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CSG261 : Revised Version 001

This document is a revised version of the CSG Memo 261, written by Ken Traub, last
revised on March 24, 1986. This is called Version 001 because it is now kept online under
Version Control Conventions provided by Motorola Ine.

Even though few changes have occurred in the Dataflow Compiler Substrate, the original
document needed a major revision since it had some important sections missing. This document
has new chapters on defining compilers and syntax directed attribute management to fill that
gap.

Also, due to a recent wave of enthusiasm and concern within the Computation Structures
Group regarding more complete documentation of the software systems, the organization of this
document has also undergone some change. Now, this document not only serves as a reference
guide for what external LISP functions are provided in the DFCS package, but also describes
in words, the structure and the mechanisms employed in providing those facilities. We also
attempt to document any useful debugging tools and internal check points that may help an
advanced compiler hacker.

James Hicks
Shail Aditya
January 15, 1991
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CSG261 : Revised Version 002

This revised version incorporates suggestions and comments furnished by Christine Flood,
R Paul Johnson, and Boon Seong Ang, as well some other minor changes.

Chapter 2 has several changes. Discussion on compiler families, modules, and compilers has
been revised. Some examples and figures have been included. A brief description of cycling the
compiler has been included. A small walk through example illustrates the dynamic scheduling
imposed by the substrate.

Chapter 4 now includes several examples drawn from a simple expression grammar. The
discussion of unimplemented graph attributes in section 4.3 has been concretized.

Chapter 6 incorporates some minor bug fixes.

Shail Aditya
March 27, 1991



Contents

1 Introduction

1.1 OVeIVIEW & o v 4 v e et s e e e e e e e i e e e e e e e e e e e e e
1.2 Common Lisp . . - .+« o v o v i e e et e e e e e e e
1.3 Packafes . - » o v v v v v s e e e s e e e e s s e e
2 Defining Compilers
2.1 Static Structure of the Compiler Substrate . . . . . . . ... oo in
21.1 Compiler Family . . ... . ..« it e
2.1.2 Compiler Options . . . . . . v v ottt i it e e
2.1.3 Compiler Modules . . . . . . .. oottt e
2.1.4 Compilers . . . .« v v i vt e e e e e e e e e
2.2 Dynamic Control Structure of the Compiler Substrate . . . .. ... .......
2.2.1 The Dynamic Environment of a Compiler . .. .. ... ... ... ....
2.2.2 Cycling the Compiler . . ... ...
3. Data Structures
3.1 Lexical Tokens and Parse Trees . . . . . . . . v v v i v v it vt i o v o v o 0o
3.1.1 Lexical Tokens . . - « & ¢ v v o v v u v b s v v v e s s vt s s s e s e
31.2 Parse Tree Nodes . . . . v v v vt i v v vt ot o e s et s e a e e s w e
313 Places . v v v v v e e e e e et e e e e e e e e e e e e s
314 Parse Trees . . v v v v v v v o v 0 s v o b b e e e e e e e e s
3.2 Dataflow Graphs . . . . . . o v v v it i i e e e e e s e
321 Instructions . . v v« o v v v ot e e e e e e e e e e
3.2.2 Instruction Sourcesand Sinks . . . . . . . . ... . 0o
3.2 ATCE © v v i i e e e e e et e e e e e e e e s
324 FIABIIES . . v v v o v o o v o e sttt s st e e m e e e e s e
325 Dataflow Graphs . . . . . . . .« c i i e e e e
4 Syntax Directed Operations
4.1 Parse Treesand GrammArs . . . .+ = « « ¢ o ot 4 v 0 s s v o s o v o a v v oo v
41,1 GrammnmmMAaTs . -« « « o ¢ v o =« o s o s s s s 4 s v n s 1 ot o o n s ot 2 v s
4.1.2 Productions . . . . ¢ v v v v vttt e e e et e e e e e e e e s
4.1.3 A Grammar for the Expression Language . ... ... .. ... ... ...
4.1.4 Grammar Abbreviations . . . . . . . . . .. i o
4.1.5 Some abbreviations for the Expression Language . . . .. ... ... ...
4.1.6 Traversing Parse Trees . . . .« . . o o o v v i vt v s ot v ot i
4.2 Parse Tree Attributes . . . . . . -« o o v i it e e e e e e e e e e

4.2.1 Astribute Declarations

-----------------------------

10
10

11
i1
11
13
14
18
19
20
20

25
25
25
26
30
31
32
32
36
37
39
44

45
45
45
46
46
47
47
48
50
50



4 A Datarrow COMPILER SUBSTRATE
422 Attribute Example . . . . . . . . o ... 0o e e e e 51

4.3 Graph Attributes (Unimplemented) . . . . . .. .. ... .o e 52

5 Exsym Tables: Separate Compilation Support 556
5.1 Creating Exsym Tables . ... ... ... ... 55
B <+ - O R L 55
5.3 Exsym Properties . . . . . . . 0 0o i e s 56
54 Exsym Assumptions . . . . . . - .. vttt vt e e e e 56
55 Consistency Checking . . . . . . .. . ¢ oottt ottt it v 57

6 External Representation 59
6.1 CIOBL Objects . . . « v v v v v i v v e e e e e e e ettt s e 60
6.2 CIOBL TOKenS . . . v v v v v v ot o sttt e v s s e an et e e s n s e e v 61
6.3 CIOBL StIeamms . . . . & v v v v v o o v v c e s et v e e st b et et e e 62
6.3.1 Creating CIOBL Streams . . . . . . .« ot o vt v vt o v s vt v n oo 62

6.3.2 Reading and Writing CIOBL Streams . . . ... ... ... ... ... 63

6.3.3 User Defined Objects . . . .. . . ot ittt i e s o i v oo e o 64

64 Encodings . . . . . . . o ittt e e e e e e e e 64
6.4.1 Standard Encoding . . . . . . . . . . oottt i e e 64

6.4.2 Compressed Encoding . . . . . . .« v vt i vt v vt v vt e n e 65

643 BinaryEncoding . . . . . . . . oot it i e e e e s e 66

6.4.4 Character Codes . . .. . . . - ¢ ¢« c i v it v vt v b s e m e 69

7 Miscellaneous 71
8 R ) = - T T 71
711 Message Hooks . . . . . . v v i it v i it e e 72

7.2 Performance Metering . . . . . . ¢« . o o i o i i i e e e 72
721 Space Meters . . . . . .. ot v v i ittt e e 73

7.2.2 Time Meters . . . . v v v v v v o v s v m et s v e a e e s 73

7.3 Sxhash Tables . . . . . . ¢« v i i v v v v v v s s ettt s e s e e e 74
7.4 Miscellaneous Functions . . . . . . . . .« . i v i i v i v e e e e 74

A Files of the Dataflow Compiler Substrate 75
B Acknowledgments 7



List of Figures

1.1 Block diagram of a Dataflow Comapiler . . . . . ... .. ... ... ... . ... 8
2.1 A parse-tree Representation of a program at various Levels. . . . .. .. .... 12
2.2 Representations, Levels, and Equivalences in my-compiler-family.. .. ... .. 13
2.3 Structure of the Compiler compileri. . . .. ... ... ...« 22
3.1 Parse Treefor Varl + 6.847 . . . . . . . i vt v v v s vt ot e e n et o s 28
3.2 (a) A Dataflow Graph Fragment; (b) Its Internal Representation . .. ... ... 33
33 ATypical Frame . . - . . o« o o i i i it e e e i et et e e e e e 40
A.1 List of files for Dataflow Compiler Substrate System . ... ............ 76



A DaTAFLOW COMPILER SUBSTRATE



Chapter 1

Introduction

WARNING: This document is subject to change.

This document describes the data structures and abstractions that underlie the ID Compiler,
Version 2 [3], a compiler from the programming language ID to machine code for the MIT
Tagged-Token Dataflow Architecture. The most important attribute of Version 2 is flexibility,
as it must be adaptable to changes in the language, changes in compilation strategies, and
changes in the target machine architecture. Furthermore, it must be capable of being used in a
tinker-toy fashion: the parser output may feed a back end for a non-dataflow implementation,
the intermediate graphs may be processed by a user application and then fed back into the
compiler for machine code generation, and so forth.

This need for flexibility has led to a design that is as independent from the language and the
dataflow machine as possible, so that the substrate will be immune to all but the most radical
changes to these. Beyond this adaptability to the changing needs of the TTDA project, this
independence results in the additional benefit that the compiler substrate can be used not only
for an ID to TTDA compiler, but also for a VIMVAL to static dataflow architecture compiler,
a SISAL to Manchester architecture compiler, efe. It is even conceivable that given an ID to
TTDA compiler and a VIMVAL to static dataflow architecture compiler, bath built upon the
abstractions described herein, it would be possible to construct ID to static and VIMVAL to
TTDA compilers with a relatively small amount of additional code.

1.1 Overview

The substrate described here is designed for compilers whose overall structure is as shown in
Figure 1.1. The compiler is a collection of modules, each of which operates on an intermediate
representation of the program being compiled. The intermediate representations, which are
fully described here, serve as the only channel of communication between the modules. A
simple top-level procedure supervises the passing of control from module to module.

Design Note:: At this point, it is not clear whether the entire source code will move
from one module to the next or whether smaller units, such as procedure definitions,
will successively move through the compiler. While no stand is being taken at present,
certain conventions may be introduced in the future.

Referring to the figure, in the first phase of compilation the source code is parsed, resulting
in a parse tree. Initially, the parse tree is just a hierarchical representation of the source code,
with no other information or annotations beyond some indications of where in the input file
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(line number, character position, etc.) each construct appeared. The parse tree then undergoes
a series of transformations, each of which may alter the original parse tree in several ways. A
module may add, delete, or replace nodes of the tree, the effect being equivalent to a source-to-
source transformation. A prime example of this kind of parse tree modification is “desugaring”,
in which a program construct is replaced by a semantically equivalent construct. A module may
also annotate the parse tree by adding information to nodes of the tree. These annotations do
not affect the structure of the program, but may affect how later phases interpret constructs
found in the tree. An annotation might be employed by a type checking module, for example, to
indicate that a construct results in a particular type of data. Finally, a module may introduce
new nodes into the parse tree which could not have been produced by the parser. This might be
done, for example, to replace an overloaded construct by one of two non-overloaded constructs
which later phases can deal with separately.

While any kind of parser may be used to produce the parse tree, it is expected that the
parser used for Id will be a Deterministic Finite Automaton (DFA) lexical analyzer followed by
a Look Ahead Left-to-Right (LALR) parser, with a stream of lexical tokens connecting the two.
As this model is applicable to a wide variety of languages, an abstraction for lexical tokens is
described here. If some other type of parser is used, the lexical token stream may be absent
entirely.

When all transformations to the parse tree have been completed, the program is converted
into a dataflow graph. The initial form that this dataflow graph takes is called the program
graph, because the level of detail present in this graph is roughly the same as that found
in the source program. For example, a procedure application might appear as a single APPLY
instruction in the program graph, even though this may later be expanded into a whole collection
of dataflow instructions depending on the implementation of procedure linkage.! Following the
initial transformation to program graph there may be several modules which transform the
program graph, such as optimizers, etc. At some point, the a transformation takes place which
replaces large, machine-independent instructions such as APPLY and LooP with the machine
instructions actually necessary to implement these schemata. The resulting graph, called the
machine graph, contains only instructions executable by the dataflow machine. Additional
optimization phases may follow machine graph generation, and the result is finally fed to an
assembly phase, which assigns addresses to the machine graph and produces output in a form
understandable by the various dataflow implementations.

As described above, there are really two kinds of dataflow graphs used in the compiler:
the program graph and the machine graph. The advantage of using these two forms is that
many if not all of the optimizations performed at the graph level can be performed upon the
program graph, which is fairly independent of the details of the target dataflow machine. As a
result, changing the dataflow machine (altering the instruction set, changing restrictions on the
number of destinations, redefining the procedure linkage mechanism, etc.) will require few if any
modifications to the bulk of the graph manipulation phases. The program graph is also likely to
have fewer instructions in it than the corresponding machine graph, and so optimizations may
be faster. It is important to realize, however, that program graphs are not entirely independent
of implementation details; for example, data-driven and demand-driven (a la Pingali) program
graphs for the same program will be quite different.

Although there are conceptually two kinds of graphs, both program graphs and machine
graphs are built on the same abstractions. Hence, this document only describes one kind
of graph data structure, called a dataflow graph. The distinction between program graph and

1In the past, the program graph has also been referred to as the “abstract graph”.
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machine graph, then, is not one built into the compiler substrate, but is enforced as a convention
by the compiler modules that manipulate graphs.

Again, it is emphasized that this document only describes the substrate of the Id Compiler,
Version 2, and that this substrate is applicable to a wide variety of compilers and compiler
related programs. Details of the programming language Id, what constitute legal parse trees
and legal program graphs for Id, what constitutes legal machine graphs for the Tagged-Token
Dataflow Architecture, and how Tagged-Token machine code is represented are described in
another document.

1.2 Common Lisp

The compiler substrate and all compilers built on top of it are written in Common Lisp. Every
attempt has been made to make the compiler conform to the specifications and conventions
defined in Steele’s Common LISP: The Language [1)?, hereafter referred to as “The Common
Lisp Manual”. The compiler substrate and any compilers built on top of it are to depend only
on language features found in this manual, as far as possible. Furthermore, programs should
conform as much as possible to coding conventions and practices described in the manual. These
include, but are not limited to, conventions for naming symbols (pages 24-25), for indicating
comments (page 348), for naming predicates (page 71), and for indicating nil (page 4). The
compiler writer should strive for consistency with Common Lisp and with the compiler substrate
in naming and choosing arguments for functions.

It is assumed that the reader of this document is intimately familiar with all the material
in the Common Lisp Manual.

1.3 Packages

The code that makes up the compiler substrate is found in the dfcs package, and the symbols
described in this document are all in that package (descriptions in this document do not include
the dfcs package qualifier as it is understood that all symbols described here that are not a
part of the Common Lisp system are in the dfcs package).

In addition, the symbols described in this document are exactly the external symbols of
the dfcs package. It is intended that compiler modules will exist in other packages which use
the dfcs package®, allowing modules to refer to compiler substrate functions without package
qualifiers, yet preventing modules from conflicting with each other and with internal functions
of the substrate. For the benefit of users developing code, an dfcs-user package is provided
which is just a package that uses the dfcs and the 1isp package, with nothing in it initially.

*The latest version is [2].
3The word “use” in this context is defined in Chapter 11 of the Common Lisp Manual.



Chapter 2

Defining Compilers

This chapter will describe a facility for the automatic composition of compilers from component
modules. The facility will take care of managing which modules operate on an entire program
and which operate on a piece (e.g., procedure definition} at a time, compiler version numbers,
module interdependencies etc. The goal is to make it easy to splice experimental modules into
the compiler, handle compiler options, and the like.

We will first describe the static structure of the compiler and its components and then
describe how they are ghied together and exercised dynamically.

2.1 Static Structure of the Compiler Substrate

2.1.1 Compiler Family

There may be many compilers that share modules, data structures or utilities of each other.
In order to facilitate such sharing in a consistent fashion, the substrate requires that compilers
belong to a Compiler Family. A compiler family is a pool of resources that a group of compilers
may share. The resources are one of the following:

s A Data Structure.
e A Compiler Option.

o A Compiler Module.

It is important to understand the significance of defining a compiler family. With a cen-
tralized place to look for compiler resources, namely the compiler family, we can independently
define resources that belong to that family, and then build as many compilers as we like that use
one or more of those resources. For example, in the Id Compiler Family (called id-compiler),
we have declared various modules and options, and we use parse trees and dataflow graphs
(actually program graph and machine graph abstractions build on top of dataflow graphs) as
data structures. After this has been done, we can group a string of modules together and
form a Id compiler that compiles from the editor into the TTDA target architecture, another
compiler may compile from files, yet another one from streams. Similarly, a slightly different
set of modules may be grouped together to form a compiler for the Monsoon machine.

11
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Representation : parse-tree, Levels : program, def, procedure

program

$

( defy defy -+ )

)

( ( procgo procgr --- ) ( procip «++ ) -- )

Figure 2.1: A parse-tree Representation of a program at various Levels.

Data Structure Representations and Levels (Units)

The data structures of a family are the most important resources around which the modules
and the compilers are defined. The job of the modules is to generate, process, and pass on the
data structures of the family.

In order to obtain a useful handle on the various kinds of data structures being passed around
among the modules of a compiler family, and also to ensure consistent glueing of modules that
produce and consume that data structure, a compiler family must be provided with a name
of the data structure representation. A Representation is the name of such a data structure.
This can be viewed as the “type” of the data structures flowing across a module boundary.
A representation is simply a class of data structure objects and is used to ensure consistent
glueing of modules. Several representation classes may, in fact, be implemented using the same
Lisp data structure objects. A convenient example is the program graph and machine graph
representations in the Id Compiler family, both of which are abstractions built on top of the
Dataflow Graph data structure described later in this document.

A complete program may not be the best unit for independent property maintenance and
execution on a given execution vehicle. A complete program would typically consist of several
definitions, which may have embedded procedures that may need to be lifted out, each pro-
cedure, in turn, may need to be further subdivided into independently executable codeblocks.
A data structure representation can be used to represent a complete program at one or more
of these levels. A level, therefore, is the “type” of hierarchical clustering of the independent
pieces of a complete program. Each data structure representation also specifies the names of
all the levels it supporis. The complete program can be specified using the representation data
structure at the highest level (usually program level) supported by the representation, or equiv-
alently, as lists of representation objects at lower levels. As an example, consider figure 2.1.
The representation parse-tree has three levels as shown. A complete program is represented
as either a single parse tree at the program level, or a list of parse trees each at the def level,
or a list of list of parse trees each being at the procedure level.

When there are multiple data structure representations in a family, as is often the case,
we also need to specify which levels of a representation correspond to which levels of another
representation, so that it may be reasonable for a module to take input of one representation
level and produce output of an equivalent representation level. An equivalence class of such
representation and level pairs is also called a unit. In the following discussion and examples,
we will use the term “unit” to refer to a particular representation and level combination from
its equivalent class, or the class itself, interchangeably.
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my-compiler-family

parse-tree intermediate-torm
Unit 0 Cprogram program )
Unit 4 ( def lambdaset )
Unit , @rocedure lambda 4)
basicblock

Figure 2.2: Representations, Levels, and Equivalences in my-compiler-family.

Declarations

defcompiler-family family &clauses [Macro]
{(:representation representation {level ) H

{(:equivalence {(representation level) H)}x

Defines a compiler family family along with its data structure clauses. Each :representation
clause defines a representation named representation with the given level names. The levels
appear in ascending order of size. There must be at least one representation clause having at
least one level. The :equivalence clauses defines certain pairs of representation and level to
be equivalent. Errors are signalled if the system of equivalences is not reasonable.

Example of a Compiler Family

As an example, congsider the following compiler family declaration:

(defcompiler-family my-compiler-family
(:representation parse-tree procedure def program)
(:representation intermediate-form basicblock lambda lambdaset program)
(:equivalence (parse-tree procedure) (intermediate-form lambda))
(:equivalence (parse-tree def) (intermediate-form lambdaset))
(:equivalence (parse-tree program) (intermediate-form program)))

This family has two representations, parse-tree and intermediate-form, along with their
various levels. The equivalences of levels into units is depicted in figure 2.2.

2.1.2 Compiler Options

An Option is a piece of external data that a module may use during the course of its computa-
tion. This may be viewed as an external parameter passed to the module from the environment
under which the module is invoked. Typically, an option may be used by one or more modules,
or by the particular compiler being constructed, and therefore, is an independent resource of
the compiler family.
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Declarations

defcompiler-option name family &clanses (:type type) {Macro)
[(:how-detined how-defined)] [(:default default)
[(:mentioned-default mentioned-default)]
[(:documentation documentation-siring)]
[(:importance importance-number)]

*option-types# [Constant}

defcompiler-cption adds an option named name to the family named family. The option
must be one of the legal types. *option-types* denotes the set of recognized legal op-
tion types. These are :symbol, :string, :number, :integer, :date, :pathname, :boolean,
:enumeration, and :stream.

how-defined, if present, specifies how this option will be defined in the argument list of the
compiler in which it is included. The possible values are :keyword or :positional. It defaults
to :keyword. Keyword options must have a :default clause which is specified as default. The
documentation-string describes the option. The importance-number is a number between 0.0
and 1.0, and is used to sort the options into an argument list of the compiler, from the highest
to the lowest. It defaults to 0.5.

option option-name [Macro]

Returns the current value of the option named option-name. This can be used within the
modules of the compiler to access the various options.

option-exists-p option-name [Macro]
Returns a boolean value reflecting whether the option option-name is a valid option for the
current compiler or not.

Example of a Compiler Option

Here is an example of an option that may be used by a parser module of the compiler.

(defcompiler-option input-file my-compiler-family
(:type :string)
(:how-defined :positional)
(:default *defaunlt-input-filenames)
(:importance 1.0)
(:documentation "Pathname of Source Program"))

This defines a positionally specified string option with maximum importance (will probably
become the first argument of the compiler in which it is used).

2.1.3 Compiler Modules

A Module is an abstraction that packages up a particular phase of compilation. It specifies
the data structures that flow across its input and output boundaries, their representations
and levels, compiler options that can be used to conditionalize the code inside the module,
and points to appropriate toplevel functions that initialize, trigger, and cleanup that phase of
compilation.
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A module operates on instances of the data structures specified within a compiler family.
When a module is provided with an object in a particular representation at a particular level
at its input boundary, it produces another object at the same level in the same or equivalent
representation at its output boundary. A module may only have an output data structure
boundary, in which case, a fresh object is generated by the module and placed at its output
boundary each time the module is triggered. Such a module is called a generator. Conversely,
a module may only have an input data structure boundary, in which case, when an object is
placed at its input boundary, the module consurnes it and does not produce any output object.
Such a module is called a collector. A module with both input and output data structure
boundaries specified is called an intermediary.

Operating Levels of a Module and Level Marking

Different modules may operate on different levels of the same or equivalent representations.
Operating at lower levels than the highest possible level (e.g., program level) permits incre-
mental compilation of the program. The program may be compiled definition by definition
or procedure by procedure, if the compiler modules have the capability to operate at those
levels. This reduces resource requirements of the compiler and improves throughput, because
the entire program need not be available during the various phases of compilation. Examples
of such modules and their operation is described in section 2.2.2.

When there are modules that work on levels other than the highest level of a representation,
it is necessary to figure out how to group their output together to form higher levels. For
example, a module producing parse trees procedures must some how “mark” the end of a def
and a program in the sequence of procedures it produces. Usually, this grouping is obtained by
carrying through the same grouping that existed on input to the module. For example, suppose
the input to a module working at the basicblock level is as follows:

((CCAaB)Y(CC)Y))Y C(D))Y)
pr d p pp pddp pdpr

Here, A, B, C, and D are basic blocks. The grouping of basic blocks into procedures is
logically indicated by the “p” annotated parentheses; the grouping of procedures into defs is
indicated by the “d” annotated parentheses, and the grouping of the whole program is indicated
by the “pr” annotated parentheses. Note that we invoke the module on a basic block at a time,
so the output will be 4’, B', C’, and D' respectively for each of four calls we make to the
module’s function. The substrate logic automatically inserts the “p”, “d”, and “pr” boundaries
in a manner corresponding to their positions in the input to the module, so that the output
will look like:

CC(a B”)Y (C2))) (D))
prdp PP pddp pdpr

But there are two situations where one cannot obtain this grouping information just from
looking at the module’s input. These are,

1) If the very first module in the compiler (the generator) works at a lower level than the
whole program, then boundaries of its higher levels cannot be automatically inferred.

2) If the output of a module is in a different representation than the input, and there are
levels in the output representation that have no corresponding equivalent level in the
input.
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In both of these cases, the module must explicitly mark the boundaries of levels that the system
will not be able to figure out from the input automatically. In the first situation, the generator
must mark all higher levels than the level of its cutput; in the second situation, the module must
mark all levels that are both higher than its output and for which there is no corresponding
level in its input representation.

Module Before and After Functions

Another consequence of having modules operate at lower levels than the highest program level
is that global data structures used in a module operating at lower levels need to be setup prior
to invoking the module on an object at that level. For this purpose, a module may specify
functions that will be invoked once at the appropriate higher level to setup and cleanup such
global data structures. These functions are called the before-functions and after-functions.

The before and after functions may be used to setup and cleanup data structures that need
to be maintained at a level higher than the module’s operating level. Typically, such data
structures dynamically accumulate properties over multiple objects at the module’s operating
level. Using representation example from the last section, for a module operating at the def
level, we may setup a global data structure using a before-function at the program level, The
module will accumulate/use global properties in this data structure pertaining to each definition
it processes. An after-function at the program level can then cleanup the data structure when
all the definitions have been processed.

Declarations

defcompiler-module name family clauses [(:input representation level)] [Macro]
[(:output representation level)] (:function function-name)
{(:before-function unit [function-name]) }*
{(:after-function unit [function-name]) }«
[(:levels-marked {level}+)] [(:options {option}H )]
[(:wrappex-macro macro-name)]
Defines a module name in the compiler family family along with various clauses. At least one
of :input or :output clauses must be specified. :function clause must always be specified.
All other clauses are optional.

:input and :output clauses specify the representation and the level of the data structures
that the module consumes and produces respectively; if either is omitted, the module is assumed
to be a generator or collector, as appropriate. The input and output representation and levels
must be equivalent, which means that they must have been declared as such in the module’s
family. In addition, they must satisfy glueing rules as described later in section 2.1.4.

:function clause specifies function-name to be the toplevel function which implements the
module. This is used to invoke the given module with a data structure object of the input
representation at the specified input level, and must produce a data structure object of the
output representation at the output level.

:before-function and :after-function clauses may be used to make the module aware of

boundaries of levels higher than its input level. The function-name specified in a :before-function

clause is invoked before an object belonging to the given unit is passed on to the module for
processing. Similarly, the :after-function clause specifies the function to be invoked at the
end of processing an object belonging to the given unit. Unit may be of the form (representa-
tion level) where representation is the input representation and level is a higher level than the
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module’s input level. It could also be specified as simply level, where the input representation
is assumed.

Even though several :before-function and :after-function clauses may be supplied,
there should be atmost one :before-function or :after-function clause per unit. For gen-
erator modules, atmost one :before-function and :after-function clause is permitted, and
unit is omitted; those clauses refer to functions invoked before and after the entire compilation.

:levels-marked clause gives levels of the output representation higher than the modules
output level which the module function (main or before or after) “marks” by calling mark-level
when a boundary for that level is to be recorded.

The :options clause names compiler options required by the module; they must have
already been defined by defcompiler-option. Finally the :wrapper-macro clause, if present,
sets up macro-name as a wrapper macro for the module when it is used in a compiler. Such a
wrapper can be used to set up a dynamically scoped environment inside which the invocation
of the module is placed. We will describe these wrappers in more detail in section 2.2.1.

mark-level level-name koptional (when :before) [Punction]

mark-level may be called by module functions to record the boundaries of the level level-name.
This level must be one of the levels of the module’s output representation. For main functions
of the modules, when should be either :before or :after, indicating that the separator is
intended before or after the output produced by the module. For before and after functions,
when is ignored.

Examples of Compiler Modules

Below we present some examples of module declarations. We will use the famnily and the option
declarations given earlier.

(defcompiler-module def-parser my-compiler-family
(:output parse-tree def)
(:levels-marked program)
(:before-function initialize-lexer-parser)
(:function parse-def)
(:wrapper-macro parser-wrapper)
(:options input-file))

(defcompiler-module def-xform my-compiler-family
(:input parse-tree procedure)
(:output intermediate-form lambda)
(:function xform-def)
(:before-function program xform-before-program)
(:after-function program xform-after-program))

(defcompiler-module program-printer my-compiler-family
(:input intermediate-form program)
(:function print-program))

We have defined three modules. def-parser is a generator that generates parse trees at
the def level. In order to inform the rest of the modules when the program level has finished,
it will mark the program level during its execution when the end of the input file has reached.



18 A DaTaFLow COMPILER SUBSTRATE

The before function is run before the entire compilation and it will be used to initialize global
data structures used across the whole program. The wrapper macro, in this case, may be used
to open the input file accessed via the compiler option input-file given in the last section.
The def-xform module converts a parse tree procedure into a intermediate-form lambda.
It uses before and after function at the program level to setup and cleanup its internal global
data structures.
Finally, the program-printer module is a collector that prints the entire program at once.

2.1.4 Compilers

With all the resources in hand, it is now possible to start building compilers. A Compiler is a
sequence of modules, the first of which must be a generator and the last one must be a collector,
all the others are intermediaries. Each of the internal boundaries between pairs of modules is
provided with a glueing mechanism that takes care of the representations and the levels of data
structures that flow through them. The first module must obtain its input specially from a
source code stream, which is usually an editor buffer or a file. Similarly, the last module must
output object code specially into an object code stream which is typically a file or a special
stream into the loader. Therefore, in the compiler substrate, we do not worry about these
overall input and output streams, and leave their specification upto the modules that handle
them which may use compiler options to specify them.
Each module must follow the following glueing rules.

1) A module’s input level must be equivalent! to its output level. Its input representation
can be different from its output representation, in which case the module acts like a
translator for the program from its input data structure representation to its output data
structure representation.

2) A module’s output representation must match the subsequent module’s input representa-
tion. But, a module’s output level can be different from the input level of the subsequent
module. The substrate takes care of such mismatch of levels by appropriately queuing up
objects collected from a previous module and grouping them into a level acceptable to
the subsequent module.

Apart from the sequence of modules, a compiler also specifies what options are being used by
the compiler. These are a union of all the options used by its component modules and any
other specifically declared within the compiler declaration.

Declarations

defcompiler name family &clanses [(:wrapper-macro macro-name) ] [Macro}
[(:message-hook hook-name)] [(:options {option})]
[(:1ambda-1ist {argument})] [(:option-default option default)]
&body modules
Defines a compiler name belonging to the compiler family family with the given sequence of
modules. The restrictions on modules (generator, intermediary, ..., collector; matching repre-
sentations) are enforced. The various optional clauses are used in building the toplevel compiler
invocation function.

IRither both should have the same representation and level or they must have been declared as equivalent in
the corresponding compiler family.
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:wrapper-macro clause supplies a macro name for the entire compiler to be wrapped into.
:message-hook clause allows the hook function hook-name to be invoked whenever the compiler
generates a message. More will be said about error messages later.

:options clause specifies what options are to be included in the compiler apart from those
that are used by the modules of the compiler. :option-default permits changing the default
of the specified option for the purpose of this compiler. :lambda-list permits the specification
of a LISP-like lambda list for the compiler invocation function. The list is checked for the
presence and proper specification of the options of the declared compiler.

Example Compiler

We continue with our examples of my-compiler-family.

(defcompiler-option log-file my-compiler-family
(:type :stream)
(:how-defined :keyword)
(:default *trace-outputs)
(:importance .2))

(defcompiler my-compiler my-compiler-family

((:wrapper-macrc my-compiler-wrapper)
(:message-hook my-compiler-message-hock)
(:options log-file)
(:option-default log-file *log-file*))

def-parser

def-xform

program-printer)

The option log-file indicates a stream where the compiler may send log messages. It is
defined using a keyword with a low importance.

The compiler definition specifies a wrapper macro which may be used to set up the lexical
environment of the whole compiler. It may also be used to open the log file for output. The
specified message hook function will use this log file to record messages from the compiler.
The log-file option and its overriding default are specified with the compiler declaration
since they do not pertain to any specific module. Finally, we have the three modules glued
together. Note from their earlier definitions that their input and output representations and
levels satisfy the glueing rules. The top-level function generated by the above macro will be
called my-compiler and it will have arguments specified by the various options present in
the above compiler declaration and the declarations of its component modules. In this case,
my-compiler will have two arguments, input-file option used by the first module generates
a positional argument, and the log-file option generates a keyword argument.

2.2 Dynamic Control Structure of the Compiler Substrate
In this section, we will describe how the various pieces of a compiler as defined in the last

section are made to operate dynamically in conjunction. Both the dynamic environment of a
compiler and the scheduling of its various modules are controlled by the substrate.



20 A DaTarrLow COMPILER SUBSTRATE

2.2.1 The Dynamic Environment of a Compiler

The compiler substrate is responsible for setting up the dynamic environment under which
each module of a compiler is invoked. This is achieved using the declared wrapper macros of
the compiler and the individual modules, as well as other dynamic environment initializations
described below, inside which an invocatien to cycle the compiler is placed.

The definition of a compiler using the above macro defcompiler generates a LISP function
by the given name and its argument list is generated using the options and clause specifications.
This function glues the specified modules in the given order. There are several wrappers and
variable bindings that are set up during this glueing and it is worthwhile mentioning some of
them.

The outermost wrapper is the code that computes and sets the options. Code to generate
default values is used for an unspecified option. Next, an error catching wrapper catches
unrecoverable user errors as well as compiler bugs that would abort the compilation and may
otherwise throw the user into the LISP debugger. Inside this the compiler message hook is set
up and the declared compiler wrapper is applied. Errors and messages are described separately
in chapter 7. Finally, the individual module wrappers are applied nested from the wrapper of
the first module to the last. Inside all these wrappers lies the call to invoke the compiler.

2.2.2 Cycling the Compiler

The substrate also controls to a first degree the scheduling of the individual modules of a
compiler. The overall scheduling order of the modules is chosen to be depth-first incremental,
which means that the individual units of source code will be cycled through the sequence of
modules as far down as possible from the front-end to the back-end before another unit of
source code is pushed into the front end. But this depth-first scheduling strategy must obey
the operating levels of individual modules, which gives it enough flexibility to simulate any
combination of depth-first and breadth-first schedule.

Declarations

current-module-name [Function]

Returns the name of the currently executing module.

A Complete Example
To make things clearer, we will walk through an example compiler as defined below.

(defcompiler-family familyl
(:representation repl def program))

(defcompiler-module def-parser familyl
(:output repi def)
(:levels-marked program)
(:before-function print-before-compile)
(:after-function print-after-compile)
(:function parse-def))
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(defvar *asdf* 0) .
(defun print-before-compile () (format t "“~&Printing before compile"))
(defun print-after-compile () (format t "“&Printing after compile"))

(defun parse-def ()
(let ({data (incf »asdf*)))
(when (zerop (mod data 5))
(mark-level ‘program :after))
(format t "~¥Parsing def "a" data)
date))

(defcompiler-module program-xform familyl
(:input repl program)
(:output repil program)
(:function xform-program))

(defun xform-program (program)
(format t "“&Xforming program “a" program)
program)

(defcompiler-module def-analyser familyl
(:input repl def)
(:output repl def)
(:before-function program print-before-program)
(:after-function program print-after-program}
(:function analyse-def))

(defun print-before-program ()

(format t "~&Print before program in “a" (current-module-name)))
(defun print-after-program ()

(format t "~&Print after program in "a" (current-module-name)))

(defun analyse-def (def)
(format t "~&Analysing def "a" def)
def)

(defcompiler-module def-printer familyi
(:input repl def)
(:function print-def)
(:before-function program print-before-program)
(:after-function program print-after-program))

(defun print-def (def)
(format t "~&Printing def ~a" def))

(defcompiler compileri familyl ()
def-parser
program-xform
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f—— FIFO OUTGS _ﬁ
daf- program daf- daf-
parser -xform analyser printaer

def level program level def level def level

Figure 2.3: Structure of the Compiler compileri.

def-analyser
def-printer)

The internal structure of the compiler compiler1 is pictorially depicted in figure 2.3. It con-
sists of four modules whose operating levels are as defined. Module def-parser is a generator
generating defs (which are actually simply integers!). Note that since def-parser operates at
a lower level than the highest program level, it must mark the end of a program after emitting
a certain number of defs. We simply choose to do so after every 5 definitions emitted.

The defs emitted by the def-parser module have to be collected by the substrate to form
a program and fed to the next module program-xform because that operates at the program
level. Modules def-analyser and def-printer operate at the def level, therefore, the program
emitted out from the program-xform module needs to be split into defs and supplied to them
definition by definition. Finally, the module def-printer is a collector operating at the def
level. The substrate inserts the virtual FIFO queues between the modules so that different
operating levels can be matched.

A call to run the compiler compileri produces the following output.

> (compilerl)

Printing before compile

Parsing def 1

Parsing def 2

Parsing def 3

Parsing def 4

Parsing def b

Xforming program (1 2 3 4 B)

Print before program in DEF-ANALYSER
Analysing def 1

Print before program in DEF-PRINTER
Printing def 1

Analysing def 2

Printing def 2

Analysing def 3

Printing def 3

Analysing def 4

Printing def &

Analysing def 5



A Datarrow COMPILER SUBSTRATE 23

Printing def 5

Print after program in DEF-ANALYSER
Print after program in DEF-PRINTER
Printing after compile

NIL

>

We discuss the various phases below.

1) First, the before function of the generator module def-parser is executed before the
entire compilation.

2) Now the compiler enters a loop to execute modules in a depth-first fashion. Since there
is nothing to do, the generator is triggered.

3) The generator produces a definition, but since module program-xform requires the com-
plete program, this definition will just accumulate in the input FIFO queue of module
program-xform until the complete program is available,

4) The generator must mark the end of the program, since there is no other way of knowing
it. It will presumable do so after the end of its input file or stream. Once the last
definition has been generated and the end of the program has been marked, the substrate
has enough objects in the queue to invoke the module program-xform on the complete
program. Note that, when a module operates at a higher level than its previous modules, it
is not scheduled until all the objects comprising its operating level have been accumulated.
This effectively amounts to a breadth-first scheduling of that module.

5) When module program-xformis done, it places the complete program on its output queue.
At this point, a program level before-function for module def-analyser will be executed.
The substrate now attempts to push the objects in the queue as far down into the compiler
as possible. As soon as the first definition crosses the module def-analyser, it can be
passed to the module def-printer, since that operates on the def level as well. Of
course, before the module def-printer starts processing the first definition its program
level before-function will be executed.

8) Definitions residing at the output queue of the module program-xform will be pushed
through modules def-analyser and def-printer one by one until all of them are done.

7) Note that the after functions of the modules are executed when the appropriate level
boundary passes through the module?.

8) Finally, the after function of the generator is executed after the whole compilation.

3There is a slight difference between the scheduling of the after fanction and the corresponding before functions
with respect to the scheduling of the intervening modules, as it may be evident from the given example. Whether
this is a bug or a feature, it is not clear.
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Chapter 3

Data Structures

3.1 Lexical Tokens and Parse Trees

3.1.1 Lexical Tokens

As discussed in Chapter 1, lexical tokens may or may not be used in a compiler implementation
depending on the parser chosen. An implementation for tokens is given here, however, because
it is expected that most compilers will use a regular-expression lexical analyzer/LALR parser
pair as their parser.

The job of the lexical analyzer is to break the source text into small, contiguous pieces called
tokens®, some of which are passed on to the parser. Each token is a conceptually indivisible
syntactic unit, such as an identifier, a number, a keyword, a mark of punctuation, etc. A token
has at least two slots: a class, which indicates what kind of syntactic unit the token represents,
and the value, which gives the actual fragment of source text corresponding to the token. For
example, the fragment Varl might result in a token whose class is : INTEGER and whose value
is "Vari". The parser only examines the class slot when making parsing decisions, but may
include the data from the value slot in the parse tree it produces. It is worth pointing out that
the lexical analyzer may suppress the generation of tokens for some pieces of the program text
such as whitespace and comments; the parser never sees these.

In addition to the class and value slots, a token has a slot for a place, which indicates the
token’s position within the source file. This information is transferred to the parse tree by the
parser, and is used by later compiler phases to construct messages to the user that refer to
specific places within his/her program. Places are described in Section 3.1.3.

The relationship between the lexical analyzer and the parser is somewhat unusual in that
the lexical analyzer supplies tokens to the parser only upon demand. This is in contrast to
all other modules of the compiler, which are invoked by a top-level procedure that passes data
from one module to another. As a result, lexical tokens are quite short-lived in that the parser
removes the information from a token and discards it shortly after receiving the token. To help
prevent needless consing and garbage collection, a list of unused tokens is maintained, to which
tokens should be explicitly returned when they are no longer needed.

Selectors

token-class token [Function]

1] exical tokens, of course, are not to be confused with iokens that carry data in a dataflow machine!

25
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Returns the contents of the class slot of token, which is a keyword symbol indicating to what
lexical class the token belongs. May be used with setf.

token-value loken [Function]

Returns the contents of the value slot of token, which is a string giving the fragment of source
text corresponding to the token. May be used with setf.

token-place foken [ Function]

Returns the contents of the place slot of token, which indicates where in the source text the
token occurred. May be used with setf.

Constructors

make-token class value &optional place [Function)

Returns a token whose class, value, and place slots have been initialized from the correspond-
ing arguments. The place slot will be nil if no place argument is given. make-token uses a
token on the free token list if one exists, otherwise it creates *token-allocation-quantum#
new tokens, puts them on the free list, and then uses one of them.

return-token token [Function]

Puts token onto the list of free tokens, where it can be reused.

*token-allocation-quantums* [ Variable)

Controls how many new tokens are created when the list of free tokens becomes empty.

8.1.2 Parse Tree Nodes

The parse tree is the data structure that is produced by the compiler’s parser, and represents the
source program in a form that reflects its syntactic structure. Following parsing, the parse tree
may be subjected to several transformation phases such as macro expansion or type checking.
These phases may annotate the parse tree (add information to nodes already existing in the
tree) or alter the tree itself (add or delete nodes). Finally, the transformed parse tree is passed
to code generation phases of the compiler. A fuller description of parse tree manipulations can
be found in Chapter 1.

As the name suggests, the parse tree is a tree structure, where each node of the tree is
called a Parse Tree Node, or ptnode for short. The representation of a parse tree in the Id
Compiler differs somewhat from the usual theoretician’s conception of a parse tree. Consider
the following {admittedly ambiguous) grammar:

1) Ezpression «— Ezpression + Ezpression
2) Ezpression — Ezpression * Ezpression
3) Eepression — - Ezpression

4) Ezpression «— Identifier

5) Ezpression — Number
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Note that the grammar contains three types of symbols: Non-Terminals, which always
appear on the left hand side of productions as well as on the right; Keyword Terminals like
+, which appear in the source exactly as they do in the grammar; and Pseudo- Terminals like
Identifier and Number, which actually represent classes of terminals that are treated exactly
the same by the parser. The distinction between keyword terminals and pseudo-terminals is
one not normally drawn in the literature, but as will be seen is quite important here.

Now consider the following fragment of source code: Vari + 6.847. A theoretician might
draw the parse tree for this expression as a node with three descendants: a node with the single
descendant Var1, the character +, and a node with the single descendant 6.847. This kind of
representation is awkward in a compiler for two reasons. First, the compiler must search the
descendants for keywords to determine whether the expression is an addition, multiplication,
or negation. Second, the parse tree contains nodes for productions (4) and (5) which are pretty
much information-free.

A more useful representation is used here. To address the first problem, each node of the
parse tree contains not only a list of descendants, but also a tag indicating which production
of the grammar was responsible for that node. The presence of this tag means that the only
descendants included in the parse tree are non-terminals (other parse tree nodes) and pseudo-
terminals; keyword terminals are not found anywhere in the parse tree. To address the second
problem, the writer of the grammar may indicate that certain productions are not to produce
parse tree nodes. Note that it is reasonable to suppress a particular production only if its right
hand side is a single non-terminal or pseudo-terminal.

A parse tree node, therefore, has at least two slots: a tag identifying a production, and a list
of descendants (children). Several other slots are also included: a pointer to the node’s parent,
for ease in traversing the parse tree, a place which indicates the position within the source
file of the text that produced the node, and an other-slots slot which holds any additional
information or annotations modules of the compiler wish to attach.

Pseudo-terminals are also represented as ptnodes; they can be distinguished from ptn-
odes representing internal parse tree nodes by the value of their production tag slot. While
pseudo-terminals have no children, they do have a value. The value of a pseudo-terminal
immediately after parsing is just the string corresponding to that pseudo-terminal as taken
from the source text. Processing phases immediately following parsing may change the values
of pseudo-terminals to more convenient representations; for example, the value of a pseudo-
terminal Tepresenting a constant may be changed from a string to an actual integer or flonum.
When a ptnode is used for a pseudo-terminal, the children slot holds the value.

Production tags are keyword symbols. For pseudo-terminals, the symbol is pseudo-terminal
name as it appears in the grammar, for example, : IDENTIFIER for the pseudo-terminal Iden-
tifier. For productions, the tag is assigned by the parser generator, and will consist of the
left-hand side’s non-terminal followed by a slash and a unique number, for example, the parser
generator might assign the tags :EXPRESSION/1, :EXPRESSION/2, and :EXPRESSION/3 to the
first three productions of the grammar above. Later phases of compilation may add ptnodes
to the graph, and care must be taken to either choose an appropriate pseudo-terminal or non-
terminal tag, or invent a new tag, depending on how the new node is to be treated by the
succeeding phases of compilation. A facility is provided for dispatching on the tag slot without
knowing the precise tag; see the grammarcase macro.

Figure 3.1 shows the parse tree for the expression Vari + 6.847 with respect to the gram-
mar given above,.
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PTNODE
Tag :EXPRESSION/1
Children | ( ~—___"3>—
Parent [Place]
Place NIL
Other-Slots

PTNODE
Tag : IDENTIFIER
Children “Vari"
Parent ——
Place [Place]

Other-Slots

PTNODE
Tag
Children

: NUMBER
"6.847"

Parent
Place
Other-Slots

[Place]

Figure 3.1: Parse Tree for Vari + 6.847
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Selectors

ptnode-tag pinode [Punction]
Returns the production or pseudo-terminal tag for the node. May be used with setf.

ptnode-children ptnode [ Punction]

If ptnode represents a pseudo-terminal, as indicated by the tag slot of pinode, ptnode-children
returns the value of the terminal. Immediately after parsing, the value of a terminal is a string
giving the exact appearance of the terminal in the source program, but a later analysis phase
might change this to some other type such as a symbol or fixnum.

If ptnode is not a pseudo-terminal, ptnode-children returns a list of ptnodes which are
the children of ptnode, where the first element of the list is the leftmost child.

May be used with setf.

ptnode-value pinode [Function)]

A synonym for ptnode-children, which can be used with pseudo-terminal ptnodes for clarity.
May be used with setf.

ptnode-parent pinode [ Function]

Returns the ptnodes parent ptnode, or nil if ptnode has no parent. May be used with setf.

ptnode-place pinode [Function]

Returns a place identifying where in the source file the construct represented by pinode occurred.
Exactly what place is indicated depends on the production and the parser: for example, if the
production is something like Let- Ezpression +— let Binding-list in Ezpression, the place might
indicate the first character of the keyword let, while for a production like Ezpression
Ezpression + Ezpression it might indicate the +. May be used with setf.

Additional selectors may be defined by define-ptnode-slot (g.v.).

Constructors

make-ptnode fag children &key :parent :place [Function)

Makes and returns a new ptnode, initializing its tag, children, parent, and place slots from
the corresponding arguments. Both non-terminal and pseudo-terminal ptnodes can be created
with make-ptnode.

make-parent-ptnode tag children &key :parent :place [Function]

Makes a new non-terminal ptnode, initializing its tag, children, parent, and place slots from
the corresponding arguments; the argument children must be a list of ptnodes. The new ptnode
is returned, and is also stored as the parent of each of the elements of children, regardless of
whether those ptnodes already have a value in their parent slot. This will often be more useful
than make-ptnode.
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Mutators

In addition to the functions below, all of the selectors in Section 3.1.2 and any selectors defined
by define-ptnode-slot may be used with setf.

replace-ptnode-child pinode n new-child [Function]
Replaces the nth element of the children slot of ptnode with new-child, and replaces the
parent slot of new-child with pinode. Ptnode must be a non-terminal ptnode and have at least
n+1 children. Children are numbered from the left beginning with zero (just as are elements
of lists for Common Lisp’s nth function).

replace-ptnode-children pinode new-children [Punction]

Replaces the children slot of ptnode with new-children, which must be a list of ptnodes, and
replaces the parent slot of each of the elements of new-children with ptnode. (Note: the list is
not copied.)

Miscellaneous

define-ptnode-slot selector-name [Macro)

Defines a new “slot” for ptnodes which may be used as if it were one of the slots already
provided by the compiler substrate. For example, the form

(define-ptnode-slot ptnode-desired-type)

defines a new ptnode slot called desired-type, which may be accessed by (ptnode-desired-type

pinode) and written by (setf (ptnode-desired-type pinode) value). Selector-name must

be a symbol whose print name begins with ptnode-, and may not be any of the symbols
ptnode-tag, ptnode-children, ptnode-value, ptnode-parent, ptnode-place, or ptnode-other-slots.
The slot is actually implemented as a property stored on the property list contained in the
other-slots slot of ptnodes. The indicator used is a keyword symbol giving the name of

the slot; for the example given, the indicator would be :desired-type. Note that initial

values for slots defined by define-ptnode-slot may not given in calls to make-ptnode or
make-parent-ptnode; they are always initialized to nil.

Rationale:: The “other slots” mechanism was designed to meet three goals: to provide
a convenient way to annotate ptnodes, to keep different annotations separated, and to
provide an easy way of making commonly used annotations a permanent part of the
compiler substrate. The latter might be desirable because built-in slots are both faster
and take up less space. Changing an annotation from a define-ptnode-slot slot to a
built-in slot will require no changes in programs that make use of the slot, since both
kinds of slots are manipulated in the same way.

3.1.3 Places

A place is a small data structure that indicates a particular place within the source file. It has
three slots: 1ine, which gives the line number of the place, column, which gives the horizontal
position within that line, and character, which gives the position within the text when viewed
as a sequence of characters. All tree fields are zero-based. The idea is that 1ine and column are
most useful when printing messages, while character is most useful for use with text editors
and other programs that actually manipulate the source file. [The definition of places is subject
to change.]
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Selectors and Constructors

place-line place [Function|
Returns the contents of the line slot of place. May be used with setf.

place-column place [Function]

Returns the contents of the column slot of place. May be used with setf,

place-character place [ Function]
Returns the contents of the character slot of place. May be used with setf.

make-place line column character [Function]

Returns a new place whose slots are initialized according to the arguments.

3.1.4 Parse Trees

When passing a complete parse tree from module to module, it is often necessary to pass along
some additional information, such as the compiler version, etc. The parse-tree abstraction is
provided for this purpose: it contains the root node of the parse tree along with a property list
that can give any additional information needed.

make-parse-tree rooi-pinode koptional plist [Punction]

Creates and returns a new parse tree, whose root node is root-ptnode, and with property list
plist. The default for plist is an empty property list.

parse-tree-root parse-iree [Function)

Returns the root node of parse tree parse-tree. May be used with setf.

parse-tree-plist parse-tree [Function]

Returns the property list of parse tree parse-tree. May be used with setf. The following
function is probably more useful.

parse-tree-get parse-iree indicator &optional default [ Function)

Returns the indicator property of parse-tree’s plist, or default if that property does not exist.
In other words, parse-tree-get combines parse-tree-plist with getf. May be used with
setf.
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3.2 Dataflow Graphs

When all parse tree manipulations are complete, the parse tree is converted to a dataflow graph.
Initially, the dataflow graph has a level of detail comparable to that of the original source
program; this graph is called the program graph. At some point toward the end of compilation,
the program graph, which may have undergone various transformations, is converted to a graph
containing more detail and which is more specific to the particular target dataflow architecture;
this graph is called the machine graph. After possibly further manipulations, this graph is
assembled into object code for the target machine.

A single abstraction suffices to represent both program graphs and machine graphs; the
distinction is merely one of restrictions imposed by the various compiler modules. As these
restrictions depend on the language being compiled and the target architecture, they will not
be discussed in this section. Instead, the abstractions for manipulating dataflow graphs, be
they program graphs or machine graphs, are described here.

Figure 3.2 shows a fragment of a dataflow graph and its internal representation within the
compiler. The components of this figure are explained in the sections that follow.

3.2.1 Instructions

A datafiow graph is simply a collection of instructions, which are connected together by ares.
Each instruction contains an opcode, which identifies what operation the instruction performs,
a certain number of inputs, and a certain number of outputs. Although the compiler substrate
assigns no semantics to instructions in dataflow graphs, instruction inputs should be thought
of as receiving data from other instructions, and instruction outputs should be thought of as
sending data to other instructions. Collectively, the inputs and outputs of an instruction are
referred to as its ports.

A dataflow graph is constructed by wiring the outputs of some instructions to the inputs
of other instructions; it is not possible to wire outputs to outputs or inputs to inputs. An
additional restriction is that while outputs may have any number of arcs leading away from
them, each input may have only one arc leading to it. The implications of this restriction
are discussed below. While arcs are thought of as being unidirectional, leading from outputs
to inputs, they are actually implemented as bidirectional links for easy traversing of graph
structure.

An instruction actually has eight slots: opcode, parameter, inputs, input-map, outputs,
output-map, mark, and other-slots. opcode is a keyword symbol identifying the instruction,
as described above. The parameter slot is intended for use when one opcode stands for a whole
family of instructions. For example, there might be an instruction with opcode CONSTANT
which emits a certain value upon the receipt of any input; the parameter slot could be used
to indicate which constant is to be emitted for particular cCONSTANT instruction. The slots
inputs and outputs contain arrays which hold the inputs and outputs of the instruction. The
sizes of these arrays are fixed at the time the instruction is created, and their exact contents is
discussed below. The slots input-map and output-map each contain a data structure called a
port map, which allows the inputs and outputs of an instruction to be referred to by symbholic
names. Certain graph manipulation algorithms require the ability to mark nodes of the graph
as they are encountered (so that each node is processed only once, for instance), and so a mark
slot is provided for this purpose. Finally, other-slots holds a property list for additional slots
defined by compiler modules, analogous to the other-slots slot of ptnodes (see Section 3.1.2).

An instruction’s inputs and outputs are each numbered consecutively from zero, and can be
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referred to by number. Usually, however, it is more convenient to refer to a port by a symbolic
name that suggests its function. A symbolic name for a port may be a simple name (a keyword
symbol), or it may be a subscripted name consisting of a keyword symbol and a non-negative
integer. Subscripted names are particularly useful for complicated instructions like IF and LOOP
used for Id, whose ports can be logically grouped into sets of varying size. The 1F instruction,
for example, has three sets of outputs: a set of outputs feeding the graph for the “then” side, a
set of outputs feeding the “else” side, and a set of outputs that is the result of the conditional
itself. Using symbolic port names, a compiler module can easily refer to the second “else”
output, for example, even though the actual port number for that output may depend on how
many “then” outputs the instruction has.
The rules for naming inputs or outputs are as follows:

e An input or output may have at most one name. (Arvind’s principle)

e No two inputs or two outputs of the same instruction may have the same name, although
an input and an output may have the same name (it is always possible to tell whether an
input or output is meant).

o A name is either a keyword symbol (a simple name) or a cons whose car is a keyword
symbol and whose cdr is a non-negative integer {a subscripted name).

A simple name is an abbreviation for a subscripted name with a subscript of zero.

If (symbol . =n) is a name for an instruction’s port, then so is (symbol . i), for alld
from zero through n.

e Subscripted names with consecutive subscripts always map to ports with consecutive
numbers.

In other words, port names define a partition of an instruction’s ports, with the first port in a
partition always having subscript zero.

There must be some way of translating symbolic names for ports to the corresponding
numbers, and so each instruction contains an input map and an ouiput map which give the
appropriate translations. Maps can be created with the function make-port-map, which takes
a description of the port names as input. Since the configuration of ports for an instruction
cannot change, the maps for an instruction cannot change, and so a map may be shared by
several instructions that have the same configuration of inputs or outputs. In fact, such sharing
is encouraged because it saves space. One way to do this is to create maps for commonly used
configurations and save them in some variables or in a table. The only function provided for
manipulating maps is make-port-map; the user should not attempt to play with the internal
structure of maps.

make-instruction opcode input-map output-map &key :parameter [Function]

Creates and returns a new instruction, whose opcode, input-map, output-map, and parameter
slots have been initialized from the corresponding arguments. The number of inputs and outputs
is inferred from the information in input-map and output-map, which must be port maps as
created by make-port-map. Opcode must be a keyword symbol.

make-port-map map-description [Function]
Creates and returns a port map, based on a description of its contents. The description is a
list of descriptors, each of which is either a keyword symbol or a cons of a keyword symbol and
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a positive integer. Each descriptor specifies a given number of ports with the same symbol and
subscripts running consecutively from zero. If a descriptor is just a symbol, it is the same as
the cons of that symbol and the number one. The map created assigns port numbers to the
names in the descriptor from left to right. Naturally, no symbol may appear in the description
twice. Here’s an example:

(make-port-map ’((:structure . 1)
(:subscript . 3)
:value
(:trigger . 2)))

returns a port map that describes the following mapping of port names to port numbers:

Number Name Number Name
0 :STRUCTURE 4 :VALUE
1 (:SUBSCRIPT . 0) 5 (:TRIGCER . O)
2  (:SUBSCRIPT . 1) 6 (:TRIGGER . 1)
3 (:SUBSCRIPT . 2)

instruction-opcode instruction [Function)

Returns the contents of the opcode slot of instruction. May be used with setf, although this
fact is of limited utility since the number of inputs and outputs of an instruction cannot be
altered after creation.

instruction-parameter insiruction [Function]

Returns the contents of the parameter slot of instruction. May be used with setf.

define-instruction-slot selecior-name [Macro]

Defines a new “slot” for instructions, analogous to define-ptnode-slot. Selector-name must

be a symbol whose print name begins with instruction-, and may not be any of the symbols
instruction-opcode, instruction-parameter, instruction-input-map, instru¢tion-output-map,
instruction-inputs, instruction-ocutputs, instruction-mark, or instruction-other-slots.

instruction-n-inputs insiruction [Function]

Returns the number of input ports that instruction has.

instruction-n-outputs instruction [ Punction)

Returns the number of output ports that instruction has.

instruction-input-name-to-number instruction inpul-name [Punction]

Returns the input number corresponding to the input of instruction named input-name, or nil
if that input name does not exist.

instruction-output-name-to-number insiruction oulpul-name [Function]

Returns the output number corresponding to the output of instruction named output-name, or
nil if that output name does not exist.
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instruction-input-number-to-name instruction input-number [Function]

Returns the input name corresponding to the input of instruction with number input-number,
or nil if there is no input with that number. Always returns a subscripted name.

instruction-output-number-to-name instruction output-number [Function]

Returns the output name corresponding to the cutput of instruction with number output-
number, or nil if there is no output with that number. Always returns a subscripted name.

wire-instruction-to-instruction instruction-1 output instruction-2 input [Function]
foptional annolation

Wires instruction-1’s output output to instruction-2’s input inpul. Output and input may be
either port numbers or port names. The argument annotation is discussed in Section 3.2.3.

3.2.2 Instruction Sources and Sinks

The only primitive provided thus far for wiring instructions together is wire-instruction-to~instruction,

which takes the instructions and port names/numbers as separate arguments. Often, however,
it is convenient to pass around an object that refers to a particular input or output of a partic-
alar instruction. Two additional primitive types are provided for this: instruction sinks, and
instruction sources. The terminology is that a sink is anything to which an instruction’s output
may be wired, and a source is anything to which an instruction’s input may be wired. Putting it
another way, a sink is something that can absorb a dataffow token, while a source is something
that can emit a dataflow token. An instruction sink, therefore, describes a particular input of a
particular instruction, while an instruction source describes a particular output of a particular
instruction. As will be seen in a later section, there are other kinds of sinks and sources as well.

make-instruction-sink instruction input koptional annotation [Function]

Creates and returns an instruction sink referring to input input of instruction instruction. Input
may be either an input name or an input number. The annotation argument is discussed in
Section 3.2.3.

make-instruction-source instruciion output koptional ennotation [Function]

Creates and returns an instruction source referring to output output of instruction instruction.
Output may be either an output name or an output number. The annotation argument is
discussed in Section 3.2.3.

wire-source-to-sink source sink &optional annotation [ Function)

Wires the source source to the source sink. If source and sink are instruction sources and sinks,
respectively, then this is equivalent to wire-instruction-to-instruction. Other kinds of
sources and sinks are discussed in Section 3.2.4. The annotation argument is discussed in
Section 3.2.3.

wire-source-to-instruction source instruction input Zoptional annotation [ Punction]

Equivalent to calling wire-source-to-sink with a call to meke-instruction-sink as the
second argument.

wire-instruction-to-sink instruction output sink koptional annotation [Function)

Equivalent to calling wire-source-to-sink with a call to make-instruction-source as the
first argument.
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Sources and sinks make it easy to write procedures such as the following:

(defun compile-binding (1lhs rhs)
(let ((1lhs-sink (compile-lhs 1hs))
(rhs-source (compile-expression rhs)))
(wire-source-to-sink rhs-source lhs-sink)))

where compile-1lhs and compile-rhs return a sink and a source, respectively.

3.2.3 Arcs

Instruction sources and sinks serve an additional role beyond being passed around by modules of
a compiler: they are actually stored in the inputs and outputs slots of instructions themselves.
The inputs slot of an instruction contains an array with as many elements as there are inputs,
each element containing either an instruction source, if the input is wired, or nil, if it is not.
The instruction source points to the instruction output to which the input is wired. Similarly,
the outputs slot of an instruction contains an array with as many elements as there are outputs,
and the elements of the array contain instruction sinks. Because an output may feed several
inputs, however, each element of the array contains not a single instruction sink but a list of
instruction sinks. The order in which sinks appear in these lists is unimportant.

instruction-inputs instruction [Function)

Returns the array containing the inputs of insiruction, as described above. May not be used
with setf.

instruction-ountputs instruction [Function]

Returns the array containing the outputs of instruction, as described above. May not be used
with setf.

instruction-input instruction input [Function]

Returns the contents of input input of instruction instruction. Input may be either an input
number or an input name. The value returned is either an instruction source, if the input
is wired, or nil, if it is not. May be used with setf, although the wiring functions are the
preferred way of altering instruction inputs.

instruction-output instruction oufput [FPunction]

Returns the contents of output output of instruction instruction. Oufput may be either an
output number or an output name. The value returned is a (possibly empty) list of instruction
sinks. The order of sinks in this list is unimportant. May be used with setf, although the
wiring functions are the preferred way of altering instruction outputs.

instruction-sink-instruction instruction-sink [Function]

Returns the instruction referred to by instruction-sink. May not be used with setf.

instruction-sink-input instruction-sink [ Function]

Returns the input number referred to by instruction-sink. Note that the value returned is
always a number, as make-instruction-sink converts input names to input numbers. May
not be used with setf.
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instruction-sink-annotation instruction-sink [Punction}

Returns the annotation slot of instruction-sink. May not be used with setf.

instruction-source-instruction instruction-source [Function]

Returns the instruction referred to by instruction-source. May not be used with setf.

instruction-source-output insiruction-source [Function}

Returns the output number referred to by instruction-source. Note that the value returned is
always a number, as make-instruction-source converts output names to output numbers.
May not be used with setf.

instruction-source-annotation insiruction-source [Function]

Returns the annotation slot of insiruction-source. May not be used with setf.

As can be seen from the above definitions, sources and sinks are immutable objects; the
way an instruction’s inputs and outputs are changed is by storing new sources and sinks, not
by modifying the existing ones. Hence, there is no danger in sharing sources and sinks. Note
too that instruction sources and sinks always carry port numbers instead of port names, as this
minimizes the number of name-to-number translations that have to be performed.

When an instruction output is wired to an instruction input, the resulting connection is
called an arc. In the graph, the arc is represented by a source and a sink: a sink pointing to
the second instruction is stored in the appropriate output if the first instruction, and a source
pointing to the first instruction is stored in the appropriate input of the second instruction.
There is a certain amount of redundancy here, but having both the source and the sink available
makes it easy to traverse a graph in any direction.

remove-arc instruction-1 oulput instruction-2 input [Function]

If there is an arc from output output of instruction instruction-I to input input of instruction
instruction-2, remove-arc removes it by removing the sink from instruction-1’s output and
removing the source from instruction-2’s input. Returns either ¢ or nil, depending on whether
the arc actually existed or not, respectively.

remove-any-arc instruction inpul [ Function]

If there is any arc to input énpuf of instruction instruction, remove-any-arc removes it by
removing the sink from the source instruction’s output and removing the source from instruc-
tion's input. Returns either t or nil, depending on whether the arc actually existed or not,
respectively.

remove-all-arcs instruction oulpul [ Function|

If there are arcs from output oufput of instruction instruction, remove-all-arc removes them
by removing all the sinks from instruction’s output and removing the sources from each of the
destination instruction’s inputs.

move-any-arc-destination old-instruction old-input new-instruction new-input [Function]

If there is any arc to input input of instruction instruction, move-any-arc-destination moves
it by modifying the sink in the source instruction’s output and moving the source from old-
instruction’s input to new-instruction’s input new-input.
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move-all-arc-origins old-instruction old-output new-instruction new-oulput [ Function]

If there are arcs from output output of instruction instruction, move-all-arc-origins moves
them by meoving all the sinks from old-instruction’s output to new-instruction’s output new-
output, and modifying the sources in each of the destination instructions’ inputs.

Associated with every arc is an annotation, which may be used to describe the data flowing
on the arc. This annotation might be, for example, an indication of a variable name from the
source program. Once an arc is put in place, both the source and the sink comprising that arc
carry a pointer to the annotation, for convenience (only one of them really needs to carry it).
Sources and sinks can also carry annotations even when they are not part of an arc, and these
annotations are used in determining what the final annotation for an arc will be. When two
instructions are wired together, the following rules for determining the annotation are applied
in the order given:

1) If the call to the wiring function includes the optional annotation argument, then the
value of that argument becomes the annotation.

2) If the wiring function takes a sink as an argument, and that sink carries an annotation,
then that annotation becomes the annotation for the arc.

3) If the wiring function takes a source as an argument, and that source carries an annotation,
then that annotation becomes the annotation for the arc.

4) Otherwise, the arc has no annotation.

Design Note:: It was decided that sinks should take priority over sources in deter-
mining arc annotations because each source may be wired to many sinks, but not vice
versa. Thus, in some sense, sinks carry more specific information. More complicated
schemes, such as retaining doth the sink’s and source’s annotation if they exist, were
rejected as needlessly complex. The annotation policy is subject to revision.

A sink or source has no annotation if the annotation slot contains nil, and so nil can
never be used as an annotation. Unlike the other-slots slots of ptnodes and instructions, the
annotation slot of sources and sinks are not constrained to be property lists, and there is no
“define slot” feature for arc annotations.

arc-annotation instruction-1 output instruction-2 input [Function|

Returns the annotation of the arc connecting output output of instruction instruction-1 with
input input of instruction instruction-2. May be used with setf.

3.2.4 Frames

A situation that commonly arises during compilation to dataflow graphs is that you want to
wire something to an instruction, but you don’t know what that something is. For example,
consider the expression a + b, To compile this, you must create a + instruction, and then wire
a and b to its inputs. Depending on when you encountered a + b, however, you may or may not
yet have generated the graphs that produce a and b. To deal with this situation, the compiler
substrate includes a facility called frames.

Figure 3.3 depicts a typical frame. As the figure shows, the name “frame” was chosen by
analogy to a picture frame—in this case, the frame encloses a dataflow graph. A frame consists
of 2 number of frame inputs and a number of frame outputs; collectively, a frame’s inputs and
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outputs are known as its poinis. Each point serves as a wiring point, to which one source and
any number of sinks may be connected. If the source and sinks are an instruction source and
instruction sinks, the net effect is to cause the source to be wired to each of the sinks. For
example, in Figure 3.3, if the output of an instruction were to be wired to frame input :4, then
that output would be automatically wired to the inputs of the + and APPLY instructions shown.

As the figure shows, each frame input and frame output has a name associated with it.
Frame point names are like instruction port names, and the rules for naming frame inputs and
outputs are exactly the same. Unlike instruction ports, however, frame points can only be
referred to by name; there is no number corresponding to a frame input or output. Another
difference is that while the number of ports of an instruction is fixed when the instruction is
created, frames are always created with no points at all, and additional inputs and outputs may
be added to a frame at any time, although they can never be removed.

It should be noted that there is really no difference between a frame input and a frame
output, since each can have one source and any number of sinks wired to it. But frames are
most commonly used to “enclose” a subgraph, and so it is useful to separate the frame’s points
into those that lead to the enclosed subgraph (the frame inputs) and those that lead away from
the enclosed subgraph (the frame outputs). Having separate frame inputs and outputs allows
a frame to have both an input and an output with the same name.

Here is how frame points work. A frame point is created by adding an input or output to
some frame. Any number of sinks may then be wired to the point, and they will be recorded in
the frame. When a source is wired to that point, the system automatically wires the source to
each of the sinks recorded for that point, and then records the source in the frame. Each time
a sink is wired to the point thereafter, the sink is automatically wired to the point’s source.
Any attempt to wire another source to the point is an error.

Any kind of sink or source may be wired to a frame point, including sinks or sources referring
to other frame points. This allows the creation of chains of interconnected frame points, with
the system taking care of proper propagation of information. Since a frame point may have
only one source but several sinks, interconnected frame points actually form & tree structure.
When an instruction source is wired to the root of such a tree, that instruction output is wired
to all instruction sinks at the leaves of the tree, and to any additional sinks that are later wired
to the leaves. The system will detect any attempt to create a circular interconnection of frame
points, and will signal an error.

There is an important difference between wiring instructions te instructions and wiring
instructions to frame points. When an instruction is wired to another instruction, an arc is
created consisting of a source/sink pair recorded in the output and input of the instructions
involved. Thus, if instruction A is wired to instruction B, a pointer to instruction B is stored
within instruction A and a pointer to instruction A is stored within instruction B. When an
instruction is wired to a frame point, however, that fact is recorded only in the frame, and
not in the instruction. For example, if an output of instruction C is wired to frame point D,
an instruction source is recorded within D’s frame, but no sink is recorded in instruction C’s
output. Similarly, if an input of instruction E is wired to frame point F, an instruction sink is
recorded in F’s frame, but no source is stored in E’s input. The arcs between instructions and
frame points and between pairs of frame points are called virtual arcs, to contrast them with
true arcs between instructions.

This fact is significant because it means you cannot tell if an instruction is wired to a frame
point by examining the instruction. Consider the following situation: instruction input A is
wired to frame point B, and then that same input is wired to instruction output C. One might
expect the latter wiring to cause an error, since it will be the second time instruction input A
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is wired. Because wiring the input A to the frame point did not affect A’s instruction, however,
the wiring of A to instruction output C does not cause an error, and an arc between A and C is
placed normally. An error does occur if an instruction output is later wired to frame point B,
since the system will then attempt to wire that output to instruction input A, and A is already
wired.

Design Note:: The behavior of frame points as described in the preceding paragraph
was chosen to make the implementation of frames more efficient, even though it results
in anomalous situations as described. The alternative was to record virtual ares in the
same manner as real arcs, which means that virtual arcs would have to be replaced
whenever a chain of interconnected frame points was extended, or finally connected to
instructions. The scheme adopted allows frames to be used heavily with little overhead,
but the behavior of frame points may be revised if the anomalous situations described
become a problem.

Frames are an intermediate data structure only; they cannot be passed from compiler module
to compiler module.

make-frame [Function]

Creates and returns a new frame with no points.

add-input-to-frame frame name [Function)
add-output-to-frame frame name [Function)]
Adds a frame input (output) named name to frame frame. It is an error if an input {output)
with that name already exists, Name may be either a keyword symbol or the cons of & keyword
symbol and a non-negative integer; specifying just a symbol is equivalent to specifying the cons
of that symbol and zero. If name is a subscripted name, then inputs (outputs) are created for
all names with the same symbol and subscripts running from zero to the given subscript, if any
of those names do not already exist.

add-next-input-to-frame frame name [Function]

add-next-output-to-frame frame name [Function]

Name must be a keyword symbol. If frame has no input (output) named name, an input
(output) named (name . 0) is added to frame. Otherwise, an input (output) named (name
. n+ 1) is added to frame, where n is the subscript of the input (output) of frame that
has symbol name and the largest subscript. Returns the name of the input (output) that was
actually created.

frame-input-names frame &optional symbols-only? [Function]
frame-output-names frame &optional symbols-only? [Function)
If symbols-only? is nil or unspecified, returns a list of frame input {output) names for frame,
where each element of the list is the (subscripted) name of the input (output) with the highest
subscript of all names bearing that name’s symbol. Otherwise, just returns a list of symbols,
one for each frame input (output) with & different symbol.

frame-input-exists? frame name [ Function]
frame-output-exists? frame name [ Function]

Returns + if freme has a frame input {output) with name name, nil otherwise.
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frame-number-of-inputs-with-symbol frame symbol
frame-number-of-outputs-with-symbol frame symbol
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[Function]
(Function]

Returns the number of frame inputs (outputs) of frame frame whose symbol is symbol. This
number is one greater than the subscript of the name with the highest subscript, or zero if there

are no inputs (outputs) with that symbol.

make-frame-input-source frame name &optional annotation
make-frame-output-source frame name optional annotation

[Function]
[Function)

Creates and returns a source referring to the frame input (output) named name of frame frame.
This source may then be wired to an instruction input, or to another frame input or output.

Annotation is discussed below.

make-frame-input-sink frame name &optional annotation
make-frame-output-sink frame name &optional annotaiion

[Function]
[Function]

Creates and returns a sink referring to the frame input (output) named name of frame frame.
This sink may then be wired to an instruction output, or to another frame input or output.

Annotation is discussed below.

The function wire-source-to-sink works for any combination of instruction, frame input,
or frame output sources and sinks. In addition, the following functions are provided in case
one of the arguments to wire-source-to-sink would be a call to one of the make-?-sink or

make-7-source functions.

vire-frame-output-to-frame-output frame-I output-I frame-2 output-2
&optional aennotalion
wire-frame-cutput-to-frame-input frame-1 ouiput frame-2 input koptional
annolation
wire-frame-output-to-instruction frame oulput instruction inpul optional
annotation
wire-frame-output-to-sink frame ouiput sink Roptional annotation
wire-frame-input-to-frame-output frame-1 input frame-2 output optional
annotalion
vire-frame-input-to-frame-input frame-1 inpul-1 frame-2 inpui-2 toptional
annotation
wire-frame-input-to-instruction frame input instruciion inpul koptional
annotation
wire-frame-input-to-sink frame input sink koptional annotation
wire-instruction-to-frame-output instruction output-I1 frame output-2
toptional annotation
wire-instruction-to-frame-input instruction oulput frame input koptional
annotation
wire-source-to-frame-output source frame ouiput koptional annotation
wire-source-to-frame-input source frame input koptional annotation

[Function]
[Function]
[Function]

[Function|
[Function]

[Function]
[Function]

[Function]
[Function]

[Function]

[Punction]
[Function]

The rules for annotating an arc are necessarily complicated by the presence of frame points.

Here are the rules when frame points are involved:

s When a frame point is wired to an instruction or another frame point, a virtual arc is
created and recorded in the frame (see above). The annotation for this virtual arc is
derived from the rules on page 39: annotations given in call to the wiring function take
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priority, followed by annotations on the sink involved, followed by annotations on the
source.

o When a chain is completed, the annotation that will be included in the actual arc from
instruction output to instruction input is determined by starting at the virtual arc leading
to the instruction input and tracing up the chain until an annotation is found. If no
annotation is found, the actual arc will have no annotation.

Although the rules for arc annotation may seem horribly complex, they are designed to the
following simple principle: the system should automatically choose the annotation that best
describes the arc. By using setf with arc-annotation, the compiler writer can always override
an annotation chosen by the system.

3.2.5 Dataflow Graphs

When passing a complete dataflow graph from module to module, it is often necessary to pass
along some additional information, such as the compiler version, etc. The dataflow-graph
abstraction is provided for this purpose. Like the parse-tree abstraction, the dataflow-graph
abstraction packages up a graph along with a property list carrying additional information.
Unlike a parse tree, however, a dataflow graph is not necessarily connected, and so it does not
suffice to include a single instruction in the dataflow-graph structure. Instead, it carries a root
set, which is a list containing one or more instructions of the graph. Any instruction reachable
from one of the instructions in the root set is considered part of the graph. The root set must
therefore contain at least one instruction from each connected component of the graph; it does
not matter if more than one instruction from each component is included.

make-dataflow-graph root-set koptional plist [ Function)]

Creates and returns a new dataflow graph, whose root set is root-set, and with property list
plist. The default for plist is an empty property list.

dataflow-graph-root-set dataflow-graph [Function]
Returns the root set of dataflow graph dataflow-graph. May be used with setf.

dataflow-graph-plist dataflow-graph [ FPunciion]

Returns the property list of dataflow graph dateflow-graph. May be used with setf. The
following function is probably more useful.

dataflow-graph-get dafaflow-graph indicator &optional default [Function]

Returns the indicator property of dataflow-graph’s plist, or default if that property does not
exist. In other words, dataflow-graph-get combines dataflow-graph-plist with getf. May
be used with setf.

with-instruction-array (var dataflow-graph &optional number-p) kbody bedy [Macro]

Within the body of the with-instruction-array form, the variable var will be bound to
an array containing all of the instructions of dateflow-graph. If number-p is true, then the
instructions will be numbered such that the instruction-number of the ith element of the
instruction-array will be i. When control leaves the body of the with-instruction-array
form in any way, the instruction-array will be deallocated. Therefore, the instruction array
may not be passed outside the dynamic scope of the with-instruction-array.



Chapter 4

Syntax Directed Operations

4.1 Parse Trees and Grammars

In this section we will describe syntax-directed operations on parse-trees and parse-tree-nodes
that can be performed in DFCS. As & running example, we will use the simple expression
grammar given below (in abstract syntax):

expression = plus-expression
plus-expression ::= plus-expression + mul-expression
plus-expression ::= plus-expression - mul-expression
mul-expression ::= mul-expression * prim-expression
mul-expression = mul-expression / prim-expression
prim-expression := mnumber

4.1.1 Grammars

A grammaris a set of productions. A grammar has a name, and a grammarspec, the latter used
to identify the grammar within a production specification, also called a prodspec. For example,
consider the following prodspec:

(expression -> "(" expression ")")

The grammarspec in this example is the symbol ->. By having different grammarspecs,
several grammars can be in use; typical grammarspecs might be -ID-> etc.

All productions have a tag which identifies them; the tag is a keyword symbol. For example,
the above production may have a tag :expression/i. Grammar keeps a mapping from the
prodspec to the production tag in a hash table. Finally, a grammar may have some attributes
associated with it.

defgrammar grammarneme grammarspec [Macro]

Define a grammar named grammarname, which is identified by the symbol grammarspec in
production specifications.

45
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4.1.2 Productions

A production is a structure for recording information about a reduction in the grammar. In
addition to prodspecs and tags, a production may also have properties and attributes.

The tags of all productions are unique, even if they are in different grammars. This is for
efficiency; if two productions in different grammars could have the same tag, then to identify a
ptnode you would have to do a two-level dispatch on the tag and the grammar.

A prodspec is used to specify a production, and sometimes to associate names or other
things with components of the production. A prodspec takes the following form:

(1hs grammarspec rhs-1 rhs-2 rhs-3 .. 2

e.gy
(EXPRESSION -> LET (LET-BINDING-LIST BLIST) IN (EXPRESSION))

Here, the grammarspec is the symbol ->, and names a particular grammar. Some of the other
components have associated values, such as the symbol blist for let-binding-list. The last
right hand side component explicitly has no value. The left hand side has an implied value
of the symbol expression; thus in a prodspec, symbol is equivalent to (symbol symbel). This
means that 1let and in each have an implied value, but that will be irrelevent if they are
terminals of the grammar (i.e., have no corresponding children in ptnodes represented by this
production). When determining the production a prodspec naimes, only the symbol part of
prodspec components matters.

A special case of a prodspec is when some of the rhs components have values which are
integers: this is called a template. Each production has a template where the integers indicate
child numbers for the rhs components.

defproduction fag grammar-name &clauses [(:template femplate)] [Macro|
{(:properties {{indicator value}}*)}*

This defines a production with tag fag for grammar grammar-name. The template will be a

prodspec, as defined above. The properties clauses define properties associated with this ptnode

tag; these properties are accessible via ptnode-get.

If there is already a production with the same tag, grammar, and template, then the prop-
erties of the existing production are replaced, otherwise a new production is defined, which may
require removal of an existing production with the same tag, and removing other tags pointing
to the same production.

tag &rest prodspec [Macro]

The tag macro expands into the parse tree node tag associated with the production named by
prodspec.

ptnode-get pinode indicator &optional defeult [Macro)

This returns the value of the property indicator for the production associated with the tag of
the given parse tree node ptnode. If no value is found, then default is returned.

4.1.3 A Grammar for the Expression Language

(defgrammar expression-language ->)
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(defproduction :expression/i
(:template (expression -> plus-expression)))

(defproduction :plus-expression/i

(:template (plus-expression -> plus-expression "+" mul-expression)))
(defproduction :plus-expression/2

(:template (plus-expression -> plus-expression "-* mul-expression)))

(defproduction :mml-expression/1

(:template (mul-expression -> mul-expression "*" prim-expression)))
(defproduction :mul-expression/2

(:template (mul-expression -> mul-expression “/" prim-expression)))

(defproduction :prim-expression/1
(:template (prim-expression -> number)))

;:; number is a pseudo-terminal
(defproduction :number)

Note that the names of the non-terminals in the :template clause of the defproduction forms
match the abstract grammar, not the particular tags given to individual productions.

4.1.4 Grammar Abbreviations

A grammar abbreviation is similar to a production, in that it has a unique tag and template.
However, it may actually name several productions. In order for an abbreviation to make sense,
the productions it abbreviates should be related in some fashion.

define-grammar-abbreviation tag &clauses [(:template template)] [Macro]
(:productions {productions}x)

This defines an abbreviation for one or more productions. The template, if present, can be used
to access the children of all the specified productions. In this case, all the productions must
contain the same number of nonterminals. Different shapes of productions can be abbreviated
together only if a template is not desired.

4.1.5 Some abbreviations for the Expression Language

In many cases, we could treat the addition, subtraction, multiplication, and division productions
of the expression grammar in a uniform fashion, and so we would like to define and abbreviation:
any-binary-expression.

(define-grammar-abbreviation any-binary-expression
(:template (e -> (e0 0) op (el 1)))
(:productions
(plus-expression -> plus-expression "+" mul-expression)
(plus-expression -> plus-expression "-" mul-expression)
(mul-expression -> mul-expression "#" prim-expression}
(mul-expression -> mul-expression "#" prim-expression)))
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The prodspec’s any-binary-expression and (e -> @0 op el) will both match against any of
the :plus-expression/i, :plus-expression/2, :mul-expression/1 or :mul-expression/2
productions. As we shall see later, the template of the abbreviation can be very useful in these
cases.

4.1.8 Traversing Parse Trees

Two mechanisms are provided to traverse a given parse tree. The first is structural traversal
which directly accesses the parse tree’s parent children links and is independent of the grammar.
The second is abstract traversal that provides an abstract means of identifying each ptnode
with its production in the associated grammar and descends through the tree according to the
production reduced at a given parse tree node. Both methods have their own merits. It is
expected that modules that perform structural editing of the parse tree may use the former
more naturally, while the modules that annotate the tree with properties may find the latter
more useful.

let-ptnode-children ({var}x) ptnode {form}x (Macro]
let-ptnode-children is used to structurally descend in the parse tree by one level. It evaluates
the given forms as an implicit progn in a environment where each child of the pinode pinode is

bound to the corresponding variable var.
Specifically, the form

(let-ptnode-children (war-I var-2 ...) pinode
form-1
form-2

o)
is equivalent to the form

(let ((var-1 (first (ptnode-children pinode)))
(var-2 (second (ptnode-children pinode)))
o)
form-1
form-2

o)

except that let-ptnode-children takes special care that ptnode is evaluated only once. It is

an error for ptnode to be a pseudo-terminal or to have fewer children than there are vers. While

is it is legal for ptnode to have more children then there are vars, this usage is discouraged.
The following macros can be used to perform an abstract traversal of the parse tree.

grammarcase keyform {({({key}*) | key} {form}x)}x [Macro]

This form, which is similar to Common Lisp’s case macro, is provided for dispatching on the
tag slot of ptnodes. Its general form is

(grammarcase keyform
(keylist-1 consequent-1-1 consequent-1-2 ...)
(keylist-2 consequent-2-1 ...)
(keylist-3 consequent-3-1 ...)
ved)
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grammarcase first evaluates keyform, which must evaluate to a ptnode, and then takes the
ptnode-tag of the result, yielding the key object. grammarcase then considers each clause in
turn. If the key object matches any item in a clause’s keylist, then the consequents of that
clause are executed as an implicit progn, with the value of the last consequent being returned
as the value of the grammarcase. If the satisfied clause has no consequents, or if no clause is
satisfied, grammarcase returns nil.

Each item in a keylist must be either a keyword symbol or a list of the form (symbol ->
symbol-or-string symbol-or-string ..). The latter form is provided so that a production may
be referred to by its appearance (the prodspec), rather than its tag. This feature may only be
used when the grammar is known at compile time and has been loaded into the Lisp world.

If there is only one item in a keylist, then the item itself may be used as the keylist. In
addition, the symbols t and otherwise may be used in place of a keylist; if used, they must
appear in the last clause, which will be executed if all of the other clauses fail. Here is an
example of grammarcase:

(grammarcase x

( :nunmber

e0)

((plus-expression -> plus-expression "+" mul-expression)

el)

(((mul-expression -> mul-expression "*" prim-expression)
(mul-expression -> mul-expression "/* prim-expression))

e2)

(othervise

(print-error “Unknown ptnode tag")))

This is equivalent to the following:

(grammarcase (ptnode-tag x)
(:number
e0)
(:plus-expression/1i
el)
({:mul-expression/1 :mul-expression/2)
e2)
(otherwise
(print-error "Unknown ptnode tag")))

Note that the actual symbols used in place of :plus-expression/1, :mul-expression/1
and :mul-expression/2 would depend on the grammar being used at the time.

grammarbind ({({key}x)} | key) ptnodeform &rest body [Macro]
ptnode symbol Xoptional indez [Macro]
n-ary-n [Macro]

Grammarbind, like let-ptnode-children, sets up an environment in which one may access
the children of a ptnode by name. However, in grammarbind the names are derived from the
keys in the key list. Each key is a prodspec: either the template of a production defined by
defproduction or the template of an abbreviation defined by define-grammar-abbreviation.
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The form ptnodeform must evaluate to a ptnode. The ptnode macro is used within the
scope of the grammarbind to access the children of the ptnode. The argument to ptnode is the
name of one of the non-terminal children of the ptnode.

Each item in the keylist must be a list of the form (symbol -> symbol-or-string symbol-or-
string ..). This form is provided so that the children of a production may be referred to by the
production’s appearance, rather than by position, as in let-ptnode-children. grammarbind
may only be used when the grammar is known at compile time and has been loaded into the
Lisp world. Unlike in grammarcase, the keys in the keylist must have some similarity — each
key must have the same number of non-terminals, and the corresponding non-terminals must
have the same names. Furthermore, the names of each non-terminal child must be distinet —
there cannot be two children of the ptnode which have the same name. For instance, if two
non-terminals were named expression, it would be ambiguous which child is referred to by
(ptnode expression).

The macro n-ary-n is useful when the productions named in the keylist have a $separated-by
key within them. This is a special key that permits n-way branching in the parse tree to be
represented by a single production. As an example, a tuple expression may be parsed using the
following production:

(defproduction :tuple-expression/i
(:template (tuple-expression -> plus-expression $separated-by ",")))

The macro n-ary-n returns the number of iterations of the right hand side used at a par-
ticular parse tree node corresponding to this production. For example, the value of (n-ary-n)
inside the scope of a grammarbind applied to a tuple expression parse tree node used to parse
the expression 2+3,4»5,1 will be 3.

grammarcasebind keyform {({({key}) | key} {form}x)}* [Macro]
This is a combination of grammarcase with a grammarbind in each clause.

4.2 Parse Tree Attributes

4.2.1 Attribute Declarations

define-ptnode-attribute selecior-name grammar-name-or-names &clauses [Macro)
(:type type) [(:storage storage)]
{(:productions {productions}x) }x
define-ptnode-attribute defines a ptnode attribute. The attribute is created and added
to the system, and a selector macro is defined for use by the user. The selector name must
begin with ptnode-, for consistency with ptnode slots. As with user defined slots, the name is
imported into and exported from the dfcs package.

The same attribute may apply to several grammars, therefore grammar-names is a list of
the grammars for which it is defined.

Type is either :synthesized or :inherited. Synthesized attributes are computed bottom-
up; they are initialized at the terminal nodes of the parse tree and the attribute value for the
parent node is computed from that of its children at each intermediate parse tree node. Inherited
attributes are computed top-down. They are initialized at the root of the parse tree and the
attribute values of the children are computed using that of the parent at each intermediate
parse tree node.
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Storage is either :ophemeral, :memoized, or :permanent. An :ephemeral attribute is not
memoized at all: every time an ephemeral attribute of a ptnode is fetched it is recomputed.
The advantage is that it occupies no space within ptnodes. The value of a :memoized attribute
is recorded within a ptnode after it is computed, and so multiple fetches of its value will cause
at most one computation. :memoized attributes are invalidated if the structure of the parse
tree changes, and are therefore recomputed when fetched after a change has been made to the
parse tree topology. :permanent attributes are like :memoized attributes, but their values are
retained even if the structure of the parse tree changes. :permanent attributes are intended for
applications where the values of the attributes can only be computed at a particular time, but
once computed continue to have meaning even when the structure of the parse tree changes.
An example would be unique names for identifiers. Because new nodes can be added to a
parse tree after permanent attributes have been computed, it is allowed to setf the values
of :permanent attributes, for once the structure of the parse tree changes, values of already
computed :permanent attributes will have to be maintained manually.

:productions clause supplies a list of production specifiers, tags, templates, or abbrevia-
tions, that specify all the productions on which this attribute is defined. There may be more
than one such clause. If there is no :productions clause, then the attribute is defined for all
productions in the specified grammars.

defattributes {({({key}x) | key} {form}*)}x [Macro)
{((attribute-name ptnode &optional indez-variable) {value-form}x)}»
defattributes {({({key}x) | key} {form}x)}x [Macro)

{C(values {(attribute-name pinode &optional indez-variable)}x) {value- form}x) }+

This macro defines the method for computing the value of attribute attribute-name for the the
productions named by the keylist. If values is used on the left hand side of a clause, then the
value-form must return the same number of values.

On the right hand sideof each clause of defattributes specification, the non-terminals of
the productions are named and accessed in the same way as in the body of a grammarbind,
with (ptnode nonterminal-name) or (ptnode nonterminal-name indez). The parent ptnode
of the production may also be accessed using the ptnode macro.

The macro n-ary-n is also available for use when the productions named have a $separated-by
key within them.

On the left hand side, the attribute value being computed can be named by (attribute-name
nonterminal-name) or (attribute-name nonierminal-name indez). We also allow the syntax
(atiribute-name (ptnode pinode [indez-variable])) for consistency with the rhs.

The key

($1hs -> $rhs-component $separated-by)

is used to define the default production of an attribute (for an example grammarspec “->”}.
The value computed here is used for an attribute when there is no defattributes specification
for that production.

4.2.2 Attribute Example

As an example, we will compute a synthesized attribute that counts the number of leaves and
binary internal nodes in the parse tree for the example grammar given in section 4.1.3.

(define-ptnode-attribute ptnode-node-count expression-language
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(:type gynthesized)
(:storage :memoized))

(defattributes (e -> e0 op el)
((ptnode-node-count o)
(+ 1 (ptnode-node-count {(ptnode e0))
(ptnode-node-count (ptnode e1)))))

{(defattributes :number
((ptnode-node-count :number)

1))

(defattributes ($1lhs -> $rhs-component $separated-by)
((ptnode-node-count $1lhs)
(loop for i from 0 below (n-ary-n)
sum (ptnode-node-count (ptnode $rhs-component i)))))

The synthesized attribute ptnode-node-count is defined to have memoized storage. Note
that we have used the grammar abbreviation defined in section 4.1.5 to collectively define the
attribute computation for all the binary productions. Also, the default attribute definition
picks up any production not covered explicitly.

4.3 Graph Attributes (Unimplemented)

[Note that this section proposes an unimplemented feature of DFCS.]

In this section, we will define a framework for declaring and computing attributes for in-
dividual input and output ports of dataflow instructions. In spirit, it is similar to the syntax
directed attribute system for parse trees described in the last section.

A graph attribute is affiliated with one or more graph representations (abstractions on
dataflow-graphs) in a compiler family. A graph attribute can be specified for either all the
input ports of an instruction, or all the output ports of an instruction, or both input and out-
put ports of an instruction. Once defined for a graph representation, an attribute specification
applies to every instruction in that representation. We cannot specify attributes for subsets of
instructions.

Graph attributes are essentially property slots defined for the input and/or output ports
of an instruction instance. A new attribute slot is set aside for each relevent port whenever
a new instruction instance is generated. There are general mechanisms to control the time of
actual allocation of an attribute slot. One may choose to always pre-allocate storage for an
attribute in each instruction instance generated, or one may allocate storage on demand only for
those instructions that actually access the attribute. There are general mechanisms to initialize
the attribute slots once they are allocated. Of course, it is possible to access and modify the
attribute values residing at each port individually. We will describe all these mechanisms in
detail shortly.

Apart from providing some control over the allocation and initialization of the attributes,
the responsibility of computing, propagating, and maintaining the graph attributes is left to
the user. There is no general mechanism to specify the automatic semantic computation of
the attribute value of a port using the graph connectivity existing around it. The user must
explicitly traverse the graph and set the attribute values. This situation is likely to change in
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the future when some attribute grammar style mechanism may be devised to allow automatic
definition of attribute values of a port with respect to the graph it belongs to. In the very least,
such a mechanism will have to deal with cyclic graphs and fixpoint calculations for such graphs.

define-dfg-attribute selector-name &clauses [Macro]
{(:affiliation representation family) H (:type type)
(:storage storage)
[:initial-element initial-element [initial-element-type]]

Defines a dataflow graph attribute with the name selector-name. The name of the attribute
must be of the form prefiz-port-name. By convention, prefiz is used to specify the kind of
graphs (the representation) this attribute belongs to; name is the name of the attribute. For
example, the type attribute for each port of a program graph instruction may be pamed as
pgi-port-type. The name of the attribute is also used as a selector macro for that attribute
with an instruction, a port type (:input or :output), and a port name as parameters®. It
can also be used with setf to modify the attribute value stored at a given port of a given
instruction.

The :affiliation clauses record the names of the graph representation and the compiler
family that this attribute belongs to. There should be at least one affiliation clause.

The :type clause specifies the type of ports this attribute is applicable to. It must be one
of :input, :output, or :input-output, which mean that the given attribute is defined for
the input ports only, the output ports only, or both input and output ports of an instruction,
respectively.

The :storage clause specifies the time of allocation of storage for the attribute slots on the
ports. It must be one of :pre-allocated or :on-demand. :pre-allocated means that an array
of slots will be allocated whenever a new instance of an instruction is generated. :on-demand
means that the array of slots will be allocated only when a selection or modification operation
is attempted for that attribute on some port of the given instruction instance. This saves
considerable space if the attribute is relevent for only some instructions, but may incur a slight
additional runtime overhead in testing whether the attribute array has already been allocated
or not.

The :initial-element clause, if present, specifies the initialization mechanism of the at-
tribute when allocated. If the clause is absent, each attribute slot is initialized to the keyword
symbol :uncomputed. When the clause is present, its interpretation depends on the initial-
element-iype. This must be one of :static or :dynamic and defaults to :static. If the initial
element type is inferred to be :static, then initial-element must be an immediate constant. It
is evaluated once at the time of attribute definition and used to initialize the port array slots
whenever they are allocated. If the initial element type is specified to be :dynamic, then the
initial element must name a function with one argument that will be called once at the time of
allocating an instruction instance with that instance as an argument. That function can fill up
the slot array as desired.

initialize-dfg-attributes insiruction representation family [Function]

This initializes all the :pre-allocated attributes of the given instruction. Only the attributes
belonging to the given representation and compiler family are initialized.

1We should really have just the instruction and the port name as the parameters. We have to look into this
more carefully.
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wire-attribute-from-port-to-port (from-attribuie from-instruction [Macro|
from-port-type from-port) (to-atiribute
to-instruction to-port-type to-port) &optional
wire-function
This macro wires the value of the attribute from-atiribute from the specified source instruction
port to the attribute slot for fo-attribute in the destination instruction port using the given
wiring function. The wiring function, if unspecifed, defaults to setf.

map-on-input-port-values function instruction atiribute [Function|
map-on-output-port-values function instruction atiribute [Function)

These functions map the given function on all the input/output port values of the given in-
struction at the given attribute. The mapping function is called with 2 arguments, the value of
the port slot and the port number. The results of the mapping are not accumulated.

call-on-input-port-instruction function instruction input-port [ Function)
map-on-output-port-instructions function instruction output-port [Function]
These functions apply the given function on all the instruction ports connected to a given
input /output port of a given instruction. There can be only one source instruction wired to an
input port, while there may be several sink instructions wired from an output port. Therefore,
the former results in a single call over the source instruction, while the latter maps the supplied
function over all the sink instructions. In each case, the function is called with 2 arguments,
the connected instruction and the port to which the connection is made (this is a port number
rather than a name).

with-all-port-values-of-dataflow-graph (var dataflow-graph attribute) kbody [Macro]
body

This collects all the port values on all instructions of a dataflow graph for the given attribute
into an array accessible through var. The array is available only within the scope of this macro
and should not be passed outside it.



Chapter 5

Exsym Tables: Separate
Compilation Support

Ezsym-Tables, for EXternal SYMbol tables, are provided to support separate compilation.
Exsym-tables map Lisp symbols to ezsyms, where an exsym is a structure that maps property
indicators to values. Functions are provided to create exsyms, exsym-tahles, and to set and get
the property values of exsyms. Exsym-tables also allow the compiler (or some other program)
to ensure that a consistent set of exsyms is being used, by recording assumptions on an exsym.

5.1 Creating Exsym Tables

make-exsym-table [Punction]
exsym-table [ Type]

The function make-exsym-table makes an empty exsym-table. An exsym maps keyword sym-
bols to exsyms.

map-exsym-table fen exsym-table [Function)

Applies the function fen to each entry in ezsym-table. The function is called for side-effect with
argument name and ezsym for each exsym in ezsym-table. No value is returned.

5.2 Exsyms

find-exsym symbol search-path [Function]
exsym-exists-p symbol exsym-table-or-search-path {Function|
install-exsym ezsym ezsym-lable [Function)
copy-exsym ezsym [Function]

The function find-exsym finds and returns the exsym named symbol in search-path, which is a
list of exsym-tables. The function exsym-exists-p returns t if an exsym for symbol is present
in exsym-table-or-search-path, which may be an exsym-table or list of exsym-tables. Precedence
of exyms is by the order in which the containing exsym-tables occur in the ezsym-search-path.
Install-exsym store ezsym in the table exsym-iable under the name of (exsym-name ezsym).
Copy-exsym returns a copy of ezsym.

55
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exsym-clear symbol ezsym-table [Function]

Clears all properties and assumptions on the exsym bound to symbol in ezsym-iable.
5.3 Exsym Properties

define-exsym-property indicalor £clauses (:consistency-predicate pred) [Macro]
[(:consistency-encoder encoder)}
[(:consistency-printer printer)]

The macro define-exsym-property defines a property that may be used in later calls to
exsym-got, exsym-put, exsym-assume and exsym-assume-value. The consistency-predicate
clause is required, but the consistency-encoder and consistency-printer clauses are optional.

Note that all values stored in an exsym either as the value of a property or as an encoding
in an assumption must have CIOBL! read/write methods if exsym-tables or exsyms are to be
written to CIOBL streams.

exsym-get symbol indicator search-path [Function)

Finds the exsym for symbol in search-path and returns the value of property indicator for that
exsym. Two values are returned: the first is the value of the property or nil if the property is
undefined or the exsym does not exist in search-path, the second is t if the exsym exists and
nil otherwise.

exsym-put symbol indicator value ezsym-table [Function]

Finds the exsym for symbol in ezsym-table, and sets the value of indicator property to be
value. An error is signaled if the exsym does not exist, or if indicator is not the name of a valid
exsym-property.

When a property of an exsym is set, then an encoding of the value is also recorded. The
default encoder function is identity, but other encoders can be provided by supplying a
:consistency-encoder clause to define-exsym-property.

5.4 Exsym Assumptions

exsym-assume assumer assumer-table assumee assumee-indicator [Function}
assumee-search-path
exsym-assume-value assumer assumer-table assumee assumee-indicator [Function]

assumee-search-path assumee-value

The functions exsym-assume and exsym-assume-value record an assumption on the exsym for
assumer in the assumer-fable exsym-table. The assumption consists of assumee, the name of the
exsym whose property is being used, assumee-indicator, the name of the property being used,
and the value of assumee’s indicator exsym-property as found in assumee-search-path. An error
is signaled if an exsym for assumee does not exist in assumee-search-path. Exsym-assume-value
is similar to exsym-assume, except that assumee-value is provided directly and that an exsym
for assumee need not exist in assumee-search-path.

!CIOBL stands for “Compiler Input/Qutput Base Language”, and is discussed in chapter 6 in detail.
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5.5 Consistency Checking
Two functions are provided for checking the consistency of a set of exsyms.

consistency-summary rool-ezsym-names search-path [Funciion)
describe-consistency root-ezsym-names search-path [Function|

These functions check the assumptions recorded on each of the exsyms corresponding to rooi-
ezsym-names in search-path. An assumption about the value of property indicator on exsym as-
sumee is checked by applying the consistency-predicate for exsym-property indicator to actual-
encoded-value and assumed-encoded-value, where assumed-encoded-value was stored in the as-
sumptions of assumer and actual-encoded-value was found in the search-path.

The function describe-consistency prints a detailed account of the inconsistencies found
using the consistency-printers for each exsym-property to *standard-outputs.
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Chapter 6

External Representation

CIOBL stands for “Compiler Input/QOutput Base Language”, and is pronounced “CHO-bul”, as
if it were an Italian word. It refers to a language for representing various types of data in files.
The “Compiler” refers to the Id Compiler, but CIOBL has applications beyond communicating
with the Id Compiler, such as representing GITA statistics. It is designed to be flexible enough
to accomodate three broad categories of files:

1) Files that have structure to their data but do not imply a particular representation for
the data within programs that manipulate it. Example: TTDA object code files produced
by the Id Compiler. TTDA object code files have a particular structure determined in
part by the Tagged-Token Dataflow Architecture, but do not require a program that uses
object code — GITA, for example — to represent object code internally in any particular
way.

2) Files that have a structure and alsoa particular representation for certain components, but
whose representation is simple enough to be supported by a variety of implementations.
Example: GITA statistics files. The main parts of these have a particular representation
as arrays of data, but arrays are a simple enough data type that implementations other
than Common Lisp can make use of them.

3) Files that have a structure and a particular representation in a particular Common Lisp
program. Example: Id Compiler internal program graph files. These files contain data
structures that are represented by objects defined within the Id Compiler code, and are
not meant to be (easily) read by programs other than the Id Compiler.

Throughout this document, these three applications will be referred to Category I, Category
11, and Category III.

The main feature of CIOBL is that it provides three different encodings for files, each useful
for different applications. These encodings are:

Standard An encoding which uses only Common Lisp standard characters (the 94 printing
characters of ASCIL, plus space and newline), and which is readable enough to be edited
manually by humans.

Compressed An encoding which also uses only Common Lisp standard characters, but uses
a variety of tricks to greatly reduce the number of characters required, at the expense of
human readability. [The Compressed encoding is currently unimplemented.]

59
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Binary An encoding which uses the same compression techniques as the Compressed encoding,
but which is composed of 8-bit bytes rather than standard characters. This makes it even
more compact than the Compressed encoding.

The Standard and Compressed encodings are useful for transmission over media which only
transmit standard characters, such as electronic mail. The Standard encoding is also useful for
making manual adjustments to CIOBL files.

The CIOBL sofiware provides a uniform interface between files and programs by defining
a set of CIOBL objects which can appear in CIOBL files. Programs that do I/O deal only
with CIOBL objects, and the CIOBL software attends to the details of how the objects are
represented in each of the three encodings. A program need only be aware of the encodings
when opening a file, for at that time it must select which of the three encodings is to be used.

6.1 CIOBL Objects

A CIOBL file consists of a sequence of CIOBL objects. CIOBL objects include the following
primitive objects:

Integers These are distinct from floats which happen to have integral values.

Floats A “float” is a floating point number. As described later, CIOBL uses a textual represen-
tation for floating point numbers, and so makes no assumptions about base or precision.

Characters The only characters allowed in CIOBL files are Commeon Lisp standard charac-
ters, which consist of the 94 printing characters of ASCII plus space and newline. (This
restriction to standard characters has nothing to do with the fact that the Standard and
Compressed encodings use only standard characters. Instead, it stems from the need to
make sure that CIOBL character objects have a representation in all implementations of
CIOBL.}

Strings A string is a (possibly empty) character string. The characters of a string are limited
to the 36 Commion Lisp standard characters.

Symbols A symbol is a pair of names, the package name and the name of the symbol itself.
Each name is composed of Common Lisp standard characters.

CIOBL places no practical limit on the magnitude of integers and floats, or on the length
of strings.

Symbols seem superfically similar to strings (or a pair of strings), but are usually used for
different purposes. One reason is that an implementation of CIOBL often represents strings
and symbols differently: while strings are generally represented as arrays of characters, symbols
are usually mapped into addresses or serial numbers, with all symbols with the same pair of
names being mapped into the same address or serial number. Strings are often decomposed
into their component characters, while symbols rarely are. Instead, the names of symbols are
important only insofar as they distinguish between symbols that are the same and those that
are different.

The foregoing explanation might seem strange to readers familiar with Lisp, who already
know why strings and symbols are different. On the other hand, readers not familiar with
Lisp might wonder what the package name of a symbol is for. Symbols in Common Lisp are
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[Figure to be included]

partitioned into “packages”, each of which is a namespace for identifying symbols. The package
name of a CIOBL symbol is usually only important for Category III files, which use CIOBL
symbols to represent Lisp symbols. When the package of a symbol is not important, which is
usually the case in Category I and Category II files, the naine KEYWORD is generally used as the
package.l

In addition to the above primitive objects, CIOBL objects include the following compound
objects:

Lists A list is a (possibly empty) delimited sequence of CIOBL objects. In CIOBL, the
empty list is different from the symbol NIL, although programs may of course
choose to treat them the same in some situations.

Dotted Lists A dotted list is like a list, but also includes a special object at the end. Dotted
lists are mainly used in Category III files; they correspond to non-NIL terminated lists in
Common Lisp.

Arrays Like a list, an array is a sequence of CIOBL objects. Unlike a list, an array carries
an indication of how many objects it contains. Also, arrays may be multidimensional,

up to seven dimensions. Each dimension has subscripts running from zero up to but not
including the size of the dimension.

User Defined Objects Arbitrary compound objects may be defined by user applications.

For category III files, the difference between arrays and lists is important, as these are
two different kinds of Commeon Lisp objects. For category II files, the difference can also be
important since arrays can be multidimensional (although this can be simulated by lists of
lists). For category I files, the choice between arrays and lists is fairly arbitrary. Lists have the
advantage when writing a file that the contents may be written without knowing the length of
the list. When reading a file, this aspect may be a disadvantage.

The next section describes how compound objects appear in CIOBL files.

6.2 CIOBL Tokens

The contents of a CIOBL file can be viewed from three different levels of abstraction. At the
lowest level, a CIOBL file is just a sequence of characters (or 8-bit bytes, in the case of Binary
encoding). At the highest level, a CIOBL file is a sequence of CIOBL objects, as previously
discussed. At the middle level, a CIOBL file is a sequence of CIOBL tokens.

CIOBL tokens are the smallest indivisible components of CIOBL files, and are independent
of the encoding chosen. The set of CIOBL tokens consists of all of the primitive CIOBL objects,
as well as some punctuation tokens which serve to identify compound objects. Defining a token
layer allows the portions of a CIOBL implementation which understand the various encodings to
be separated from the portions which understand how to put together and pick apart compound
objects. This is illustrated below.

'If you don’t know Common Lisp, don’t ask why.
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Two punctuation tokens are used to represent lists: 1ist-begin and list-end. A CIOBL
list appears as the token 1ist-begin, followed by the CIOBL objects comprising the list (or
none if the list is empty), followed by the token list-end. A CIOBL dotted list makes use
of another puncutation token called list-dot. A dotted list appears as list-begin, followed
by one or more CIOBL objects, followed by 1list-dot, followed by exactly one CIOBL object,
followed by list-end.

One punctuation token is used to represent arrays: array-begin. A CIOBL array appears
as the token array-begin, followed by the dimensions, followed by the elements of the array.
There is no terminating puncuation token. The dimensions are either a list of integers, or just
an integer itself, the latter being equivalent to a list of one integer. The rank of the array is the
number of integers in the dimension list; each dimension has subscripts from zero, inclusive,
to the integer given in the dimensions list, exclusive. The elements of the array appear in
row-major order. Here is an example of a two dimensional array:

array-begin list-begin 3 2 list-end a(0,0) a(0,1) a(1,0) a(1,1) a(2,0) a(2,1)

Two more puncuation tokens are used to represent user-defined objects: user-defined-begin,
and user-defined-end. A user-defined object appears as the token user-defined-begin,
followed by a symbol, followed by some number of CIOBL objects, followed by the token
user-defined-end. The symbol immediately after the user-defined-begin indicates which
user defined object is being represented; when reading such an object, the symbol is used to
dispatch to user-written code which reads the remaining objects up to the user-def ined-end’.

There is another kind of token that is not associated with any object. Called the version
token, it indicates what version of CIOBL software was used to write the file in which it appears.
It also indicates in which of the three encodings the file is expressed. Whenever a CIOBL file is
opened for writing, a version token is immediately written. Thus, every file has a version token
at the beginning. A file may have more version tokens within, if the file was ever opened for
appending. When a file is read, the version token is used to make sure the file uses the expected
encoding, and that the file was written with a compatible version of CIOBL.

To summarize, there are twelve kinds of CIOBL tokens: the five primitive CIOBL objects,
the six punctuation tokens, and the version token.

6.3 CIOBL Streams

CIOBL streams are streams to which CIOBL cbjects are written and from which CIOBL objects
are read. The following sections describe how to create CIOBL streams, how to read and write
CIOBL objects, and how to define readable/writable CIOBL objects.

6.3.1 Creating CIOBL Streams

make-ciobl-stream siream encoding [Function]
ciobl-stream [ Type]
ciobl-stream-p object [ Function]

Make-ciobl-stream creates and returns a CIOBL stream of the appropriate type from a Com-
mon Lisp stream, after first making sure the encoding chosen is compatible with the underlying

3The user-defined-end token is not strictly necessary, but is included to help catch errors in user-written
handler code.
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stream type. It ensures that the version token has been read, so that read-ciobl, skip-ciobl
do not have to. The encoding must be one of :standard, :binary or :compressed.
The function cicbl-stream-p returns t if object is a CIOBL stream and nil otherwise.

close-ciobl ciobl-siream {Function]
The function close-ciobl just does a Common Lisp close on the underlying stream.

with-ciobl-stream (var stream binaryp) &body body [Macro]

The macro with-ciobl-stream binds a variable to the result of making a CIOBL stream out
of a given stream, and makes sure always to call close-ciobl on it, even if errors occur.

with-ciobl-file (var filename binaryp &rest open-options) kbody body [Macro]
The macro with-ciobl-file combines with-ciobl-stream and with-open-file.

clear-ciobl-output ciobl-stream [Function)
force-ciobl-output ciobl-siream [Function]
finish-ciobl-output ciobl-siream [ Function]

The functions finish-ciobl-output, force-ciobl-output, and clear-ciobl-output just
call the appropriate Common Lisp function on the underlying stream.

6.3.2 Reading and Writing CIOBL Streams

read-ciobl ciobl-stream kkey (eof-error-p t) (return-list-p t) [Function]
(list-punctuation-error-p t)
read-ciobl-1 ciobl-stream eof-error-p return-list-p list-punctuation-error-p [Function}

The function read-ciobl tries to read a returnable element of CIOBL. It can always return
types :symbol, :string, :integer, :float, or a user defined type. If eof-error-p is false, it can
return also :eof. If list-punctuation-error-p is false it can also return :1ist-dot or :1ist-end.
If return-list-p is false it can also return :list-begin, otherwise it can also return :1list. An
error is signalled in every other case.

The function read-ciobl-1 is the same as read-ciobl, except that it does not incur the
overhead of parsing keyword arguments. The time spent parsing keyword arguments can be
considerable when reading CIOBL streams.

skip-ciobl ciobl-stream kkey (eof-error-p t) (return-list-p t) [Function]
(list-punctuation-error-p t)
skip-ciobl-1 ciobl-stream eof-error-p return-list-p list-punctuation-error-p [Function|

The function skip-ciobl tries to skip a returnable element of CIOBL. It can always return
types :symbol, :string, :integer, :float, or a user defined type. If eof-error-p is false, it can
return also :eof. If list-punctuation-error-p is false it can also return :list-dot or :list-end.
If return-list-p is false it can also return :list-begin, otherwise it can also return :1list. An
error is signalled in every other case. As with read-ciobl-1, skip-ciobl-1 is the same as
skip-ciobl, except that it does not use keyword arguments.

write-ciobl object ciobl-stream [ Function]
write-ciobl-list-begin ciobl-stream [ Function)
write-ciobl-list-end ciobl-stream [ Function]
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write-ciobl-list-dot ciobl-siream [Function]
write-ciobl-newline ciobl-stream { Function]
The function write~ciobl writes & CIOBL object. It calls a variety of functions, one for each
different CIOBL token. The functions write-ciobl-list-begin and write-ciobl-list-end
write the appropriate delimiter to the given stream. These functions are exported, so we do a
little extra error checking. Write-ciobl-list-dot writes the puncutation indicating that the
final cdr of a list follows. The function write-ciobl-newline writes a newline to a standard
encoding stream, and is a no-op for a binary encoding stream. It can be used to get prettier
standard encoding files, if desired.

6.3.3 User Defined Objects

One adds new object encodings to CIOBL’s repertoire by defining read and write methods for
objects of a given type. The macros defciobl-read and defciobl-write define read and write
methods, respectively, for a Lisp type. Note that CIOBL read/write methods are defined for
all of the types defined by DFCS.

defciobl-write fype (object-var ciobl-stream-ver) kbody body [Maero]
defciobl-read type (ciobl-stream-var) &body body [Macro]

The macro defciobl-write defines a write method for objects whose type is type. The body
of the ciobl-write-method should write out a representation of the object to which object-var is
bound using calls to ciobl-write.

The body of the ciobl-read-method should read the representation of an object whose type
is type using calls to read-ciobl. A ciobl-read-method must read exactly as much as the corre-
sponding write-method wrote to the CIOBL stream.

6.4 Encodings

In the previous section, the translation between CIOBL tokens and CIOBL objects was de-
scribed. Here, we describe how CIOBL tokens are encoded in the three types of encodings.

6.4.1 Standard Encoding

Standard encoding is the most easily read by humans. In fact, it is closely related to the syntax
for Common Lisp objects used by the Lisp reader and printer. Beware, however, for CIOBL
Standard encoding is not compatible with Lisp. Each contains objects not present in the other.
Furthermore, CIOBL Standard encoding has some restrictions that must be observed by CIOBL
output routines, in order that the job of CIOBL input routines may be made easier.

Here is how the twelve CIOBL tokens are represented in the Standard Encoding:

Integers Integers are represented as they are written in base 10: a sequence of digits, at least
one digit long, and immediately preceded by a hyphen if negative. Leading zeros are never
present (except when the integer is itself zero).

Floats Floats are represented as a sequence of digits containing exactly one period, with at
least one digit on each side of the period. This may optionally be preceded by a hyphen,
and optionally followed by the letter E (never lowercase ) and a sequence of digits,
possibly with a hyphen appearing between the E and the digits. The number after the E
indicates by what power of ten the number preceding the E should be multiplied.
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Characters The 94 printing characters are represented by the three character sequence #\ char,
where char is the character to be represented. For example, the character 4 is represented
as #\A, the character backslash as #\\, etc. The character “space” is represented as
#\Space, and the character “newline” is represented as #\Newline.

Strings A string is represented by a quotation mark ("), followed by the characters composing
the string, followed by another quotation mark. Each quotation mark or backslash within
the string is itself preceded by a backslash. For example, the string 4 backslash ("\")
appears as "A backslash (\"\\\")" in a Standard encoding file.

Symbols Symbols whose package name is KEYWORD are represented as a colon followed by the
name of the symbol, e.g., :FRED. Symbols accessible in the DFCS package are represented
by just the name of the symbol, while all other symbols are represented by the name of
the package followed by two colons, followed by the name of the symbol.

Names of symbols and packages are represented by a sequence of the characters composing
the name, except that a backslash is inserted before each character that is not an uppercase
letter, a digit, or one of the characters +, -, », /, \, $, %, ~, &, _, <, >, or *. Furthermore,
the first character is preceded by a backslash if it is a digit or a hyphen (this is so that an
object begins with a digit or hyphen if and only if it is an integer or float), Finally, if the
name has no characters (i.e., is the empty string), it is represented as two vertical bars.

list-begin list-begin appears as a left parenthesis (().

list-end list-end appears as a right parenthesis {)).

list-dot list-dot appears as a period.

array-begin array-begin appears as the two-character sequence #4.
user-defined-begin user-defined-begin appears as as the two-character sequence #[.
user-defined-end user-defined-end appears as the two-character sequence #].

Version The version token is a four-character sequence: #, followed by V, followed by a char-
acter indicating the version, followed by S. A CIOBL version number is an integer from 1
through 63, inclusive, and is represented in the Standard encoding using the value column
of Section 6.4.4. The fourth character indicates that this is a Standard encoding file.

Whitespace may appear between any adjacent pair of CIOBL tokens, and is required between
any adjacent pair of tokens which are also primitive objects. Whitespace is any non-empty
sequence of spaces or newlines. The last character of a primitive object is defined to be the last
character preceding the next whitespace, punctuation, or end of file.

CIOBL takes no position as to what character codes are used in Standard encoding files.
This is because such files are character files, so it is assumed that an implementation will use
whatever codes for characters are appropriate, and that file transfer programs will take care of
any necessary code conversions when transferring Standard encoding files between machines.

6.4.2 Compressed Encoding

[The Compressed Encoding is currently unimplemented.]
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6.4.3 Binary Encoding

Binary encoding is the most compact of the three encodings. Unlike the other encodings, binary
encoding is based on 8-bit bytes rather than characters. A variety of techniques are used to
reduce the space required by a file.

The following describes how the twelve CIOBL tokens are represented in the Binary encod-
ing. All tokens begin with a special byte that identifies its type. Throughout the discussion,

these bytes are represented by a name enclosed in angle brackets, for example, <b-pos-integer-8>.

The numerical values of these bytes are given later.

Integers Integers are represented by a punctuation byte followed by a certain number of
bytes which indicate the magnitude of the integer. The punctuation byte indicates the sign
of the integer as well as how many magnitude bytes follow; the magnitude bytes appear least
significant byte first. The punctuation bytes are:

Magnitude Range Punctuation Byte
-2%% <2 < -2*%  <b-neg-integer-32>
—2M <z < 2% <b-neg-integer-24>
—218 < 2 < ~-28 <b-neg-integer-is6>
28 <z<0 <b-neg-integer-8>
0<z <28 <b-pos-integer-8>
28 <z <28 <b-pos-integer-16>
28 < 2z < 2% <b-pos-integer-24>
24 < 2 < 2% <b-pos-integer-32>

For example, the number -4000 is represented as <b-neg-integer-16> 160 15, and zero is
represented as <b-pos-integer-8> 0. (Throughout, all bytes are given in base ten.)

If the magnitude of the integer is 23? or greater, one of the two punctuation bytes <b-pos-long-integer>
gni g gr p P g g

or <b-neg-long-integer> is used, followed by a byte giving the number of bytes in the magni-
tude, followed by the bytes which comprise the magnitude. For example, five trillion (5 x 10%)
appears as <b-pos-long-integer> 6 0 80 E7 39 140 4. Integers with magnitudes greater than
or equal to 25625 cannot be represented (fortunately).

Characters A character appears as two bytes: <b-character> followed by the character
itself. Because Binary encoding files are not character files, CIOBL must explicitly specify how
characters are encoded into bytes. The 94 printing characters are encoded as they are in the
ASCII character set. The remaining two standard characters, Space and Newline, are encoded
as 32 and 10, respectively.

This encoding was chosen because it is exactly the encoding used in some systems (e.g.,
Unix), and very close to the encoding used in most others (e.g., the Lisp Machine, where Newline
is 141). CIOBL implementations on non-ASCII systems will have to explicitly translate when
reading or writing Binary encoded files.

Strings Strings of length 255 or less are encoded as <b-string>, followed by a byte giving
the length of the string, followed by the characters of the string itself. Paragraph 6.4.3 explains
how characters are translated into bytes,

Strings whose length is greater than 255 are encoded as <b-long-string>, followed by a
byte giving the number of bytes which will represent the length, followed by the bytes comprising
the length, followed by the characters of the string itself. As with integers, the bytes comprising
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the length appear least significant byte first. Strings with length 2562°¢ or longer cannot be
represented (not that your file system has room for all those characters, anyway).

Floats Floats are not encoded into a two’s complement or similar representation. Instead,
they appear just like strings, except that the bytes <b-float> and <b-long-float> are used
instead of <b-string> and <b-long-string> (note that the latter is extremely unlikely). For
example, the number —6.023 x 10~2% appears as <b-float> 10 45 54 46 48 50 51 69 45 50 51.

Symbols The symbol NIL (not the same as NIL in the KEYWORD package) is represented by 2
single byte, <b-nil>.

Keyword symbols are represented by encoding their names in a similar manner as strings (see
Paragraph 6.4.3), except that the bytes <b-keyword-symbol> and <b-long-keyword-symbol>
are used instead of <b-string> and <b-long-string>, respectively.

All other symbols are represented by encoding their names in a similar manner as strings,
except that the bytes <b-symbol> and <b-long-symbol> are used instead of <b-string> and
<b-long-string>. The package name is not included in the name that follows the <b-symbol>
or <b-long-symbol> byte. Instead, the package name of a symbol read from a Binary encaded
file is taken to be the “current” package name. The current package name is changed by includ-
ing in the file one of the bytes <b-set-current-package> or <b-long-set-current-package>,
which are used like <b-string> and <b-long-string> to encode the package name.

For example, if the following sequence appeared in a Standard encoding file:

:A NIL B::C :NIL NIL B::D Q::R
It would be rendered in a Binary encoding file as:

<b-keyword-symbol> 1 65 <b-nil> <b-set-current-package> 1 66
<b-symbol> 1 67 <b-keyword-symbol> 3 78 73 76 <b-nil>
<b-symbol> 1 68 <b-set-current-package> 1 81 <b-symbol> 1 82

The first symbol in a Binary encoding file that is not a keyword or NIL is always preceded
by a set-current-package directive. Note that the set-current-package directive is not a CIOBL
token, but only controls the interpretation of symbols that follow it.

One additional trick is used to encode symbols. If the same symbol (same package name
and symbol name) appears more than once in the same file, only the first accurence is encoded
as described earlier. All future occurences are encoded as an integer which indicates position
within the file of its first occurence. These remarks do not apply to the symbol NIL, which is
always encoded as the byte <nil>.

As a Binary encoded file is written, a table is maintained which associates symbals and
serial numbers. When a non-NIL symbol is to be written, it is looked up in the table. If an
entry for that symbol is present, its serial number is written in a format to be described shortly.
If an entry is not present, the symbol is written in the format described earlier, preceded by a
set-current-package directive if necessary. The symbol is then assigned the next highest serial
number, and entered in the table for future reference. The unique non-NIL symbols in a file are
assigned consecutive serial numbers beginning with zero. Note that when a symbol is encoded
as a serial number, it is never necessary to issue a set-current-package directive, as the serial
number identifies both components of the symbol’s name.
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A predefined symbol is encoded as one of the three bytes <b-predefined-symbol-8>,
<b-predefined-symbol-16>, or <b-predefined-symbol-24>, followed by one, two, or three
bytes of serial number, respectively, least significant byte first.

Another example: suppose the following appeared at the beginning of a Standard encoding
file:

:D :A NIL B::C :NIL NIL Q::R B::C B::D
It would be rendered in a Binary encoding file as:

<b-keyword-symbol> 1 €68 <b-keyword-symbol> i 66 <b-nil>
<b-set-current-package> 1 66 <b-symbol> 1 67
<b-keyword-symbol> 3 78 73 76 <b-nil>
<b-set-current-package> 1 81 <b-symbol> 1 82
<b-predefined-symbol-8> 2 <b-set-current-package> 1 66
<b-symbol> 1 &8

Only the first 224 different non-NIL symbols in a file can be encoded by serial number.

The Version Token The version token appears in a Binary file as the four-byte sequence 36
86 version 66, where version is the version number plus 32. The last byte indicates that this
is a Binary file.

When reading a Binary encoding file, 163 (35 plus 128) should also be accepted as the
beginning of a version token. In other words, only the lower seven bits are used in recognizing
the beginning of the version token. The number 35 was chosen for the version token because it
is the ASCII code for #, so that a version will be recognized even when read from a file in the
wrong encoding (at least on systems that use ASCII to represent characters). This facilitates
early detection of an attempt to read the wrong kind of file.

Other Tokens The CIOBL tokens list-begin, 1ist-dot, list-end, array-begin, user-defined-begin,
and user-defined-end are represented in Binary encoding as the bytes <1ist~begin>, <list-dot>,
<list-end>, <array-begin>, <user-defined-begin>, and <user-defined-end>, respectively.

Run Length Encoding ILong sequences of repeated tokens are represented in the Binary
encoding using one of two special bytes, <b-repeat-8> or <b-repeat-16>. A <b-repeat-8>
byte is followed by one byte, which indicates how many times the previous token is to be
repeated, from 0 through 255. <b-repeat-16> is similar, except that it is followed by two bytes
giving the repeat count, up to 65,535. For example, the following seuence:

<b-pos-integer-8> 34 <b-pos-integer-8> 34 <b-pos-integer-8> 34 <b-nil>
<b-nil> <b-nil> <b-nil> <b-nil> <b-nil> <b-list-close> <b-list-close>
<b-list-close>

could instead appear as

<b-pos-integer-8> 34 <b-repeat-8> 2 <b-nil> <b-repeat-8> &
<b-list-close> <b-repeat-8> 2

Note that the repeat bytes indicate the repetition of tokens, not objects.
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Values of Binary Punctuation Bytes The following table gives the values of each of the

30 binary punctuation bytes.

Name Value Name Value
<b-symbol> 0 <b-pos-long-integer> 24
<b-keyword-symbol> 1 <b-neg-integer-8> 26
<b-long-symbol> 2 <b-neg-integer-16> 26
<b-long-keyword-symbol> 3 <b-neg-integer-24> 27
<b-nil> 4 <b-neg-integer-32> 28
<b-set-current-package> b <b-neg-long-integer> 29
<b-long-set-current-package> 6 <b-float> 30
<b-predefined-symbol-8> 7 <b-long-float> 31
<b-predefined-symbol-16> 8 <b-version> 35
<b-predefined-symbol-24> 9 <b-list-begin> 40
<b-string> 10 <b-list-end> 41
<b-long-string> 11 <b-list-dot> 42
<b-character> 16 <b-repeat-8> 45
<b-pos-integer-8> 20 <b-repeat-16> 46
<b-pos-integer-16> 21 <b-user-defined-begin> 50
<b-pos-integer-24> 22 <b-user-defined-end> 51
<b-pos-integer-32> 23 <b-array-begin> bb

6.4.4 Character Codes

The following table lists the 96 standard characters. The byfe column gives the representation
(in base 10) for each character in the Binary encoding. The value column gives the value
assigned to characters when used to encode integers in the Compressed encoding, and when
used as part of the version token in both the Compressed and the Standard encoding.
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Char. Byte Value Char. Byte Value Char. Byte Value
Space 32 0 ¢ 64 32 ¢ 96
! 33 1 A 65 33 a 97
” 34 2 B 66 34 b 98
# 35 3 c 67 35 c 99
$ 36 4 D 68 36 d 100
4 37 b E 69 37 e 101
] 38 6 F 70 38 £ 102
* 39 7 G 71 39 g 103
( 40 8 H 72 40 h 104
) 41 9 I 73 41 i 105
» 42 10 3 T4 42 j 106
+ 43 11 K 75 43 k 107
s 44 12 L 76 44 1 108
- 45 13 M 77 45 n 109
. 46 14 K 78 46 n 110
/ 47 15 0 79 47 o 111
0 48 16 P 80 48 P 112
1 49 17 Q 81 49 q 113
2 50 18 R 82 50 T 114
3 51 19 s 83 51 8 115
4 52 20 T 84 52 t 116
b 53 21 1) 86 53 u 117
6 54 22 v 86 54 v 118
7 55 23 W 87 55 w 119
8 56 24 X 88 56 x 126
9 LY) 25 Y 89 57 y 121
: h8 26 pA 90 58 z 122
H 59 27 [ 91 59 { 123
< 60 28 \ 92 60 | 124
= 61 29 ] 93 61 } 125
> 62 30 - 94 62 - 126
? 63 31 - 95 63 Newline 10



Chapter 7

Miscellaneous

7.1 Errors

Compiler modules may detect errors or other conditions that require some indication to the
compiler user. The following function is provided for making such indications. Note that this
is completely orthogonal to Common Lisp’s error system; this facility only handles the display
of messages. If a compiler module invokes the error system, the action taken by the compiler
may depend on whether the compiler is running interactively or not, or on other factors.

message class formal-string &rest format-args [Function]

This function displays a message to the compiler user. The message is obtained by applying
format to the arguments nil, formai-string, and format-args (which yields a string). The
argument class describes the severity of the condition which caused the message, and is used
to decide whether or not to actually display the message, and where to display it (e.g., console
or listing file). The following classes are defined:

:unrecoverable An error from which the compiler cannot recover, compilation of the entire
file is immediately terminated.

:fatal An error which forces the termination of the currently executing module. The effect is
to drop the offending source code input unit of that module. The compiler may continue
processing the units that follow.

;error A program error which prevents reasonable compilation. The compiler may continue
to process the program (so that other errors may be detected), and may even generate
cede, but any results are almost assuredly incorrect.

:warning The compiler has made an assumption about what the user intended, or has detected
a situation which, while legal, probably represents a program bug.

:informatory Anything which does not represent a program or compiler error, but which might
be of interest to the compiler user. For example, a report on how well an optimization
phase performed.

:debug A message of interest only to the maintainers of the compiler.

:log A message that is only inserted in the log file, if any.
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7.1.1 Message Hooks

*message-output* [Internal Variable]
*message-output#* is a stream synonym for *error-outputs.

When message is invoked, it normally prints a message to the stream *message-output*.
Particular compilers may also want to perform other actions when message is invoked. DFCS
supports this by allowing compilers to provide message-hooks. A message-hook is a function that
takes a type, place, module-name, format-string and format-args as arguments and performs
an application-specific operation. After message prints a message to *message-outputs, it
invokes the message-hook, if one was provided. The functions standard-message-string and
fill-and-indent may be useful in the definition of message hooks.

standard-message-string type place module-name format-string format-args [Function]

Standard-message-string is the function that constructs the standard message string that is
printed to the stream *message-output* when message is called. This function may be useful
in message hooks.

£ill-and-indent string line-length indeni [Function]
Fills and indents string string so that it fits into line-length characters and each line begins
with indent characters of white-space.

*message-break-characters* [ Variable]
Characters at which fill-and-indent will break lines. Internal variable.

*handle-lisp-errors#* [Internal Variable]
*message-types-debugged* [Internal Constant]
sunrecoverable-catch-active-p* [Internal Variable]
*fatal-catch-active-p* [Internal Variable]

*handle-1lisp-errors#* is an internal variable which is normally set to t. This instructs the
internal compiler error catcher wrapper to prevent the user from entering the debugger when
there are lisp errors (bugs in the compiler). Compiler hackers almost always set it to nil so as
to invoke the lisp debugger when a bug is caught.

Adding a message type to the list *message-types-debuggeds causes a break to be entered
when that type of message is processed.

sunrecoverable-catch-active-p* and *#fatal-catch-active-p* are dynamic variables
that are bound to t by the error catching wrappers. If during compiler execution (or outside the
cycling of compiler) this binding is set to nil, then the :unrecoverable and :fatal messages
cause a break to take place.

7.2 Performance Metering

The Dataflow Compiler Substrate has a limited performance metering capability apart from
any that may be offered by the native LISP system. These performance meters give an idea
of how much time does the compiler spend in each module and how much consing does it do
among its various data structures, i.e., ptnodes, instructions, and frames.

The performance meters are not usually loaded into the system. They have to be loaded
separately into the DFCS system. The file required to be loaded for this facility is given in
appendix A.
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7.2.1 Space Meters

The following consing statistics are collected.

*instructions-consed* [Internal Variable}
*instruction-words-consed* (Internal Variable]
*ptnodes-consed* [Internal Varigble]
*ptnode-words-consed* [Internal Variable]
»frames-consed* [Internal Variable]
*»frame-words-consed* [Internal Variable]
*n-wirings# _ [Internal Variable]

*ingtructions-consed* counts the number of dataflow graph instructions allocated.

*instruction-words-consed#* gives a rough idea about the size of the instructions being
allocated. It counts 12 words per instruction allocated and 1 word each per the basic input and
output ports of an instruction. This is a VERY coarse measure of the amount of basic dataflow
graph storage used. This does not include any extra storage required by the instruction-slot
properties.

*ptnodes-consed* counts the number of ptnodes allocated. *ptnode-words-consed#* counts
11 words of constant storage per ptnode allocated, and 1 per permanent or memoized attribute
slot of that ptnode. Again, this is an extremely coarse description of the actual storage used.

*frames-consed* counts the number of frames allocated. *frame-words-consed counts 17
words per frame allocated along with the size of the input and the output hash tables.

*n-wirings#* counts the number of wirings done in a dataflow graph.

Teset [Internal Function]

Resets the internal space statistics collection counters.

pPrint-performance-meters [Internal Function|

Prints the values of various space statistics counters.

7.2.2 Time Meters

A useful performance meter is the amount and the percentage of time spent within each module
during a compilation. This is an abstract and useful measure of the time taken by each phase
of the compiler. The time is computed in seconds of real time spent within each module and
is printed as both actual time and as a percentage of the total. The Common LISP function
get-internal-real-time is used for this purpose.

reset-compiler-times compiler-name [Function]

Resets the time counters associated with each module of the compiler compiler-name.

print-compiler-times compiler-name [FPunction]

Prints the time taken in seconds and as a percentage of the total by each module of the compiler
compiler-name.
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7.3 Sxhash Tables

sxhash-table [Defstruct]

An SXHASH table is essentially an EQL hash table that uses SXHASH to compute the hash
codes. Collisions are handled by using alists as buckets. SXHASH-TABLESs are intended to be
used when the keys are symbols, for in that case they end up being quite a bit faster than any of
the Common Lisp hash table varieties, at least on the Lisp Machine, because SXHASH-TABLEs
don’t do rehashing upon GC or locking out of other processes. Also, they can be made smaller
than the Lisp Machine is willing to make Common Lisp hash tables. We represent SXHASH-
TABLEs as defstructs. The ENTRIES-ARRAY is indexed by SXHASH code mod the size.

clrsxhash szhash-table [Function]
gotsxhash key szhash-table doptional default [Punction]
remsxhash key szhash-table [Function]
mapsxhash fen szhash-table [FPunction]

Mapsxhash calls fen with two arguments, a key and its value, for every entry in the sxhash-tahble,
It returns NIL.

7.4 Miscellaneous Functions

pointer object [Internal Function)

Returns a number for a structure. It is useful in printing structure in order to distinguish them
from similar structures.

record-source-file-name function-spec doptional type no-guery [Function]

System Independent implementation of record-source-file-name.

write-verbose-dataflow-graph dataflow-graph stream [Function]

Writes the dataflow graph dataflow-graph on stream stream in a tabular format. First the
property list of the dataflow graph is printed. Then all the instructions are printed one by one
starting from the root set.

An entry describes the instruction offset, its opcode, and for each output name, its destina-
tion instruction offset and the input name it is wired to. If there is an annotation associated
with the arc, its first 26 characters are also shown.



Appendix A

Files of the Dataflow Compiler
Substrate

Note:: The files described in this section correspond to the state of the DFCS system
as on the date of release of this document. This section MUST be updated whenever
there is an addition or deletion of files to the DFCS system. (Hopefully this would not
be very often.)

Figure A.1 describes the files currently present in the DFCS systern, Those marked with
an asterisk (x) are ususally loaded as part of the definition of the dfcs program. Others are
present as aids and tools. The references at the end point to the chapters or sections of this
document or other documents which describe most (or relevent) parts of that file.
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| Dataflow Compiler Substrate System
| B System Definition File : dfcs
[ In Use | File Name | Description Reference
* ciobl Implements CIOBL. Chapter 6
* common Implements common util- Section 7.4
ities for DFCS; szhash-tables,
clause validation, and miscel-
laneous functions.
* dataflow-graph Dataflow Graph Abstraction. Section 3.2
* defcompiler Utilities for defining and run- Chapter 2
ning Compilers.
* external-symbols Implements External Symbols Chapter 5
Abstraction.
* file CIOBL read/write functions
for Dataflow Graphs.
%* frame Implements Frames (except | Section 3.2.4
for wiring functions).
* parse-tree Implements Lexical Tokens Section 3.1
and Parse Tree manipulations.
performance-meters Implements Performance Me- Section 7.2
tering.
* storage Implements explicit manage-
ment of adjustable vectors
with fill pointers.
* syntax-directed Implements Grammars and Section 4.1
Parse Tree Attribute manage- and
ment. Section 4.2
test Some random test functions
for DFCS.
* wiring Implements wiring Section 3.2
functions to and from Instruc-
tion/Frame Sinks and Sources.
write-verbose-dataflow-graph || A utility to view a dataflow Section 7.4

graph in a tabular form.

Figure A.1: List of files for Dataflow Compiler Substrate System
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make-instruction-source, 36
make-parent-ptnode, 29
make-parse-tree, 31
make-place, 31
make-port-map, 34
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mark-level, 17
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message, 71
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*message-output*, 72
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move-any-arc-destination, 38
n-ary-n, 49

non-terminal, 27

*n-wirings*, 73

option, 14

option-exists-p, 14
*option-types*, 14

output map, 34

parse tree node, 26

parse tree, 26

parse tree, 7

parse-tree-get, 31
parse-tree-plist, 31
parse-tree-root, 31
performance metering, 72
place, 25

place, 27

place, 30

place-character, 31
place-column, 31

place-line, 31

peint, 41

pointer, 74

port map, 32
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port, 32
print-compiler-times, 73
print-performance-meters, 73
prodspec, 45
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pseudo-terminal, 27
ptnode tag, 27

ptnode, 26

ptnode, 49
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*ptnodes-consed*, 73
pinode-tag, 29
ptnode-value, 29
*ptnode-words-consed*, 73
read-ciobl-1, 63

read-ciobl, 63
record-source-file-name, 74
remove-all-arcs, 38
remove-any-arc, 38
Temove-arc, 38

remsxhash, 74
replace-ptnode-child, 30
replace-ptnode-children, 30
representation, 12

reset, 73
reset-compiler-times, 73
return-token, 26

sink, 36

skip-ciobl-1, 63

skip-ciobl, 63

source, 36
standard-message-string, 72
suppressed productions, 27
sxhash-table, 74
synthesized, 50

tag, 46

template, 46
*token-allocation-quantum*, 26
token-class, 25
token-place, 26
token-value, 26

unit, 12
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