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An Introduction to the Lambda-Calculus

1. Background

There are two ways of looking at functions - as a set of ordered pairs of argument and
value (sometimes called the graph of the function) or as an encoding of a process for going
from argument to value. The first approach is used when one is interested only in defining a
function while the second approach is used when one is interested in computing the
function. The second viewpoint is strictly weaker than the first because we can define
functions which are not computable; nevertheless, this notion of functions is more useful in
computer science. These notes are a summary of the A-calculus of Church which is one
particular way of encoding computable functions.!

~ Some notion of functions is present in most imperative programming languages such as
FORTRAN or ALGOL. However, functions and procedures in these languages are quite

different from functions in the mathematical sense because the invocation of a function in
such languages is permitted to cause "side-effects". Moreover, these languages place
irksome restrictions on how one can use functions. For exampie, in most programming
languages, it is impossible to write a function without giving it a name. Other languages will
not permit functions to be arguments of functions  while others will not permit the
programmer to return functions as results of function applications.

In the A-calculus, functions are "first-class” objects in the sense that it is possible to
express them without giving them a name, and they can be passed to and returned from
other functions. In order to permit this flexibility, it is necessary to introduce an operation
called abstraction. A simple example illustrates the need for this operation. Consider the
integer 2 and the function always-two, which when applied to any integer, returns 2. We
would like to regard these two objects as being different - for example, applying the integer 2
to the integer 5 should result in an error while always-two when applied to & should return 2.
Therefore, we need some syntax to distinguish the integer 2 from the function always-two.
We might do this by writing ‘

define always-two(x) = 2

but this forces us to name the function. The notion of abstraction permits an elegant
solution to the problem. The function always-two is defined as (Ax:integer. 2) where the
intended meaning of this syntax is exactly that which was expressed informally in English in
talking about the always-two function - i.e., the expression {Ax : integer. 2) denotes a
function of one integer-valued variable, which always returns 2. This operation of forming a
function from an expression such as 2 or (x + 1) is called abstraction. When the domain of
the argument is obvious from the context, it may be dropped. Thus, we could have

1Tho intent here is not so much to present the A-calculus as a formal mathematical system but to summarize
the basic ideas of the A-calculus while apnealing to the reader's intuitions about programmming languages and
computalion. The reader who is intercsied in A more complete exposilion is referred to Stoy's book on
denotational sersantics [4]. An encyclopedic referenca for just about any noteworthy resutt on the A-calculus is
Barendrogl's book on the lambda-calcutus [1] - white this book is very well-written, it is not intended for the
casual reader.



expressed the always-two function as (Ax.2) . The same idea can be used to define more
complicated functions. For example, we can write (Ax. (x + 1)) to denote the successor
function. The operation of applying a function say {Ax. M} to an argument N (where M and N
are expressions) is expressed as {(Ax. M} N). Thus, ((Ax. (x +1)) 2) denoles a function
application. The result of this application may be found by "substituting” 2 for all
* occurrences of x in the expression {x + 1) and simplifying the resulting expression.

To make these notions rigorous, we need to be precise about what we mean by "all
occurrences of a variable” in an expression or by "substitution”. This.is done in in section 2,
where we describe the language of the A-calculus and define three conversion rules cailed
the a-, B- and 7- rules which describe how expressions in the A-calculus can be
transformed. Section 3 is a brief description of some resuits about conversion. The
important result presented in this section is the Church-Rosser theorem. In scction 4, we
demonstrate the power of the A-calculus by showing how integers, booleans, data

slructures, and operations such as addition, test-for-zero ctc. can be.encoded in- the---
A-calculus. This section will establish the close correspondence between functional

languages and the A-calculus, thereby justify the claim that functional languages are
“syntactic sugaring” for the A-calculus. In Section 5, we introduce the theory of
combinators and show its relation to the A-calculus. The last section contains some
additional concepts and results (in particular, the lemma of parallel moves) about the

A-calculus.
2. Lambda-terms and Conversion

2.1. Syntax of Lambda-terms
Cxpressions of the A-calculus are words defined on the alphabet { A, ., {, )} and a

countably infinite set of variubles (say {a, b, ¢, a0, al. etc.}).
Definition 1: A A-torm (also known as a well formed expression or wfe) is an
expression that is constructed according to the following BNF :

<wie> n= Quariable?
| (Kwie> <wfed)
| {A<variable>.{wfe?)

in definitions, we will let x and y be meta-variables inat stand for any variable. ¢{adorned if
necessary with subscripts) and capital letters such as M and A will be meta-variables that
siand for any vie. We will write x = y to denole that x and y stand for the same variable.
Deiinition 2: A wle (Ax.g) is called a A-abstraction in which x is the bound
variable {1 bv)yand ¢ is the body. A wie (el e;_,) is called an application in which £,
and £, Ure the rator and rand respectlivoly.

i

For examide, ((oG(Ay.CovD) 2) s an application in which the rater is (AC(Ay.(x ) and the
rond 18 2, The bovnd variahio of the A-abstraction (Cx{Ay.(x ¥)}) is x and the body is {Ay (x
yi)-

Fo avaid writing oo many parentheses, wo adop? the useal A-calculus conventions, We



assume that application is left-associative; so &, &, ... €, stands for ((...(¢, &,)... € N2
Moreover, when a A-abstraction occurs in a wfe, the body of the A-abstraction is taken as
extending as far as possible - that is to the first unmatched closing parenthesis or to the end
of the wfe, whichever occurs first. For example, (Ax.Ay. x y) z stands for (AxAAy.(x ¥))) 2)

2.2. Substitution
To define substitution rigorously, we need the concept of free and bound variables in
wie's. Intuitively, a free occurrence of a variable x in a wie ¢ is the occurrence of x which is
not part of a A-abstraction of the form Ax.M. For example, the occurrence of z in ((Ax.Ay. x
y) 2} is free whereas the occurrences of x and y are not. In the last section, we will give a
precise way of identifying a particular occurrence of a variable (in general, any wfe) in a wfe;
for now, we will assume that it is clear from the context.
Definition 3: A free occurrence of a variable in a wfe is defined inductively as
follows - - ;

1. the occurrence of x in the wie x is free
2. a free occurrence of a variable x in g, or €, is free in the application (&, 82)

3. an occurrence of a variable x in a A-abstraction Ay.eis free iff x # y and x
is free in €.

A variable occurrence which is not free is said to be bound.

Note that a variable can be both free and bound in a wfe. For example, in the wie {x {Ax.x)),
the first occurrence of x is free while the second occurrence of x is bound.

We now define the substitution operation ei[ezlx] whose informal meaning is "replace all
free occurrences of xin €, by &,". Asis well-known, care must be taken to avoid "capture of
free variables". Consider, for example, the substitution of (Az.y) for x in {Ay.x y (Ay.y). A
naive way of performing the substilution may produce the wfe (Ay. (Az.y} ¥ {Ay.y)) where the
free occurrence of y in the wfe (Az.y) has gotten bound in the wfe resulting from substitution.
It can be shown that this causes logical difficulties, and renders the system inconsistent. In
fact, in the early days of the A-calculus, there were several incorrect attempts to define
substitution that were accepted by legicians for a time until those definitions were shown to
lead to inconsistencies | The first correct definition of substitution was given by Curry and is
given below -

Definition 4: g [e,/x] is defined inductively as follows -

£, ifx=y
y otherwise

yley/x]

(83[82/ x] € 4[52/ x])

(?\y.ea)[ez/x] = (Ayegy) (x=y)
(;\z.((aa[z/y]) [e,/x])) otherwise,
where z is a variable which dous not oceur in £, OF £y

(g4 84)[82/)(]



The capturing of the free variables of ¢, is avoided in the third clause by renaming the
bound variable of the A-abstraction (i.e., changing )\y..«:3 to Az.(e3[z/y]) ). As we shall see
later, the renaming operation is one of the rules of conversion in the A-calculus.

Let us consider the example introduced eartier in this section, /.e. substitution of (Az.y) for
x in the wie (Ay.x y (Ay.y))
Ay.x y Ay.y)(Azy)/x] = Ap{((xy Ay.y)p/yD(Az.y)/x]} (by the third clause)
= Ap{(x p ((Ay-¥)[p/yIM{Az.y)/x]} (by the first two clauses)
= Ap.{({x p (Ay.¥)[(Az.y)/x]) (by the third clause)
= Ap-{Az.y) p (Ay.y)
Notice that the occurrence of y in the expression (Ay.y) is not a free occurrence of y in the
body of the outermost A-abstraction, and thus, p is not substituted for y in the expression

(Ay.y).

... As can.be readily appreciated, substitution is a rather complicated notion because care

must be taken to distinguish between free and bound variables and to avoid capture of free

‘variables. These complications have led some logicians to work with alternative systems

called combinatory systems. A combinator is a A-expression with no free variables. By
working with combinators, it is possible to define abstraction without having to work with
bound variables, thereby avoiding the problems of substituting for variables completely. We
will describe combinatory systems more fully in section 5.

2.3. Conversion
We now have all the tools to describe the process of computation in the A-calculus. The

basic idea is to transform a wfe into other wfe’s by using certain simplification rules called
conversion rules 50 as to generate a wie that cannot be simplified any further. This process
is called conversion, and is very similar to the way we evaluate arithmetic expressions (for
example, those built up from the integers and the addition and multiplication operations).
Consider the arithmetic expression ({2 + 3) * {4 + 2)). This expression can be simplified by
using the rules for addition and multiplication of integers to generate the expression (5 * (4
+ 2)) by performing the first addition, and then performing the addition to generate the
expression (5 * 6) which can be further simplified to 30. Thus, by using the simplification
rules of arithmetic, we can generate a sequence of expressions such that the final
expression cannot be simplified any further. While arithmetic expressions provide a useful
intuition for understanding the conversion rules of the A-calculus, the reader should be
aware that since the A-calculus is a far more expressive system than arithmetic expressions,
it is possible to define wie's which cannot be simplificd to yield a wfe that cannot be
simplified any further.

We now define the so-called a-, 8- and 7- conversion rules of the A-calculus. We write g,
cnv £, (to ba read as "51 is convertible o sp") to indicate that either of the wie's may be
replaced by the other whencver one of them occurs &8 an expression or as a subexpression
of a larger expression.

Definition 5: The convarsion rules of the A-calculus are the following -

-conversion - If x, is not free in &, then Ax.¢, cny Ax, . [x, /x].



B-conversion - (Ax.g,)¢, env e, fe/x].
n-conversion - If x doesn’t occur free in €, then (Ax.ex) env &.

Of these three rules, we have already seen a-conversion when we described substitution.
Indeed, the rule of a-conversion merely says that the bound variables of a wfe can be
renamed without changing the "meaning" of the wfe. For this reason, many authors do not
elevate it to the status of a conversion rule, and prefer to identify «-convertible wfe's at the
syntactic level. We have already hinted at the B-conversion rule in the introduction when we
discussed A-notation and its relation to functions. The B-conversion rule asserts that either
of (Ax.g,)e, or 81[82/)(] can be replaced by the other in any wfe. In practice, one is usually
interested only in replacing {Ax.g, )€, by &,[e,/x], a process which is called B-contraction or
B-reduction. In other direction, the replacement of (Ax.e,) &, by g,[e,/x] is known as
B-expansion. In programming languages terms, the intuitive content of B-reduction is
essentially that of function application - i.e., to apply a function to an argument, .one can

‘replace all occurrences of the formal parameter of the function in the body of the function by
the actual parameter, subject to renaming of bound variables to avoid name conflictsi— - -

n-conversion can be thought of an assertion about the behavior of wie's under application
. we will not deal with this rule any further in these notes, and it is included here only for

completeness.

The only simplification rule we wili consider is the B-reductionz. A wfe of the form (0\"'51)
&,) will be called a B-redex or simply a redex, and the wfe e,[e,/x] will be called the
contractum of the redex. The operation of replacing an occurrence of a redex in any wfe
with its contractum will be called contracting the redex. We will write &, — &, to indicate that

€, is obtained from g, by contracting some redex which is a sub-expression of £

A reduction sequence is a sequence (finite or infinite) of wfe's Egr Eq1 Ep such that for
each i, €, is obtained by contracting a redex in & The initial wfe of the reduction
sequence is g, We will write this reduction sequence as

Eo—" 81 — 82....

We will write "¢, red 52" {read as ¢, reduces to 82) to indicate that there is a reduction
scquence whose initial wie is &, and which terminates at €y In same spirit, we extend the
meaning of ¢, cnv ¢, to indicate that &, can be converted to &, by repeatedly using the
B-conversion rule.

Consider, for example, the following wie's:

eons = (Ax. Ay AL xy)
b = MF (AN, _
Eoq = AL {Ax. Ay.y). 3

Then, the wfa (scm (Econs a b)) reduces to a as shown by the following reduction sequence in
which the redex contracted at each step is the underlined redex.

Ll
In the noxt soction, we will shavr that S-reduction is sufiicient it we are interested only in "simplifying" a wle.



(€cnr (Econg @ D)) =(ALH A AY. )N A Av. AL x v) a b)
) — (ALFAX Ay X)) ({Ay.ALf 2 v} b)
— (AL AX Ay X)) ALF a b)
— (ALf a b){(Ax. Ay.x)
— (Ax.Ay.x}ab
—{Av.a) b

— a

Notice that the final wfe, i.e. a, cannot be reduced any further. The reader is urged to verify
that (ecdr (sconsa b)) redb.

A wfe is said to be in normal form if it does not contain a redex as a sub-expression. A wfe
is said to have a normal form if there is a wfe in normal form to which it is reducible. As we
mentioned earlier, computing the meaning of arithmetic expressions involves applying the
simplification rules of arithmetic until we get an expression which cannot be simplified any B
further. At the risk of over simplification, the same is true for the A-calculus as well - the
process of computation in the A-calculus can be thought of as repeatedly applying the
conversion rules {as far as we are concerned, just B-reduction) until we get a wfe that
cannot be simplified any further (i.e., a wie in normal form). The over simplification arises
from the fact that not all wie's have normal forms. For example, the wfe (Ax. x x) (Ax. x x)
does not have a normal form, nor does the so-called paradoxical combinator of Curry (Af.{Ay
fy v)) (Ay.fly v))). Wre's without normal forms correspond roughly to non-terminating
computations in conventional programming languages. However, not-all wfe's without
normal forms can be thought of as "meaningless” in the sense of representing the
completely undefined computation. A deeper discussion of this topic is beyond the scope of
these notes, and the interested reader is referred to the paper by Wadsworth on this _subjr:—zct3

[7].

Having accepted the fact that a wfe need not have a normal form, the reader may wonder if
it possible for a wle to have two different normal forms {moduio a-conversion). Since a wie
can have more than one redex in it, is it possible that two different orders of performing
redexcs results in two different normal forms ? If this were so, our asseriion that A-calculus
models the behavior of functions and that normal forms correspond roughly to the "result of
a computation” would be questionable. We will show in the next section that this is not so.

3. Some Important Results about Convertibility

When dealing with arithmetic expressions, we know that the order in which simplification
rules are applied is unimportant, and every order of applying these rules wiil terminate and
produce the same answer. This property is sometimes called the strong Church-Rosser

3Intuiiiw,-ly, we recognize hat theve is a difference batween a program that diverges without producing any
outpud, and a program that sdiverqes Aflor producing -.omar output. The A-caleuius analog of a program that
diverges after producing sen @ output is a wie which Joes nat have a noimal form but dees have a so-callod
head-rarnnid form. A proqran. which divergees without oredacing any oolpul at all corresponds roughly 1o o whe
withoui o head-narm.d form, For thesecason, not all whe's witheut nermad forms can be thcught of as representing
AL (ther puarely diverginyg comg ataticn).



property. What about the A-calculus ? it can be shown that any two sequences of
reductions of a wie that produce normal forms must produce the same normal form (modulo
a-conversion). Unlike the case for arithmetic expressions, however, there may be some
sequences of reductions which do not produce a normal form at ail. Consider, for example,
the wfe

£ = {(Ay.2) ((Ax.x x) (Ax.x x))).

This wfe has a normal form z. However, the reduction sequence

in which the redex contracted at every step is ({Ax.x x) {Ax.x x)) does not terminate. Thus, for
any wfe, every terminating reduction sequence produces the same normal form but not
every reduction sequence terminates. Moreover, for any wie that has a normal form, a wfe

generated at any step of a non-terminating reduction sequence can be reduced to the - -

normal form by some reduction sequence. This property is called the weak Church-Rosser
property and the theorem which asserts that the A-calculus has this property is stated below.

Theorem 6: (Church-Rosser Theorem 1)
If £, CNV £, then there exists a wfe €y such that €, red &y and g, red &5

To understand the theorem, it is helpful to visualize the conversion of g, toe,asa path
from g, to ¢, in which downward sloping lines represent B-reductions and upward lines

represent B-expansions. The path A in Figure 3-1 shows the conversion of & to &, in five

steps. The Church-Rosser theorem states that &, can be converted to &, in a way so that no
expansion step precedes any reduction step - see path B in Figure 3-1.

1 N Path A %2
AN -
N 4
Path B \ /
\/

3

Figure 3-1: The Church-Rosser Theorem



Corollary 1:1f €, COV &, and ¢, is in the normal
form, then ¢, red &,

Corollary 2: if a wfe has a normal form, then the normal form is unique up to

a-conversion.

The first corollary states that 8-reduction is sufficient to reduce wfe's to their normal forms
- we need not consider S-expansion.

The second corollary states the weak Church-Rosser property of the A-calculus
mentioned earlier in the section. To see that the corollary follows from the theorem,
suppose a wfe has two normal forms, say N, and N, such that N, is not a-convertibie to N,.
By going from N, to the original wfe and then toN,, we can convert Ny to N,. Hence, by the
Church-Rosser theorem, there must exist a wfe to which both N0 and N are reducible.

However. this is not possible as N and N are in normal form.

From the Church-Rosser theorem, it follows that one can always fmd the normal forrn ofa
wfe that has one by trying all possible reductions for it. However, there is a more direct way
in the sense that we need to try just one particular sequence which we will now define.

Detinition 7: For a redex R = (Ax.M)A, the occurrence of Ax is called the head
of R. If R and S are two redexes in the same wfe ¢, then R is said to be to the left of
S if the head of R lies to the left of of the head of S in the linear representation of
g. For any wfe not in normal form, there is a unique redex R which is to the left of
all other redexes in the wfe; this redex is called the leftmost redex of the wfe.

For example, in the wfe ((Ax.(Ay.y} x) {{Az.z) w)), the redex ({Ay.y) x) lies to the left of the
redex ((Az.z) w). The ieftmost redex in the wie is the wfe itself.
Detinition 8: Normal Order Reduction

et

80 — 61 — e —* En

be a reduction of g, 10 £, and for each i, let €,y be the result of contracting
redex R, in . This reduction sequence is called a normal order reduction iff for
every i, R, is lhe leftmost redex in &,

Theorem 9: (Church-Rosser Theorem i)

if e, red e, and g, is in normal form, then there exists a normal order reduction
from g to €y

From a computational viewpaint, this is a very satisfying resuit - if a wfe has a normal form,
then the normal form can be computed by performing a normal order réduction on the wie.
Of course, we cannot t2ll a priori whether a wfe has a normal form or not, because that
would be equivalent to solving the halting problem, but if it does, then normal order
evaluation will compute it.

A different order of esaluation is the so-callcd applicative order reduction in which the

rator and rand of a red-:x are reduced separatedy to nonnal form betore the applicalion is
performect. Let us defin 2 the leftmost innermost redex in 2 wie to be the lelumost redex that



doesn't contain any other redex. Then, applicative order reduction can be defined as
follows:
Definition 10: Applicative Order Reduction

Let
&g &y = Y E

be a reduction of g, to ¢, and for each i, let g , be the result of contracting
redex R in g, This reductlon sequence is called an applicative order reduction iff
for ail i, R is the leftmost innermost redex in € where the leftmost innermost redex
is defuned to be the leftmost redex that contains no other redex.

Consider the wfe & = {({Ay.z) ((Ax.x x) {Ax.x x))) which has the normal form z. Applicative
order reduction of &£ will contract the redex (Ax. x x) (Ax. x x) at each step, and therefore, wil

never terminate. Thus, there are wfe's for which normal order reduction terminates while =~

applicative order reduction may not. However, in practice, it is found that when applicative
order reduction terminates, it usually does so in fewer steps than the corresponding normai
order reduction. For example, consider the wfeé ((Ax.x x} ((Ax.x) a)). Applicative order
reduction yields the narmal form in two steps while normal order reduction takes three =
steps. For this reason, most practical interpreters for programming languages perform
applicative order reduction. Normal order reduction will not evaluate an argument if it is not
needed to produce the normal form - however, it may end up evaluating the argument many
times. The power of normal order evaluation has its price. For a discussion on attempts to
make normal order evaluation-more "efficient”, see [6].

4. Connections with Functional Languages

In this section, we show that integers and functions on integers such as the successor
function, addition, and test-for-zero can be represented in the A-calculus. We then introduce
the so-called paradoxical combinator of Curry and show how it can be used to define
recursive functions. By extending the results presented here (as in Chapters 6 and 8 of
Barendregt), it is possible to show that the class of functions that can be defined in the
A-calculus is exactly the class of partial recursive functions. We also point out how to
represent data structures in the A-calculus.

There are many possible representations of integers in the A-caiculus. The one we wiil
present here was first suggested by Church, and is commonly -known as the Church
representation of the integers. The Church representation of an integer N wilt be denoted by
[N] (this notation is somewhat non-standard - the usuai notation is N with a bar on top as in
N, but we are constrained by the text-formatter). '

Recall that a partial numeric function is a partial mapping ¢: NP —+ N for some p € N. We
now define precisely what it means for a partial numeric function to be A-definable. ‘

Definition 11: A partial numeric function of p arguments is said to be
A-definable iff there exists a wfe € such that foralin,, n, ... n, EN

if cp(n1, Ny ... np) is defined
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thenen.]n.]..[n] = {g{n,n, ..nJ]
else € [n:] [n:] [nj has no Aor%al-fc‘r’)m.

The Church representation of integers is the following -

[0] = Ax.Ay.y
[11= Ax.Ay.(x y)
[2] = Ax.Ay.(x{x ¥))

[n] = Ax. Ay.(x(x...(x y)...)}

In other words, the representation of the integer n is a A-abstraction that applies its first
argument to its second argument n times.

The successor function can be A-defined by the wie

Sic= A AvAzlybxyz).

To ';Jerify‘tﬁ-is consider the 'application of Suc to [2].

Suc{2) = (MAy.Az{y(xy2)) (AxAy.{x {(x YD)

— (Ay.Az.(y (M Ay.(x (x Y)) ¥ 2)))

— (Ay.Az.{y {{Ap:(y (y P))} 2)))

— (Av.Azly {y (y2)))

= (3]
By using the fact that the representation of n is a A-abstraction that applies its first argument
to its second argument n times, the reader can verify that addition can be A-defined as

follows -

plus = Ax.Ay.{x Suc y)

‘where suc is the A-representation of the successor function that was defined earlier. The
A-definitions of times and exponentiation are left to the reader.

Boolean values can be represented as follows -

True = Ax.Ay.X
False = Ax.Ay.y

With this representation, the test-for-zero function of one argument which returns true if
the argument is O and false otherwise can be A-defined to be

IsZero = An. {n (True False) True).

Using the functions A-defined so far, the reader should be able to A-define many common
numeric ftinctions such the Predecessor function. However, in order to A-define functions
that are defined recursively (for example, the factorial function), a new trick is needed.

Consider the definition -

define fact n = if n = 0 then 1
else n*fact(n-1)
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Using the functions we have defined so far, we can express this as follows -
Fact = An. IsZero n [1] (Times n (Fact(Pred n)))

where Pred is the A-definition of the Predecessor function.

The form on the right hand side of this equation does not define the factorial function
because there is an occurrence of Fact in it; rather, the form shown above should be
thought of an equation one of whose solutions is the A-definition of Fact that we seek. The
standard way to solve such equations is to write the equation as follows -

Fact = H Fact
where H = Af.An. IsZero n [1] (Times n (f (Pred n)))

In other words, the solution we seek Is a fixed point of the H function. To find the solution,
we use the following standard theorem of the A-calculus.

Theorem 12: For any wie ¢,, there exists a wfe g, such that (é, 32) = £2
Proot: Let ¢, be (Y &) where Y = (AFAAX(F (x %)) (Ax{f {x x))).

The combinator Y is sometimes called the paradoxical combinator. Using this combinator, - -

the A-definition of the factorial function is
Y ALAn. IsZero n [1] (Times n (f (Pred n}))

_ The reader is urged to use this expression to compute (Fact 2) in order to get a feel for
how the Y combinator works.

Now we consider how data structures can be represented in the A-calculus. For the
purpose of this section, we will assume that a data slructure is completely characterized by a
set of functions (e.g., constructor and selector functions) and a set of axioms which
describe the behavior of the functions. Suppose D is a data structure characterized by the
set of functions {f11 r2, fn} and the set of axioms A. If we can find wfe's g, &,, ... &, such
that they satisfy the axioms in the set A provided we interpret each fi as g and equality as
B-convertibility, then we wilt say that the data structure D can be represented in the
A-calculus using the wie's €., &, ... &

As an example, suppose we want to represent lisp-like data structure, called pair, in the
A-calculus. The constructor and selector functions for the data structure pair are usually
called cons, car and cdr, and they satisfy the following axioms:

(car (cons xy}) = x;
{cdr{consxy)) =y.

t.et us consider the wfe's €.ons' Ecar and € defined in Section 2. In that section, we
showed that (e, (econs ab)) red a and (scdr (.smn a b)) red b. Since these wfe's satisfy the
same axioms as the functions cons, car and cdr, they can be used to represent the data

structure pair in the A-calculus.

o ——— ——— L —— ke e i e e
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5. Combinatory Systems

The complications involved in working with variables (in particutar, bound variables) have
led to an alternative theory of functions known as combinatory systems. In this section, we

define one such combinatory system.
Let us consider a system with one operation application and two objects S§ and K.

Expressions in this system can be built from the two objects by repeated application. We will
call these expressions combinatory expressions. With S and K, we associate two

simplification rules -

(Stgx) {fx) (g x))
(Kxy) X

Notice that these two objects can be A-defined as follows -

S = (M(Av Az (x2) (y2))
K = (Ax.(Ay.x))

Thus, any combinatory expression can be expressed in the A-calculus. It is easy to show
that any closed wfe of the A-calculus can be expressed as a combinatory expression. Let |
denote the combinatory expression (S K K) and verify that for any combinatory expression E,
(I E) can be simplified to E by using the simplification rules for the S and K combinators. By
using the A-definitions of the S and K combinators, one can show -

1. Axx =1

o

2.Ax.e =Ke ifxisnotireeine

3. )\x..«:1 £, = S()\x.£1) (?\x.ez)

By using these rules, we can eliminate all the A's in the wfe successively in favor of K and
S. For example,

(Ax.(Ay.y X))
= (AxS | (K x)))
= S{K{SHHS(KK)!)

Thus, one can define standard transiations from closed wfe's of the A-calculus to
combinatory expressions and back. By permitting variables to occur in combinatory
expressions, we can extend this translation to any wfe of the A-calculus. Notice that even in
this extended system, there are no bound variables.

Turner [5] has suggested that one way to implement functional languages is to transtate
programs in such languages into combinatory expressions and reduce the resulting
combinatory expressions on a machine specially designed for that purpose. One problem
with the standard translation is that the length of the combinatory expression resulting from
a wie can be much larger than the length of the wfe. By introducing additional combinators,
Turner has shown that this blow-up problem may be overcome. For a different approach to
implementing functional languages using combinatory reduction, see [2].
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6. Complete Reductions and Lemma of Parallel Moves

In this section, we describe some additional concepts and results in the A-calcuius. They
are useful if one is interested in pursuing the subject matter, speciaily the properties of the
[B-conversion, in. more detail. The Church-Rosser theorem can be proved easily using the
lemma of parallel moves which is stated at the end of the section.

6.1. The Tree Representation of wfe’s

Wife's have an obvious tree structure - the tree structure of the wfe (}\x (Ay.((+ ((* x)x)) ((*
y} x)))) is shown in Figure 6-1. The tree structure of wfe's gives us a simpie way of
distinguishing two different occurrences of any wfe inside a wfe. The intuitive idea is to
specify the path that must be followed in the tree in order to reach the root node of the
occurrence of the wfe that we are interested in. More formally, a sefector is either rator, rand

_or body. A path is a list of zero or more selectors. A path can be considered tg be a function

which when applied to a wfe, returns the wfe whose root node is obtained by starting at the

root cell of the tree of the wfe and following the specified selectors. For examiple, the path™ "~

body.body.rator.rand.rand applied to the tree of Figure 6-1 returns the wfe x and the path

body.body.rand returns the wfe ((* y) x). If a path p does not exist in the graph, then the
result of applying the function p to the graph is undefined. A sub-expression (i.e., a
particular occurrence of a wfe} of a wfe ¢ is a pair <p, 81) consisting of a path and a wfe ¢,
such that p(e) = ¢,.

F_igure 6-1: The Tree Representation for )\-expressioné
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6.2. Descendants and Ancestors
We now describe the notion of descendants and ancestors that is very useful for

associating parts of wfe's in a reduction sequence with parts of the initial wie of the
sequence, and vice versa. These notions were defined by Morris [3] as a generalization of

residuals as defined by Church and Curry.

Suppose &, — &, A function father from parts of e, to parts of &, will be defined such that
every part of ¢, has a unique fatherin ¢,. The relation son is the inverse of father. Intuitively,
the sons of a sub-expression of ¢, are all the copies of that sub-expression in &,. As we will
see, some parts of & will not have any sons in €, while others may have more than one son.

Definition 13: Ancestors and Descendants

IfR = (Ax.M A) is a redex in a wfe ¢,, let &, be the wfe obtained by contracting
R. Let T1 and T2 denote the tree representations of ¢, and &, respectively. f Nis a
sub-expression of &, the father of N is the sub-expression of ¢, that is defined as _
follows -

1. If N is not part of the contractum of R, then let p be the path from the root
node of T2 to N. The father of N is p(T1). S .

2.1f N is part of a copy of A, then let p be the path from the root nodé of the
copy of A ta N. The father of N is p(A).

3. If N is any other part of the contractum of R, then let p be the path from the
root node of the contractum of R to N. The father of N is p(M). :

The son relation is the inverse of the father function.

Figure 6-2 summarizes this definition. Notice that neither the redex being contracted nor
any free occurrence of x in M have any sons. A sub-expression that is part of the rand A has
k sons where k is the number of free occurrences of x in M. :

If g is the wfe that results from performing a sequence of reductions on a wfe g, then the
ancestor and descendant relations between sub-expressions of € and g are the natural
extensions by transitivity of the father and son relations respectively. Note that a redex has a
descendant then the descendant must be a redex. The descendants of a redex are
sometimes called its residuals.

Definition 14: Complete Reductions

if & is a set of redexes in a wfe g, then a sequence of reductions on ¢ is said to
be a reduction relative to % if the redex contracted at each step is a descendant
of a redex in %. Such a reduction sequence is a complete reduction relative to R
if the tinal wfe does not contain any descendants of redexes in %.

For example, consider the wie ({{Ax. x b} {Ax. x x)) {{Ax.x} a)) and let % be the set containg
the two underlined redexes. A complete reduction relative to the redexes in % results in the
wie (({Ax. x x} b) a). If, ¢n the other hand, % was the singlcton set containing just the redex
({Ax. x b) (Ax. x %)), then the resuit of performing a complete roduction with respect to this
set of redexes is the w e {({Ax. x x) ) ({Ax.x) a)). Notice that even if % included all the
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Tl T2

'Figure 6-2: The Father Function in 8-reduction

redexes in the original wie, it is not necessary that the result of performing a complete
reduction with respect to this set of redexes be a wfe in normal form because conlracting a
redex may create new redexes.

The reader may wonder what woutd happen if we performed a complete reduction with
respect to a set of redexes in a wie, thereby removing redexes created by contraction from
¢ consideration. Not surprisingly, we have the following re_sult .

Lemma 15: Lemma of Parallel Moves
Let % be a set of B-redexes in a wfe &. Then |
1. Al reductions of ¢ relative to % (including complete reductions) are finite.

2. Any reduction of ¢ relative to % can be extended to a complete reduction
of e relative to %.

3. Ali complete reductions of € relative to % end with the same wfe, say €.
Further (Morris [3]), any sub-expression of & has the same ancestor in €



16

regardless of which reduction sequence is foliowed.

Note that this lemma is not true if n-redexes are included in %.

- ame - .. S i s —————— A — e - o e bbb e
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