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Managing Resources in a Parallel Machine

Arvind
David L. Culler

Laboratory for Computer Science
Massachusetts institute of Technology
Cambridge. Massachusetls
U.S.A.

We discuss resource management in paraflel machines that support a
gencral purpose programming model, Le. one that allows dynamic
creation of tasks.  Concurrent execution of (asks. in general, requires
more resources than sequential exceution, Thus, a policy that cagerly
allocates resources o tasks can cause a deadlock not ofien scen in
sequential implementations.  We present a method of cxploiling
paratlclism while avoiding deadlock for a large class of programs in the
context of dataflow machines. The method is based on the concept of
Resource Bounded Dataflow Graphs., and allows “parallelism
parameters” of tasks to be set based on the availability of resources at
time of task initiation.

1. Overview

Our experiments with dataflow programs running on a simulated parallel machine have
demonstrated that even small programs coded without particular concern for parallelism exhibit
substantial amounts of parallelism. While we herald these resutts as validation of our initial claims,
we also view them as a subject of some concern. Exposing parallelism tends to increase the resource
requirements of a program, Automatic program unfolding, if unconstrained, may exposc far more
parallelism than the underlying machine can exploit and suffer performance degradation due to
inordinate resource demands. We would like to expose sufficient parallelism to fully utilize the
machine, while keeping resource demands within reason.

This resource usage problem is perhaps most serious for dataflow machines, but is certainly not
limited to that class of machines. We believe that any programming model offering a suitably
general means of expressing parallelism will give rise to this concern regardless of the underlying
parallel computation model. Thus, the problem will appear to some extent in any parallel
implementation of a functional or relational language and in parallel implementations of imperative

languages augmented with tasks, such as ADA.

This paper illustrates the potential hazards in dynamic unfolding of programs and addresses how
these problems might be overcome in a dataflow context. Sections 2 and 3 outline the general
problem and argue that it should appear in any general purpose parallel machine. Sections 4
through 6 describe our work to overcome this problem in a datatlow machine. The concept of a
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resource bounded graph is developed as a means of exploiting program structure o alleviate the

burden of resource managemend,

2. Context: General Purpose Parallel Machines

T'he goal of our work is to demonstrate the feasibility of a general purpose paraltel machine in
which all processors cooperale 10 sofve a single probiem.  As this is the context in which the above
claims are to be understood. we should make clear what we mean by a general purpose parallel
machine. In our vicw, the following propertics are essential:

1. The programming model should not reflect the number of processors nor the vagaries
of the interconnection lopology.
2. Higher performance should be achievable through the simple addition of processors.

3. The programming mode] must support dynamic allocation of storage, ie., hecaps.

4. A task can create new tasks dynamically, and thus may request additional resources at
run time.

In putting forward these properties we have intentionally blurred any distinction between
hardware, system software, and compiler. These are perceptible properties of the system as a
whole.

The first property is particularly important. Specific topologies have becn shown to provide
efficient solutions to particular problems [1, 14, 18, 20, 21, 22]; our comments may not pertain 0
such specialized machines, We also recognize that the programming task becomes far more
difficult if the underlying machine structure is reflected in the programming model. Parallel
machines can only exacerbate an already onerous task, unless the programming model is extremely

clean.

The second property is often referred to as scalability. However, scalability can be manifested in
a variety of forms. Taking advantage of additional processors may require rewriting parts of the
application code; this is especially likely if the first property is not met. A more appealing approach
would involve only recompilation of the application code, but note this assumes the compiler
embodics rather intimate knowledge of the machine configuration. Perhaps the most general
approach would involve merely initializing the resource management system running on the
machine. We hope to achieve this latter form of scalability.

Dynamic storage management is essential for a variety of reasous, not the least of which is its
contribution toward ease of programming. A static storage model, such as embodied in Fortran,
forces the programmer (o manage storage explicitly within the application code. Even for a
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sequential program it can be tricky to determine when storage arcas may safely be reused, and the
problem is far more difficult when many parts of the program eaccute in paraflcl. Morcover, in
many cases the number of distinet versions of a data structure that must exist concurcently depends

on the number of tasks exceuting in parallel.

We sce dynamic task creation as a fundamental aspect of general purpose parallel machines.
"l'asks may be created implicidy. as in functional programs or purc logic programs. or explicitly, as in
CSP bascd languages (eg. Occam or ADA), Milner’s CCS[16]. Halstcad's Multilisp {9] (via
futurcs). or annotated functional and logic programs. The key point is that tasks can spawn
additional tasks and request resources at run time. A program in exccution can be thought ol as a

dynamic complex of tasks, cach possessing cerlain resources.

3. Goal: Exploiting Parallclism without Deadlocking

The goal of resource management in a paratlel machine is to execute a program as fast as possible
within a given set of resources. Some attention has been paid in the literature to how work and data
are distributed over processors. A variety of straight-forward load-leveling techniques
[7. 13, 17, 25] have been implemented and a good deal of discussion has centered on the need to
exploit locality to reduce communication overhead [2, 5, 12, 15, 24]. However, we feel that a more
fundamental problem has been largely overlooked: In order to keep resource demands within
reason it may be necessary to defer execution of tasks even if resouices are available to initiate the
tasks,

The resource problem can be illustrated by a simple example. Consider the functional program
fragment def F = se= G == H +e». The three tasks F, G, and H can potentially execute
concurrently, as suggested by the task invocation structure shown in Figure 1. Task H may
consume enough resources that G can not go to completion, and the resources held by G may
prohibit H from completing. The two tasks are deadlocked. Note that this situation is difficult to
predict, since tasks can create subtasks and request resources dynamically. Note also that sertalizing
the execution of G and H may alleviate the resource problem.

This resource deadlock problem represents a basic difference in sequential and parallel execution.
The execution of a program can be represented by a tree of task invocations, as suggested in Figure
2. A sequential execution traverses this task invocation tree in a depth-first manner. The maximum
resource demand corresponds to the heaviest single branch in the tree. Parallel execution tends
toward a breadth-first traversal, and the resource demand may be the weight of the entire trec. To
characterize this problem more precisely, let R; represent the resource requirement of task i not
including the resources of its subordinate tasks. Then sequential evaluation of the program
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Figure 1: Task Invocation Structure for a Simple Example

described by Figure 1 has a resource requirement of MAX{ Rg + Rg. Rg + Ry} whereas parallel
evaluation has a resource requirement of Rgp + Rg + Ry
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Figure 2: Task Invocation Structure

Our experiments with dataflow programs show that this problem is indeed serious.
Straightforward coding of a matrix multiplication routine for N X N matrices generates N2
concurrent dot-products, but also requires N2 resources in the form of “constant areas” and
"contexts” (these resources are explained more fully in Section 4.4). A simple loop (or equivalent
tail recursive procedure) such as shown in Figure 3 is likely to cause a deadlock. 1f G involves
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substantial computation, as many as N instances of G may be in execution concurrently, regardless
of the number of processors. They all compete for a {inite pool of resources.

def F n = initiat s «— 0
for i from t to n do
new s — s + G{i)

return s
or
def F* n i s =1if i < n then F' n (i+1) (s+G(i))

clse s
def Fn=F" n1go

Figure 3: Potentially Hazardous Computation

We want to examine strategics for controlling program exccution such that enough parallelism is
generated to utilize the machine fully, but resource demands are kept low enough to allow large
programs to run without deadlock. One possibility is to pursue a breadth-first traversal until
sufficient parallelism is generated, and to switch to a more depth-first strategy when the machine
becomes busy [6, 23]. In essence the scheduling discipline for the task queue is dependent on the

status of the machine.

We briefly note the resource management strategy in Halstead’s Multilisp implementation [9]
because it offers an interesting variation on the approach suggested above. There the run-time
system maintains a central queue of runable tasks. Each processor can perform one task at a time.
When a task creates a new subtask, the parent is placed on the task queue and the child pursued. If
another processor is free, the parent will be resumed; otherwise, it will wait till the child (or some
other task) completes. Thus, if the program in Figure 3 were executed on a machine configured
with k processors, at most k instances of G would be active at any time.

The Multilisp approach is attractive in many respects, but, unfortunately, it is based heavily on
architectural features which are not particularly well suited to a multiprocessor setting. We have
argued extensively that effective parallel machines must be based on processors that are tolerant of
long, unpredictable communication delays [3]. Such tolerance seems to require each processor to
maintain a substantial number of independent activities and sizable process state. The Multilisp
approach relies on cheap context swaps (even between machines), achieved by keeping all but a tiny
amount of process state in global memory[8]. Controlling program behavior without
compromising the effectiveness of a parallel architecture appears to be a subtle problem.



4. Background: Tagged Token Dataflow

In our work on managing resources in a dataflow machine we have cxamined how program
structure can be exploited to control program unfolding and reduce the severity of the resource
deadiock problem. Before describing that work some background should be provided on the
computational model with which we are working, Tagged Token Dataflow [3].

4.1. Dataflow graphs

Figure 4 shows the graph for the simple loop of Figure 3. A dataflow graph is a directed graph
whose nodes correspond to machine instructions and whose arcs correspond to {data) dependencies
between instructions. Conceptually. a dataflow instruction sends values, or fokens, to instructions
connected to it by outgoing arcs. An instruction is enabled for execution when all requifed input
values are present. Thus, instructions are sequenced in accordance with the dependence arcs.
Tokens carry a tag which specifies the arc upon which the token (conceptually) resides and
additional contextual information to distinguish between different instances of the destination

instruction,

The graph shown in Figure 4 is somewhat stylized. The node marked G represents the
instructions required to invoke function G, which is itself a graph. The D, D1, L, and L1 act as
identity operators on data values, but are essential for manipulating contextual information on the
token. A wave of tokens on the input arcs provides the initial inputs to the Switches and the loop
predicate. If the loop predicate evaluates to ’‘true’, the Switches route data into the body of the
loop. The results of an iteration flow back to the predicate and the Switches via the ID operators.
When the loop predicate turns 'false’, the final data values are routed to the loop trailer via the D1
operators. Note that the left-hand loop variable can initiate new iterations even if the right-hand
loop variable lags behind. The L operator provides a new context which distinguishes different
activations of the loop; the context is carried on the token. The D operator increments the iteration
number cartied on the token, thereby distinguishing between different iterations within a particular
activation. The D1 and L-1 reset the iteration nummber and context, respectively.

* A dataflow processor provides a mechanism for propagating tokens along arcs in the graph and
detecting when instructions become enabled. Upon execution of an enabled instruction, the input
tokens are absorbed, and output tokens for the following instructions in the graph are produced. A
program is said to terminate when no enabled instructions remain.
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Figure 4: Dataflow graph for F in Figure 3

4.2, Instruction Processing in the TTDA

The Tagged Token Dataflow Architecture under development at the Massachusetts Institute of
Technology comprises a collection of processing elements (PEs) connected via a packet switched
commiunications network. Each PE is a complete dataflow computer. The basic PE architecture is
shown in Figure 5. The waiting-matching store is the key component of this architecture. Tokens
carry data and a tag. Two tokens are destined for the same activity, Le., a particular instance of an
instruction. if and only if their tags are identical. When a token enters the waiting-matching stage
its tag is compared against the tags of the tokens resident in the store. If a match is found, the
matched tokens are purged from the store and forwarded to the instruction fetch stage. Otherwise,
the incoming token is added to the matching store to await its partner. ([nstructions are restricted to
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at most two non-constant operands so a single match cnables an aclivity.) Tokens which require no

partner, ie., are destined for a monadic operation, bypass the waiting matching stage.

Once an activily is enabled it is processed in a pipelined fushion without further dclay.
Information in the tag allows instruction fetch stage to locate the instruction and any required
constants. The op-code and data valucs are passed to the ALU for processing. In parallel with the
AL, the compute tug stage accesses the destination list of the instruction and prepares resull tags,
using information stored in mapping regisiers. Result values and tags arc merged into tokens and

passed to the network, whercupon they will be routed to the appropriate waiting-matching store.

43. Code-hock activations

A dataflow program comprises a collection of code-blocks: these correspond csscntially with
individual loops or procedures in the high-level language program. A code-block activation can be
viewed as a ask: it is assigned to a collection of processors, where it will run to completion. There
may be substantial parallel activity within a code-block activation, and this activity may be
distributed over a number of processors. To keep the overhead of distributing work low we follow
a two-level strategy; code-block activations are assigned dynamically (by the resource management
system) to collections of processors called domains, whereas parallel activity within a code-block
activation is distributed automatically over the processors in a domain without further interaction

with the resource manager.

The hardware provides significant flexibility in distributing the work involved in a task over a
domain. For acyclic code-blocks each instruction executes at most once, so the work is distributed
simply by partitioning the graph and placing a part on cach processor in the domain. Each
processor performs the operations for the instructions it contains. A copy of the graph is literafly
spread over the domain. Loops offer another degree of flexibility, since it is possible to distribute
jterations as well as partitioning the graph. When a loop code-block is loaded into a domain, a
complete copy of the graph is placed in each subdomain. Distinct iterations are dynamically
assigned to subdomains by hashing the iteration identifier in the tag.

4.4. Miachine Resources

The resources in the machine are structured around code-block activations. In order for a code-
block to execute in a domain, there must be a copy of the code there; this requires allocation and
loading of program memory. For loops, a copy of the code must be placed on each subdomain. In
addition, each code-block activation must be assigned a unique identifier (a context) to distinguish
it from concurrent activations within the domain, Fach code-block activation is assigned a code-
block register (CBR) in the domain on which it is to execute. The CBR serves a number of
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functions: it provides the uniyue identifier and a handle on the machine resources associated with
the activation. All tokens [or an activation carry the CBR number in their tag. The CBR contains
the base address of the code in program memory, a description of how the code is partitioned over
the PEs in the domain, and a pointer (o the state information, e.g.. constants, associaled with the

activation.

In total, four kinds of resources are associated with a code-block activation:

1. Token Storage. i.e. waiting-matching store and token buffers;
2. Program Memory (for code and constants); -

3. Code Base Registers, ie.. distinct context names; and

4, Structure Storage.

The allocation and deallocation of token storage is handled directly by the hardware; storage is
allocated when a token arrives and finds no partner, and is released when a maitch is detected.
However, the waiting-matching unit cannot refuse an incoming token when the store becomes full,
as this would lead to deadlock. Token storage can only be released by detecting matches. Thus, in
activating a code-block in a domain a certain amount of token storage is implicitly put into use, and
to avoid over committing this resource the resource manager must account for the potential load
placed on the token store. Accounting for token storage load is somewhat tricky, since it depends
on the order in which instructions happen to execute. CBRs and program memory are managed
explicitly by the resource manager; they are allocated when a code-block is activated and released
when it terminates. Many CBRs can reference the same code in program memory. Structure
storage presents a setious management problem. Storage is allocated whenever requested by the
program. It is reclaimed automatically when a structure is no longer accessible. In general, the
termination of a code-block which caused the allocation of a structure does not result in the
deallocation of that structure; structures may be passed to other activations or stored in structures,
Performing efTicient storage reclamation in a paraltel machine is currently an active research topic,
and is beyond the scope of this paper. Depending on the amount of various resources provided by
the machine and on the particular program, any one of these resources may become critical,

5. Resource Bounded Graphs

Dataflow programs offer a great deal of structure which can be exploited to alleviate, if not
overcome, the resource deadlock problem. Sizable chunks of a program can be shown to have
bounded resource requirements which can be determined in advance. In many cases the resource
requirement will be a simple function of the amount of parallelism penmttecl Our approach is (1)



-11-

o develop cxtremely well-behaved graph structures whose dynamic unfolding can be casily
controlled. and {2) w develop sophisticated  analysis technigues for predicting the resource
requirements of graphs. In this discussion we tocus entircly on token siorage requirements; CBRs
and program memory can be treated similarly; management of structure storage, as suggested

carlier, is more complex.

We say a resource bounded graph (RBG) is a program {ragment for which a bound on the resource
requirement of the fragment can be derived at compile time as a simple function of a collection of
parallelism parameters. The tole of the parallelism parameters will become clear in the course of the
discussion. A program is viewed as a coliection of RBGs. In gencral, recursion will delimit the
fragments which can be grouped into RBGs, but special cases such as loops and tail recursion may
be handled within an RBG.

Consider the acyclic graph shown in Figure 6. An casy upper bound on the token storage
requirement of F is the number of arcs plus the token storage requirement of G. This bound is
somewhat loose, since not afl arcs can be occupied simultaneously. We have
Ry = 4 + R £ 7 + Rg. Culler has shown [6] that tight bounds can be derived efficiently using a
linear programming technique. Where conditionals appear, slightly loose bounds must suffice. The
resource requirements of entire invocation trees can be solved by working up from the leaves.

Figure 6: An Acyclic RBG

Loop code blocks may or may not have bounded resources, depending on the structure of the
graph. Figure 7 shows two lcops. The first has bounded resources; at most one instance of G may
be in execution at any time, since the result of a given itcration is needed before the next can start.
Thus, Rg» = Rg + ¢”, where ¢ is a constant bound on the number of tokens in F” itself. The
second loop does not have bounded resources, according to our definition. The index variable 1
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doces not require the output of G in order o initiate the next iteration. Thus, as many as n instances
of G may be in execution concurrently. and Ris = nRg + ¢. A loop has bounded resources il the
number of potential concurrent ilerations is bounded. This occurs when all Toop variables are
mutually dependeni {or equivalently when the araph for the leop forms a single strongly connected
component [6]).
def F'' a = (initial x — a
while p(x) do
new x — G(x)
refurn x)
def F n = (initial s — O ! Same as F n in Fig. 3-3 !
) i e 1
while i < n d
e
new i —

0

ncw s s + G{i):
i+ 1

return s)

Figure 7: Example of Bounded and Unbounded Loops

By introducing auxiliary control arcs it is possible to contro! the maximum unfolding of a loop.
Given some maximum number of concurrent iterations , iteration i must be delayed until iteration
i-k has completed. This is accomplished basically as shown in Figure 8. A gate operator is placed
on the output of the predicate; the gated must be triggered in order for an iteration to proceed.
Initially & trigger tokens are available, allowing the first k iterations to begin without delay. When
these are used up the loop will pause. Trigger tokens must be regencrated as iterations finish. To
do this, we add a synchronization tree (simply a tree of identity operators) on the outputs of the D
operators. When a token emerges from the synchironization tree with iteration number i+ 1, we are
assured that iteration i has completed and iteration i-+ & may be triggered. The last node of the
synchronization tree increments the iteration number by k-1. Once loops are controlled in this way,
it is possible to operate on iteration numbers modulo k+1. (The extra iteration number is
necessary because in aberrant cases it is possible for one of the D operators to fire for the kh time
before one of the switches fires once.) The D, operators in Figure 8 increment the iteration number
modulo n, where n = k+1. The synchronization tree decrements the iteration number by 2
modulo n. A variety of hardware tricks can be employed to obviate the clean-up of trigger tokens
ont completion of the code-block. '

It is instructive to work through an example with k& = 1. The initial wave of tokens coming from
the caller pass into the predicate and queue at the switches. The gate has a trigger, so the first
iteration can commence immediately. Suppose the left-most loop variable is produced very
quickly; it will activate the prediéate, but a new iteration can not begin since the gate deprives the
switches from firing again. The second iteration can not begin until all the D operators have
executed for the first iteration and a token has emerged from the synchronization tree.



_13_

k tokens
Loop Body

%

D D
Il

s

Figure 8: Resource Bounded Loop Schema

The value of the parallelism parameter does not affect the total computation performed by a loop,
but it does affect the amount of parallelism the loop exhibits. One caveat is in order: According to
the definition of Id, the language in which we program our dataflow machine, it is possible to write
pathological loop programs which will not terminate if any bound is placed on the number of
concurrent iterations. In our current redesign of the language such constructs will be excluded. A
terminating loop will terminate even if iterations are executed one at a time, that is, with & set to 1.
The loops encountered in practice have this property in any case. Thus, for the new language
definition our compiler can legitimately generate Resource Bounded Loop Schema for all loop

programs.

Transformed in this way. the resource requirements of the second loop in Figure 7 are given by
Rp = kRg + ¢, for parallelism parameter k. The auxiliary dependencies act like a governor on the
loop: they constrain the loop when a certain amount of paratlelism is realized. Certainly, ifaloopis



_14..

inhcrently bounded or if the maximum number ol iterations is known when a loop is invoked, there
is no point in setting & greater than this number. The parallelism paramcter altows the resource
management system o control the amount of paraltelisin, and thereby the resource requirement. of
an exccuting program.  When a loop code-block is activated, the parallclism parameier for that
particular activation can be sct in accordance with the availability of machine resources. 'To avoid
deadlock we ensure that at the time a code-block is activated there will at least be resources
available to support execution with & equal to 1. ft is important to note that the value of £ does not
affect the program structure; it is a part of the state associated with the task invocation.

6. A Resource Management Policy

Given loops with parameterized unfolding. the primary question is how to sct the various
parameters. Our cfforts at this point arc aimed at developing a simple, effective policy, rather than
striving for optimality. One policy that appears attractive is a direct analog of the breadth-
first/depth-first approach presented in Section 3. The idea is illustrated by an example.

The (somewhat contrived) program in Figure 9 initializes a matrix with zeros, except on the the
left and upper boundaries, and then repeatedly relaxes the matrix by averaging points with their left
and upper neighbors.

First, we would like to derive resoutce expressions for the various code-blocks in the program. In
| general a loop will have a resource requirement of the form A + &B, where k is the parallelism
parameter for the loop. A simple way to compute these coeflicients is to let A be the requirement
of the initial portion and B be the requirement of the body. This approach is conservative for two
reasons. First, the loop body generally requires the result of the initial portion, so it will lag behind
the initial portion. However, this effect is often quite small because some parts of the loop begin
almost immediately, eg, generation of index values. Moreover, since structures. in Id (ie,
T-structures [4, 10]) are non-strict, significant overlap is possible; the initial portion may produce a
structure while the loop consumes it. Nonetheless, we expect the initial portion to overlap with
only the first few iterations of the body. Secondly, some part of the computation within the body
portion must be performed before new iterations can be initiated, e.g., the generation of index
values, and thus contribute to the additive coefficient A, rather than the multiplicative coefficient
B. If loops contain nested Ioops, the resource expression are composed in the obvious way.

Below we give the resource expressions for the various code-blocks in Figure 9. These numbers
were derived from the graphs produced by the 1d compiler [11] using the approach developed in {6].
They give a fairly tight bound on the mazimum number of tokens that can exist in the graph at any
time. The actual numbers are not critical to this discussion, but they give a feel for the scale of

numbers involved.
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def retax n maxsteps =
(imitial A «—
( initial
rows ~ allocate(0..n);
rowsf0]
(initial row0 ~— allocate(0..n)
for j from 0 to n do
cow0[§] + top(j)
return row(0) ! Toop
for i from 1 to n do
rows[i] +
(initial rowi +— allocate(0..n};
rowi[0] « left(i)
for j from 1 to n do
rowi[j] «~ 0.0
return rowi) ! loop
return rows) ! loop

for steps from 1 to maxsteps do
new A —
(initial
rows +— allocate(0..n);
rows[0] +
(initial rowd + allocate(0..n)
for j from 0 to n do
row0[j] « A[0.]]
return row0) ! Toop
for i from 1 to n do
rows[i] +~
(initial rowi + allocate(0..n) ;
rowi[0] « A[i.0]
for j from 1 to n do
rowi[i] ~ (A[i.j] + A[i-1.]]

return rowi) i loop
return rows) ! loop
return A) ! loop

Figure 9: A Non-trivial Dataflow Loop Program

init-rowd !

init-rowi !
init !

row0 !

+ A[l7,j-11) 7 3
rowi !
step !
Relax !

The resource requirements of the entire code-block relax is given by a function of the form

RTdax

(k....) where k is the parallelism parameter of the main loop. The expression for R ,, is equal

to the resources for the initial part plus k times the resources for the body, assuming the loop is

allowed to unfold & steps. Working inward, we get the following:
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Resource requirement for the initial part of relax:
Rinit{ k.kLK2) = 12 + Ripiprouak1 ) + EXRigicroui(k2),
Rinit-rowo(k) = 7 + 2X&,
Rinit-rowitk) = 8 + 2Xk.

Resource requirement for the body part of relax:
Ryeplh kil k2) = 14 + meo(k[) + EXR wilk2),
R owolk) = 8 + 3XK,
Rowilk) = 9 + 10Xk

Resource requirement for the whole of relax:
Rrclax(k k1.k2.k3,k4.k5,k6} = Rkl k2k3) + kX Rslcp(k4,k5.k6).

The parallelism parameters could be sct statically, but there are advantages to deferring the
decision until run time. At the time relax is activated, only k need be chosen; it determines how
much loop relax is allowed 1o unfold. Once loop init is activated, k7 will be chosen. Loop init will
activate loop init-row0, causing &2 to be chosen. Each iteration of loop init causes an instance of
loop init-rowi to be activated, so &3 will be chosen n times, once for cach activation of loop init-
rowi. Similar comments hold for the other parameters. The inner-most parameter, k6, will be
determined essentially nXmaxsteps times. At the time a loop is activated, its parallelism parameter
can be set in accordance with the rcsources available. If ample resources are available, it is
advantageous to allow loops to unfold substantially, but if resources are scarce, foops must be

constrained.

In Section 3, we suggested that a program should be allowed to unfold until sufficient parallelism
was exposed, ie, breadth-first, and then to constrain the unfolding, ie, depth-ﬁfst, to keep
resource requirements low. Breadth-first unfolding for loops corresponds to a large parallelism
parameter; depth-first unfolding corresponds to a parallelism parameter equal to one. This suggests
that the outer block should be aflowed to unfold substantially, and the inner blocks only if sufficient

resources remain.

To this end, we define MIN-R (%) to be the resource expression for L with 1 substituted for each
subordinate parallelism parameter. Thus, MIN-Ryi(k) = 21 + 10Xk When aloop L is activated,
k is chosen and MIN-Ry (k) resources are reserved. This ensures that all subordinate code-blocks
will have enough resources allocated to them a priori to support fully constrained execution. Thus,
for pure loop programs, i.e, no recursion, resource deadlock can be avoided.
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To caplure the breadth-first/depth-first strategy, when outer hlock 1. is invoked we choose & such
that MIN-R (k) is large. perhaps as large as the wfal available resources at the time L. is invoked.
As the inner blocks are invoked. they are assured of cnough resources to allow for parallelism
parameters of one, and if additional resources are available, the parallelism paramcter may be set
higher. Additional resources become available whenever the resources held by a terminating task

are released.

It is important to note that resource allocations can be very dynamic. In the example above, loop
init and various instances of loop step execule concurrently. Suppose k is set such that
MIN-R ,,(k) accounts for hall machinc resources. ‘Then the subordinate loops will be given
parallelism parameters grealer than 1. Initially, subordinates of loop init may be given large
parallelism parameters. ‘This means loop init will occupy a large part of the machine. Suppose the
first instance of loop init-rowi is assigned a parallelism parameter of 10. MIN-R;,i-rowil 1) resources
were reserved for it when loop init was invoked, thus an additional MIN-Rigop rowi(10) —
MIN-R j5op-rowi(1) resource must be allocated. These will be released to the global pool when the
instance of loop init-rowi terminates. The original MIN-Ryj.rowi(1) resources cannot be released,
as they must be reserved for later instances of init-rowi. Instances of loop step, loop row0, and loop
rowi are being activated concurrently with the instances of loop init-rowi. Thus, resources released
by init-rowi may be claimed by instances of these other loops. The various concurrent loops
compete for a finite pool of resources and they activate subordinate code-blocks.

7. Conclusions

The work presented here has already proved its effectiveness in running large programs on the
MIT Tagged Token Dataflow machine, but it is just a beginning. Techniques for deriving resource
expressions should be developed further to give practical bounds. Resource allocation policies must
be tested by executing large programs and observing their dynamic behavior. The policy outlined
above is perhaps a good start, but it has some serious drawbacks. For example, unfolding loop relax
a large amount is not necessarily wise. It causes many versions of the matrix to be in use
simultancously. If a single step offered enough parailelism to keep the machine busy, it would be
best to constrain the outer loop and allow its inner loops to unfold.

The approach developed here applies to sizable fragments of programs, but not to programs in
their entirety. When programs have an arbitrary recursive structure, we cannot predict the resource
requirements of the subordinates of an activation, regardless of how the execution is constrained.
Thus, at some fevel we must resort to fully general techniques, such as the task queue approach
mentioned in Section 3. However, the fully general technique can be applied at the level of
Resource Bounded Graphs, rather than individual code-block activations, i.e., tasks.
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We have not addressed the issue of structure storage at all.  Structure storage reclamation in
parallel machines is a very active rescarch area, and all of the basic approachcs (reference counts,
copying garbage collection, etc.) raise serious implementation problems. Controlled loop unfolding
offers interesting possibilities in this arca too, since intermediate structurcs can be recycled
automatically. For example, if the maximum unfolding of loop relax equals 2, three versions of the
matrix should be sufficient to suslain the entire computation.

Suspending the parent task when a child is initiated is potentially attractive, but is difficult in the
Tagged Token Dataflow approach. The architectural ramifications of controlling program

execution must be explored more deeply.

We are encouraged to lcarn that other researchers are examining the issues discussed here.
Experiments performed by the Manchester Dataflow team have demonstrated similar problems
with unconstrained unfolding of loops. They have developed a technique for encouraging depth-
first traversal of the invocation tree when resources become scarce {19]. One can reach the
erroneous conclusion based on the Manchester and MIT experience that the resource management
problems discussed in this paper are peculiar to dataflow; if we have encountered these problems
before others it is because dataflow systems coupled with functional languages expose more

parallelism than any other system.
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