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Abstract

Database systems today have evolved a great deal from the first storage structures.
This evolution has been towards greater data independence, expressive power in
manipulation languages (for query and update), and expressive power in data models., But
they are still poor substitutes for the much better understood analogues in programming
languages: data abstraction, structured language constructs and type systems respectively.
Programming languages, on the other hand, deal inadequately (if at ali) with the question of
long-lived structured data. The problem is compounded when one has to deal with both a
database system and a programming language that are alien to each other {as in most
"applications programming"” today).

We believe that functional programming languages with functional databases offer a
clean solution to this problem. Functional databases are databases that are never updated--
rather, one views them as infinite sequences of "versions”. Functional programming
languages allow functions as data objects and do not have any "update" operation.

We outline the many advantages that such a system has to offer, pertaining to types,
optimization, expressive power, and interactive environments.

1Funding for the Laboratory for Computer Science is provided in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract NO0O14-83-K-1025.






1. What’s Wrong with Databases Today

Database systems have evolved out of mass-storage device architectures. This
evolution has moved away steadily from specific device architectures to more and more
abstract models-- for example, relational databases. Even so, they are difficult to use and
most applications do so only when efficient and reliable access to large amounts of data is
critical. Hundreds of everyday appiications (mail systems, software engineering aids, word
processors, ...) prefer not to deal with the complexities of current database systems and
make do with the much more primitive file systems that are commonly available today.

Let us examine some of the charecteristics that make current database systems so
difficult and inconvenient to use.

1.1. Inadequate Type Structure

To a first approximation, the term "Data Model" used in the database community is
analogous to the "Type Theory" of a programming language, i.e. it specifies the universe of
definable types. A "schema" for a database is analogous to a particular type definition
within that type theory, and a "database™ conforming to a schema is analogoustoa
particular value or data structure that has that type.

The type-structures of most database systems are extremely poor in comparison to
those available in modern programming languages. For example [Date,C.J. 75], CODASYL
databases provide scalar types, tuples (i.e. records) of scalars, sequences of records?, and
record-sequence pairs {owner and members of a set), together with various means to share
records amongst different sequences. Relational databases provide scalar types, and sets
of tuples containing scalar types (i.e. relations).

Unfortunately, these structuring mechanisms are not suitable for many applications.
The encoding of data from the problem domain into (say) relations may be extremely
awkward and is thus error-prone. For example, parse trees, graphs, intermediate code, IC
layouts, matrices, nested sets, ... are difficult to represent with relations. Forcinga
programmer to use only relations adds to his intellectual burden and is reminiscent of the
days when one had to encode complicated structures such as graphs and trees in
FORTRAN arrays.

Some of the newer so-called "semantic data models” attempt to remedy this

2Unfortunately called "sets" in CODASYL terminology.



shortcoming [Lochovsky,F.H. 82]. But we feel that they are still poor substitutes for the type
facilities of modern programming languages.

Most current data models permit the description only of "passive” collections of data--
they do not integrate data-manipulation procedures as part of the schema for a particular
database. Instead, there is typically a single, pre-determined generic set of database
operators. This separation leads to two problems: it is difficult smoothly to mix
intensionally- and extensionally-defined data, and it does not allow data abstraction.

The former capability is useful, for example, to let the implementation of an abstract
type choose freely between actually storing a table (such as a table of thermodynamic
coefficients) versus regenerating the entries of the table on demand. Depending on space
and time requirements, one or the other, or even a combination, may be preferable.

We shall have more to say about data abstraction capabilities in the next section.

A serious shortcoming of most data models is that they are rarely accompanied by
rigorous semantics. Even in the relational model, which is one of the cleanest, there are
many fuzzy areas, including the meanings of duplicate column names, association of a
single column name with different domains in different relations, grouping of tuples within
relations, the exact meaning of attribute domains, various kinds of "join" operations, etc.

1.2. Lack of Data Abstraction

The lack of data abstraction facilities is another serious problem in most data models.
in the database world, one of the goals has long been to achieve "data independence”
[Date,C.J. 75], i.e. the independence of application programs from the particular access
methods and storage structures used to implement a conceptual schema. Current database
systems achieve this to varying degrees.

But this concept is well understood in the programming language world. It is in fact
nothing other than the "representation independence” of abstract data types, and is in fact
exactly what makes these types "abstract”. It is well known how to achieve this-- each
abstract type is be accompanied by a set of procedures to manipulate objects of that type,
and one uses linguistic mechanisms to ensure that the only way to manipulate objects of an
abstract type is to use one of those associated procedures. If the representation of the
abstract type is changed, one need only change the implementations of the associated
procedures; all client applications will be unaware of and unaffected by the change

[Liskov,B.H. 74].



It is often necessary to maintain a notion of "consistency” in a database beyond what
it is expressible in the type system (for example, that the standard deviation of employee
salaries should not exceed a certain number). Updates that result in inconsistent states of
the database should not be permitted. Definitions of consistency are usually application-
specific and may be arbitrarily complex.

Many data models rely on a separate language of "integrity constraints” to express
consistency requirements. There are several problems with this approach. First, it adds yet
another language for the programmer to understand and master. Second, because the
constraint language is not integrated with the data manipulation language, it is difficult to
implement the checking of constraints by other than the naive {(and inefficient) method of
performing the entire update, checking the consistency criterion from scratch, and, if it is
found to be violated, undoing the update. Third, because of this separation of the constraint
and data manipulation languages, the programmer is not left with much fiexibility in error-
handling-- i.e. to trap such violations, identify fine-grained reasons for the violation, and to
take corrective action. For these and other reasons, languages for integrity constraints are
often deliberately simplistic, incapable of expressing complex consistency requirements.

In the programming language world, one again uses abstract data types to maintain
integrity constraints (otherwise known as "invariants”). Abstract data types ensure that data
of a particular type can be manipulated only by the procedures associated with that type.
These procedures are specified by the programmer and he has the full power of the
programming language available to express integrity checks as complicated as the
application demands, with whatever efficiency is possible, and with whatever error-handling
he wishes. In the above example, the programmer may choose to maintain the standard
deviation of employee salaries internal to the empioyee abstract type, and recompute it
incrementally on each update; this is much more efficient than recomputing it from scratch
on each update.

"Alerters" are another useful feature of databases [Buneman 77]. Like integrity
constraints, an alerter monitors the database for some condition, except that these are not
necessarily violations of consistency-- e.g. large monetary withdrawal, fuel-level iow, etc.
On such conditions, an alerter performs an associated action, such as sending a warning
message to a responsible person. Again, like integrity constraints, it is much better to be
abie to incorporate alerters into the procedure definitions in an abstract data type rather
than use a separate alerter language and a separate implementation technique.



1.3. Lack of Integration with Programming Languages

Most databases can be queried and updated in two ways: by using a stand-alone
query/update language (e.g. SQL, QUEL, ...}, or by embedding a database "sublanguage"
in an existing programming language (e.g. EQUEL in C, SQL in PL/1, ...} [Date,C.J. 75].

Stand-alone database languages are generally convenient to use, but are typically very
limited in their computational power. They usually have the generic operators for
manipulating the data-structures supported by the data model, and may include some
“library functions" that perform a few other common computations (e.g. minimums and
maximums, totals, averages). But for more complicated or non-standard operations, one
must resort to the other method.

The use of a database sublanguage embedded in a regular programming language is
notariously difficult, due to the usually great semantic mismatch between the two. Typically,
the type structure of the programming language is entirely different from that of the
database system. For example, the database may be relational, but there may be no type in
the programming language that has a natural correspondence with relations. Further, the
programming language generally has no control structures that may be used naturally with

the database structures.

The methods used to circumvent this mismatch are usually cumbersome and unsafe.
For example a procedure may send a message to be interpreted by the database system,
which leaves a result in some invisible work area. To examine this result subseqguently, it
may be necessary to establish a "cursor” on it, which must then be moved in small
sequential increments revealing a small piece of the result at a time. What is worse, this kind
of interface may relinquish completely any type-checking that the programming language
normally provides. The imposition of such unnatural control structures to traverse database
objects can negate any data-independence that the data mode! alone originally provides.
The programmer must now carry the additional intellectual burden of managing two
dissimilar models of memory: that of the programming language itself, and that of the
database system.

2. What Database Features do Programming Languages Lack?

We have claimed that many database concepts have better analogues in programming
languages. What then are the particular characteristics of databases that programming
languages lack?

1. Databases are not ephemeral, i.e. databases are data-structures that are



"permanent”. in contrast, most data-structures in programs have a lifetime no
longer than that of the program itself.

9. Databases address the problem of efficient access to data structures
implemented in a memory heirarchy that includes devices with widely varying
charecteristics such as iatency, bandwidth and size of the unit of transfer.

3. Databases are resilient. Data are remembered in spite of hardware failures,

4. Databases provide facilities such as access control, security, etc.

(Not all databases today provide all these features!)

Database system designers have always attached great importance to these
characteristics while slowly evolving databases away from specific device architectures and
incorporating more and more features normaliy found in programming languages.

3. What Should a Database Programming Language Have?

We believe that the bottom-up evolution of database systems outlined in the previous
section can lead to some short-sighted views of what databases are and what they should
be. We have often experienced the following situation: when we point out the poverty of
today's data models in comparison with programming-language type systems, database
researchers often respond that such richness and generality is "just not necessary in
database work". In our opinion, this is patently false. It is just a symptom of the unfortunate
fact that the requirements of "database work" tend to get defined in terms of what is
currently available. We firmly believe that if richer type systems were available in databases,
we would not want for customers.

We therefore prefer to explore the opposite evolutionary path: that of beginning with a
programming language, attaching great importance to the expressive power and semantic
elegance of the language, while gradually incorporating features normally found only in
databases, putting to good use all the lessons learned in implementing today’s database
systems.

Having explored the relative strengths of programming languages and databases, et
us look at some the features we would like to have in an integrated system.

Our primary requirement for a database programming language is a rich type system in
which to model naturally structures in a wide variety of application domains. Objects in this
type system should directly be the database, i.e. there should be no distinction between
programming language types and database types. Such a type system should have user-



defined types and abstract data types. In addition, it should support the subtyping and
inheritence mechanisms typical of Simula and Smalltalk. The type system should have
rigourous semantics.

Along with a rich type system, it is essential for the language to permit functions as
values, for two reasons. First, it is convenient to be able to store functions as values in the
database (e.g. a tax-computation function customized for each employee). Second, for
each new type that the programmer defines, he usually wishes it to be accompanied by
control-structures convenient for manipulating objects of that type. This is a powerful
abstraction mechanism that depends on the ability to treat functions as values.

There have been some attempts to integrate programming languages with databases.
For example, Pascal/R [Schmidt,J.W. 77] is a system that integrates a relational database
system with Pascal. It extends the type system of Pascal to include the relation type built on
Pascal records, and the database type built on relations, and it extends the control
structures of Pascal to include constructs to traverse and manipulate relations. in our
opinion this is a very successful and elegant integration of a conventional database and
programming languages.

There are also many exciting efforts currently under way to integrate logic
programming languages (such as Prolog) with relational database systems to create so-
calied "knowledge bases". The concept exploited here is that ground "facts" in a logic
program have a natural interpretation as a relation in a relational database. This approach
thus gives relational databases a "reasoning power”, and allows the smooth integration of
intensionally- and extensionally-defined data.

However, we believe that neither of these approaches meet our objectives. The
languages used are not expressive enough in their own right (no functional values, no data
abstraction, inadequate facilities for modularity). And, in addition, the type structures
provided for persistent objects are too limited (just relations, in both cases).

PS-Algot [Atkinson,M.P. 81} is an extension of 8-Algol (which is itself derived from
Algol60) to permit the persistence of arbitrarily typed objects. A database exists external to
the program, and there are mechanisms to make the database appear as part of the
standard program heap. Objects in the heap may be modified using normal language
constructs, and any objects on the heap may be made to persist beyond the lifetime of the

3This research has since evolved into the design of DBPL, a relational programming language based on
Maduia-2, reported elsewhere in these proceedings.



program by entering them directly or indirectly into distinguished tables at the top-level of
the program. In PS-Algol, type-checking is not very strong because pointers are untyped,
and because there is no abstract data type facility4.

Galileo [Albano,A. 83] is a database programming language with a rich type system
based on that of ML [Albano,A. 85a, Cardelli,L. 83]. In Galileo, the database is part of a
giobal environment maintained by a host system. The database may contain updatable
objects. A database program is an expression evaluated in this environment, and this
evaluation may modify the updatabie objects in the database [Albano,A. 85b].

Both these systems modify the database by side-effect. in contrast, we are exploring a
database programming language with an essential difference: the database is immutable,
ie.itis a "Functional Databases”. An "update transaction" conceptually produces a new
version of the database. The languages used both for querying and "updating” this
database are functional languages-- languages in which there are no side effects, and in
which functions are values just like any other.

We call this class of database programming tanguages "FDBPLs", or Functional
Database Programming Languages. We explicate and justify this approach in the next
section, but first we present our view of the evolution of DBPLs in Figure 3-1.

4. Functional Database Programming Languages

In this section we outline our view of databases in a functional setting for query and
update, and show the numerous advantages it has to offer.

4.1. What is a Database in an FDBPL?

We view a database as an environment of type and value bindings (i.e. a mapping from
identifiers to types and values). Note that values can be arbitrarily complex (scalars, arrays,
relations, functions, streams, vaiues of abstract types, ...}.

A Query in such a database is merely an expression evaluated in that environment,
producing a value that is the "answer”.

For example, the following is an environment representing a student-course database:

4This research has since evolved into the design of Napier, a persistent language with richer types and
stronger type-checking [Atkinson,M.P. 85].



File Structures + COBOL, PL/1 ...
Conventional Programming
Language
i
DB with limited types + Most current
alien PLs DBMSs
!l
Integrated DBPL - Pascal/R, DBPL,
with limited types Prolog + RDB
I
Integrated DBPL - PS-Algol
with richer types
|
Integrated DBPL Galileo, Napier,
with very rich types FDBPL

Figure 3-1: Evolution of Database Programming Languages

type Student

value Students: 1ist(Student)
value Age: Student -> Number
value Sname: Student -> String

type Course

value Courses: 11st(Course¥
value Cname: Course -> String
value Core: Course -> Boolean

value TakenBy: Course -> list(Student)
value Takes: Studant -> 1ist(Course)
A query to find the names of all students older than 30 taking core courses may be written:
Tet
caoreCourses = filter Core Courses ;

coreStudents = flatten (map TakenBy coreCourses) ;
ol1dStudent s = (age s) > 30

in
filter oldStudent coreStudents

where f11ter p s returns the subsequence of s containing just those members of s that
satisfy the predicate p, map f s returns a sequence containing the result of applying the
function f to each member of the sequence s, and f1atten ss returns a sequence
containing all members of the sequence of sequences ss. This view of functional query



languages and methods to implement them efficiently are explored in detail in [Nikhil R.S.
84].

in a functional database, queries and updates are treated as activities at two separate
levels. At the query level, the user supplies an expression to be evaluated within an
environment. The database is the environment in which the expression is evaluated, and the
resulting value is the answer to the guery®. Updates on the other hand occur at the
meta-level with respect to queries-- here one evaluates an expression that treats the
database (or environment) as an object, and produces a new database. The applicative
language framework used at both levels is identical; it is only the objects being manipulated
that are different.

A query or update to the database, by default, is always made with respect to the
"latest" version. But this can be generalized quite easily so that subexpressions may be
syntactically qualified explicitly by the environment in which they are to be evaluated, thus
allowing one to write queries and updates that depend not only on the "latest” version of the
database but also on previous versions.

4.2. Why Functional Languages?

Expressiveness: That functional languages have great elegance and expressive
power has been recognized for some time [Backus 78, Burge 75, Turner,D.A. 81]. Various
high-level features of functional languages give them this expressive power.

In functional languages, functions are first-class values. This is a powerful abstraction
mechanism that permits the programmer to design appropriate control structures for
existing and new types of objects, thus leading to very compact, transparent notation. For
example, in defining a new type of table in a database, one can simultaneously define
general-purpose generators, iterators and reducers to operate on such tables, so that
subsequent uses of such tables are concise and clear. Burge [Burge 75] gives numerous
programming examples that demonstrate the power of this facility.

Lazy evaluation is a powerful intellectual tool that makes it not only feasible, but even
efficient to define and manipulate infinite and/or large objects [Turner,D.A. 81]. In addition,
lazy evaluation has certain automatic database optimization capabilities in that unnecessary
computations (which may involve disk accesses) never get done [Nikhil,R.S. 84]. To make

SNote that the "value” computed by a query may be simple-- such as a number representing a salary-- or as
complex as one wishes, such as the sequence of students in the above example.
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effective use of lazy evaluation, however, we need a functional language; lazy evaluation
does not interact well with updates. The technique of lazy evaluation depends on a lack of
constraints on when a particular expression needs to be evaluated, so that it may be safely
postponed. Thus with lazy evaluation, the order in which expressions are evaluated, and
indeed the question of whether an expression is evaluated at all, may be quite
unpredictable. If such expressions contain side-effects, the behaviour of programs can be
extremely surprising.

Functional languages are expression-based-- the main composition rule is function
application and is used uniformly from small expressions to large programs. Thus functional
languages are very suitable for uniform interactive environments suitable not only for quick,
small, one-off queries but aiso for the development of large compiled programs.

Even though we believe that functional languages are more " user-friendly” because of
their clean semantics and high-leve! features, they are still formal languages, and under
certain circumstances (e.g. casual use of a database by untrained users) one may wish to
use other front-ends such as natural-language or graphical interfaces. Even in such
situations, we believe that because of their regularity, functional languages make ideal
target languages into which queries in, say, English are first compiled.

Opportunities for query optimization via program transformation: The
semantic cleanliness of functional {anguages makes it feasible to perform meaning-
preserving program transformations automatically {Backus 78]. Because functional
languages have the property of referential transparency?®, it is possible to develop arich
algebra of programs, a feature that is an essential prerequisite for effective query
optimization. The success of current relational database implementations relies in no smatl
measure on the ability to optimize queries in the relational algebra, which is a (restricted)
functional language.

Opportunities for Optimization Due to Parallelism: The presence of side-effects
in a language introduces many read-before-write and write-before-read constraints. These
constraints are artificial, and make it very difficult, if not impossible to move away from a
purely sequential scheduling of evaluation activities. In functional languages, only the
logically necessary data-dependencies remain; this reveals much fine-grained parallelism
that permits great latitude in scheduting evaluation activity. This degree of freedom is
exploited heavily in dataflow architectures to overcome memory latencies [Dennis,J.B.

6A modularity principle by which it is possible to treat a name and its definition as synonymous.
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74, Arvind 78, Arvind 83a]; it seems likely that the same technigues couid be used to
overcome disk latencies too, a major factor in database system (in)efficiency.

The parallelism available in languages without side-effects also make them ideal
candidates for high-performance multi-processor architectures; there are many projects
attempting to exploit this idea, currently at the research stage [Arvind 83b, Dennis,J.B.
81a, Gurd,J.R. 85].

Rich Type Systems: Recently there has been much research into polymorphic type
systems [Mitner,R. 78]. Such type systems allow an economic style of programming a /a
Lisp/Scheme but with complete type safety and with the rich data abstraction facilities
necessary for database work. These data abstraction facilities include user-defined abstract
types, and type-heirarchies with inheritance.

The presence of updatable-objects interferes with polymorphism in very non-modular
ways. Updating a variable x may have the surprising (and unnerving!) effect of also
changing the type of some other apparently unrelated variable y, merely because they each
are members of two structures respectively that happen to share some third variable z. It
greatly complicates life for the programmer to have to keep track of all sharing relationships
in his program, however obscure. When there are no updatable objects, the issue of
polymorphism can be separated cleanly from the issue of sharing.

Research into more expressive polymorphic type systems is very active [Burstall,R.
84, Cardelli,L. 84, Fairbairn,J. 85, MacQueen,D.B. 84, McCracken,N.J. 79, Mitchell,J.C.
84, Morris,J.H. 74, Martin-Lof,P. 73, Reynolds,J. 74, Reynolds,J. 83}; to our knowledge, all
these efforts rely on the clean semantics of functional ianguages.

Polymorphic type systems in functional languages aiso appear to be useful in
interactive database environments. These type systems are clean enough to allow building
smart type-checkers capable of efficiently monitoring incremental changes in program
modules during program development, due to editing, etc. [Nikhil,R.S. 85). Thus there need
be no distinction between environments for "query languages”, used for quick one-off
queries, and environments for “applications programming languages", used for large,
complex queries and reports.

The presence of mutable objects also complicates abstract data type facilities. When
building an object of abstract type, one is very careful to ensure that its internal

Tinheritance is sometimes called "Generalization” and/or "Specialization” in data model terminology.
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representation cannot be accessed by procedures outside the abstract type definition.
Such sharing can make it impossible to guarantee the invariants supposedly maintained by
the data abstraction, because it is then possible to update the representation of an abstract
object without using one of the "legal” procedures, and thus circumvent any integrity
checks. This sharing comes about because an abstract object constructor often receives
parameters from the outside which it may embed in the new abstract object that it creates.
In functional languages, this sharing is safe and so the embedding may be avhieved very
cheaply (by reference); in languages with side-effects, it may imply expensive and/or
excessive copying of objects in order to ensure that representations of abstract objects are
truly private. In addition to this execution overhead, there is the intetlectual overhead for the
programmer in that he has to be aware of this pitfall and must explicitly take precautionary
measures.

4.3. Why Functional Databases?

Functional databases are databases that "never forget". From the functional point of
view, a database is never modified; instead, it is "updated” by creating a new version that
differs from the old in a manner dictated by the update operation. The versions form a
(conceptually) infinite sequence of databases. Older versions are never deleted; they can
be named and accessed just like the "latest” version.

There are many situations where this approach has aiready been taken, though
perhaps not in such a formal sense. For example the notion of file versions in operating
systems like Tops-20 and VMS is widely regarded as far superior to the no-backup or one-
level-backup regimes of Unix and Tops-10. Another example is the "Undo" capability now
appearing in some programming environments and text editors. Challis also poses
arguments in favour of multi-version databases in [Challis,M.P. 82], where it is claimed that
such databases simplify recovery and concurrency algorithms.

Many existing database systems do in fact retain all the information contained in
previous versions of a database, but only for crash recovery and audit purposes-- the
information is not directly accessible to the applications program.

A functional database offers a superior environment for concurrency control. Queries
(read-only transactions) are never delayed, because itis always the case that there is
available a latest, committed version of the database that is never going to be subsequently
changed. Update transactions never delay-- and are never delayed by-- queries, because
they always build new versions and thus never interfere with any version currently being
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examined by queries. Multiple updates, however, still must be serialized {though if two
updates work on different parts of the database, they may actually be able to proceed in
parallel).

The serialization of updates may also be easier in a functional setting. Two evaluation
strategies commonly associated with the implementation of functional language
implementations-- lazy evaluation [Friedman,D.P. 76, Henderson,P. 76] and early-
completion [Dennis,J.B. 81a, Dennis,J.B. 81 b]-- allow programs to report completion even
though computations internal to the transaction are still suspended or in progress. This
allows update transactions to "complete” earlier than they normally would, and in effect
allow the overlap of multiple updates.

Functional databases permit reasoning about the history of states of a database, and
because it is so easy to revert to an old version, to write "what-if" programs that experiment
with possible futures. This kind of requirement seems an essential pre-requisite in so-called
"intelligent" databases or "knowledge-bases”.

Functional databases may also provide a richer environment in which to tackle the
difficult problem of manually or automatically merging two separate databases into one.
This problem arises in many situations-- e.g. when the operations of two or more companies
are consolidated. Typically, the data in the two source databases will disagree in various
ways. Having access to the histories of the two databases may alleviate the inconsistency
problem because one may be able to use pattern-matching algorithms to establish
consistent correspondences between the data at different points in the history of the two
databases. '

In a business setting there are many reasons why access to the history of the database
is important. It may be a legal requirement to maintain records of all transactions, for
example in a bank or personnel database (in fact banks already do this, but without any
direct help from the database management system). The ability to examine time trends, for
example in a stock-market or econometric modelling database, may also be an invaluable
capability.

5. Implementation Issues

We are in the process of designing a prototype implementation of a Functional
Database Programming Language. Here are some of our early design ideas.

There are many implementation techniques currently in use for functional languages.
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We feel that the one that best suits our needs (especially for efficient support of lazy
evaluation) is graph-reduction {Turner,D.A. 79, Johnsson,T. 84]. In this technique,
programs are represented as directed graphsin a heap-structured memory. The internal
nodes of the graphs are function-application and data-structure nodes, and the leaves are
all constants. Evaluation of an expression involves repeatedly rewriting its graph until itis in
normal form. The reader is invited to study the cited references for more details of graph-
reduction.

To implement an FDBPL, the memory is organized into a sequence of heaps. Each
version of the database is associated with its own heap, though this does not mean that the
entire database version resides bn that heap. Each update transaction initiates a new heap,
and new objects constructed as part of that transaction are aflocated in the new heap,
though they may reter back to objects in older heaps. Thus an updated version of the
database shares as much as possible of previous versions; only new objects necessarily
allocated as part of the new version reside in the new heap for that version.

The programmer’s model of the memory is that the entire sequence of databases {i.e.
the sequence of heaps) is implemented in stable storage and is resilient across crashes. As
a transparent optimization, pages of various heaps will have temporary working copies in
high-speed, volatile memory. When a transaction is committed, the copy in stable storage is
made to agree with any extant temporary copy.

A query (read-only) transaction by default first acquires the latest committed version of
the database. From that point on, the entire query is evaluated with respect to that version
(and older versions).

Because of finite storage capacity, it will in general be necessary to prune the
sequence of databases at some version, and move all prior versions off-line. Thisis
achieved with minor modifications to the same copying, compacting garbage-collector

[Cohen,J. 81] used for normal storage management for the query and update languages.
The garbage collector normally works by copying (and simuttaneously compacting) all
reachable data in a particular version "sideways" into a fresh heap for that version. On the
other hand, when we prune the version history, all accessible data in older versions are
copied "upwards" into a fresh heap at the oldest retained version. Decisions to prune the
version history, and identification of the oldest version to be retained are taken dynamically
depending on current storage utilization.

Functional semantics ensures that one cannot see "different” data as a result of this
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pruning activity. However when the database history is pruned, one will no longer be able to
execute a query that interrogates a pruned version-- such attempts will invoke a run-time
error {it is possible to determine statically whether a query might interrogate a pruned
version, but one must run it to see whether it actually does so}. Despite this, if the total
storage capacity of the database system is subsequently increased (e.g. by buying more disk
drives), it is possible easily and smoothly to re-integrate earlier pruned verions back into the
version history.

We emphasize that despite the above discussion about finiteness of real databases, we
believe our model is still a big step forward. We have relieved the database programmer of
such concerns about finiteness in much the same way that the Algol programmer is relieved
of certain finite storage allocation issues that bedevil the Fortran programmer, even though
in a deep theoretical sense they are certainly equivalent.

It occurs to us that our model seems naturally suited to high-capacity write-once
storage technology such as optical disks, but we have yet to study algorithms that make
effective use of such devices in this functional setting.

A serious problem that needs to be investigated is the interaction of lazy evaluation
with exception handiing. We have already outlined various advantages of lazy evaluation in
a database setting, including the ability to start a new update even before the current one
has "completed”. While this is desirable from a concurrency point of view, it raises new
questions about how to handle exceptions. A query or update expression may force the
evaluation of a computation that was suspended during some previous update. What is to
be done if that suspended computation now raises an exception (such as a
divide-by-zero?)8.

We are exploring linguistic mechanisms for the meta-level "update” language. While it
is necessary to make this language convenient to use, the main difficulties arise a)in
ensuring that such meta-level environment-update operators maintain the type-correctness
of the bindings used at the query-language level, and b) in allowing types to evolve
incrementally as is inevitable in a long-lived database where one’s model of the world
changes over time. It is possible that recent work in safely packaging a certain level of
dynamic type-checking in a generally statically type-checked system will be of
use [Atkinson,M.P. 85, Cardelli,L. 85].

87his is related to the question of "cascaded aborts”.
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6. Conclusion

We have argued that it is essential that databases be treated as an integral part of
programming languages rather than separately, as is common today. Further, we have
claimed that the full range of type-structures in a programming language should be available
for database objects. In this we are in substantial ag'reement with the PS-Algol {now Napier)
and Galileo projects.

We then put forward the view that functional languages offer many advantages having
to do with expressive power, rich type systems, interactive environments and optimization.
We feel that databases should be viewed as environments in which queries (i.e. expressions)
are evaluated, and that they should be "updated” by evaluating meta-level expressions that
evaluate to new environments, thus creating a conceptually infinite sequence of database
versions. We call such databases "Functional Databases". We argue that they are superior
vehicles for concurrency control and that existence of a model of the history of a database is
useful not only for recovery mechanisms but also in general for application programs.

We have begun developing a prototype functional database programming system to
demonstrate the feasibility of this model. As part of this effort, we are studying language
facilities to capture our model of update in the presence of a rich polymorphic type system
with full type-checking.
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