has been produced
before the message at logical position #3. At some later point in the computation, the

- station may send out the message at the third position (say 8), and the history then is
{3, D, <7, &, <4, 2, <8, 3} Intuitively, the appropriate ordering appears to be the
subset ordering on sets of tagged messages. We leave it to the reader to verify that under
this ordering, the operators in the language are monotonic and continuous functions
from tagged message sets to tagged message sets,

A natural question one can ask is whether for every program, the Unraveling interpreter produces
"more output” than the Queued interpreter, where producing “more output” corresponds to the
intuitive idea of producing all the messages (with appropriate tags) produced by the Queued
interpreter, and perhaps, some more tagged messages. For example, if the Unraveling interpreter
produces {<5, 1>, <6, 4>, <3, 2>} and the Queued interpreter produces [5, 3]. then the Unraveling
interpreter has produced more output. On the other hand, if the Queued interpreter has produced
[5, 3. 7], then the outputs are incomparable,

It is convenient to define a function tagged which takes a message sequence and returns a set of
messages tagged appropriately. For example, tagged([3.4,6]) is {<3, 1>, <4, 2, <6, 3>}.

It is clear that for some programs, the Unraveling interpieter produces more output than the
Queued interpreter. An example of this is shown in Figure 3-3.

What must be proved is that this is the case for all programs. Clearly, one cannot prove this by



Figure 3-3: Difference between the Unraveling Interpreter and the Queued interpreter

giving examples - we must give a proof. The obvious thing to try is Scott's rule. Unfortunately, we
have two different domains - one of message sequences for the Queued interpreter (say D1), and
another of tagged message sets for the Unraveling interpreter (say D2). To use Scott's rule, we must
construct one domain. This is a standard construction - the (separated) sum of two domains D1 and
D2 (written as D1 + D2) is the disjoint union of all the elements of D1 and D2, together with a new
L element. The elements of the sum domain are ordered as follows -

1L Cxforallx € D1 + D2.

2.if xis an element of Di and y is an element of Dj, then x C y iffi = jand x C y in Di.

Pictorially, the sum of the two domains can be shown as in Figure 3-4

L

Figure 3-4: Sum of Two Domains

We can now extend any monotonic and continuous function that operates on one of the domains
(say D1) to a monotonic and continuous function that operates on the sum domain D1 + D2. This
is done in a fairly standard way as follows. Intuitively, f: D1 — D1 is extended to g: (D1 + D2) -
(D1 + D2) where g maps elements of D1 exactly as f did, and maps L and elements of D2 to some
value that is consistent with monotonicity - for example, L. This extension is merely a mathematicat
construction - no deep operational meaning should be sought for.

We now define a predicate more-defined-than(x, y) where x and y are elements of (D1 + D2) -

o if x is an element of the D2 component of the domain, and y is an clement of the D1



component of the domain, and tagged(y) is a subset of x, then more-defined-than(x, y)
is true

« in all other cases, the predicate is false.

It can be shown that this is an admissible predicate.

To simplify matters again, we consider the network of Figure 3-1. Imagine two copies of this
network placed side-by-side. We will use the Qucued interpreter on one of the copies and the
Unraveling interpreter on the other. Both networks are given the same inputs (tagged for the
Unraveling interpreter) and allowed to compute, .

We translate this operational scenario into the semantic scenario as follows. The behavior of the
two networks can be described by the obvious fixpoint equations - remember that the history
variables in these equations represent values in the sum domain D1 + D2.

=00y x, =160y,

v = g(xp 2= gz("j).

0, = hl(xl) 0, = hz("z)
Consider the predicate P defined as

more-defined-than(i), i;) A more-defined-than(x,, x,) A more-defined-than(y,, yy) A
more-defined-than(o,, 0,) -

This is an admissible predicate. When both networks are given the same message inputs (tagged
appropriately for the Unraveling interpreter),.we can use Scott's rule as follows -

e P is trivially true when the histories i; and i, are the inputs to the networks and all other
_histories are [ ].

o if P is true for some histories, we verify that P will be true after all stations fire
simultaneously. This is done proving that each of the terms in the disjunction is true,
which is proved simply by considering the functionality of the operators. operators.

This proves the required result,

As before, the aim of this discussion was to provide the intuition behind the technical results - the
reader who wants the formal details is banished to the references, We note that the original proof of
this result [1] also uses Scott's rule, but uses a different set-up to sort out the various technicalities.
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