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1. Introduction

WARNING: This document is preliminary and subject to change.

This document describes the data structures and abstractions that underlic the ID Compiler, Version
2, a compiler from the programming language 1D to machine code for the MIT Tagged-Token Dataflow
Architecture. The most important attribute of Version 2 is flexibility, as it must be adaptable to changes in
the language, changes in compilation strategies, and changes in the target machine architecture. Furthermore,
it must be capable of being used in a tinker-toy fashion: the parser output may feed a back end for a
non-dataflow implementation, the intermediate graphs may be processed by a user application and then fed
back into the compiler for machine code generation, and so forth.

This need for flexibility has led to a design that is as independent from the language and the dataflow
machine as possible, so that the substrate will be immune to all but the most radical changes to these. Beyond
this adaptability to the changing needs of the TTDA project, this independence results in the additional
benefit that the compiler substrate can be used not only for an 1D to TTDA compiler, but also for a VIMVAL
to static dataflow architecture compiler, a SISAL to Manchester architecture compiler, ete. It is even
conceivable that given an ID to TTDA compiler and a VIMVAL to static dataflow architecture compiler, both
built upon the abstractions described herein, it would be possible to construct ID to static and VIMVAL to
TTDA compilers with a relatively small amount of additional code.

The substrate described here is designed for compilers whose overall structure is as shown in Figure
1-1. The compiler is a collection of modules, each of which operates on an intermediate representation of the
program being compiled. The intermediate representations, which are fully described here, serve as the only
channel of communication between the modules. A simple top-level procedure supervises the passing of
control from module to module,

Degign Nofe: At this point, it is not clear whether the entire source code will move from one module to the next or
whether smaller unils, such as procedure definitions, will successively move through the compiler. While no stand
is being taken at present, certain conventions may be introduced in the future,

Referring to the figure, in the first phase of compilation the source code is parsed, resulting in a parse
tree. Initially, the parse tree is just a hierarchical representation of the source code, with no other information
or annotations beyond some indications of where in the input file (line number, character position, efc.) each
construct appeared. The parsc tree then undergoes a series of transformations, each of which may alter the
original parse (ree in several ways. A module may add, delete, or replace nodes of the tree, the effect being
equivalent to a source-to-source transformation. A prime example of this kind of parse tree modification is
"desugaring”, in which a program construct is replaced by a semantically equivalent construct. A module
may also annotate the parse tree by adding information to nodes of the tree. These annotations do not affect
the structure of the program, but may affect how later phases interpret constructs found in the tree. An
annotation might be employed by a type checking module, for example, to indicate that a construct results in
a particular type of data. Finally, a module may introduce new nodes into the parse tree which could have not
been produced by the parser. This might be done, for example, to replace an overloaded construct by one of
two non-overloaded constructs which later phases can deal with separately.

While any kind of parser may be uscd to produce the parse tree, it is expected that the parser used for
1d/83s will be a DFA lexical analyzer followed by a LALR parser, with a stream of lexical tokens connecting
the two. As this model is applicable to a wide varicty of languages, an abstraction for lexical tokens is
described here. If some other type of parser is used, the lexical token stream may be absent entirely.
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When all transformations to the parse tree have been completed, the program is converted into a
dataflow graph. The initial form that this dataflow graph takes is called the program graph, because the level
of detail present in this graph is roughly the same as that found in the source program. For example, a
procedure application might appear as a single APPLY instruction in the program graph, even though this may
later be expanded into a whole collection of dataflow instructions depending on the implementation of
procedure linkage.1 Following the initial transformation to program graph there may be several modules
which transform the program graph, such as optimizers, ezc. At some point, the a transformation takes place
which replaces large, machine-independent instructions such as APPLY and LOOP with the machine
instructions actually necessary to implement these schemata. The resulting graph, called the machine graph,
contains only instructions executable by the dataflow machine. Additional optimization phases may follow
machine graph generation, and the result is finally fed to an assembly phase, which assigns addresses to the
machine graph and produces output in a form understandable by the various dataflow implementations.

As described above, there are really two kinds of dataflow graphs used in the compiler: the program
graph and the machine graph. The advantage of using these two forms is that many if not all of the
optimizations performed at the graph level can be performed upon the program graph, which is fairly
independent of the details of the target dataflow machine. As a result, changing the dataflow machine
{altering the instruction set, changing restrictions on the number of destinations, redefining the procedure
linkage mechanism, ezc.) will require few if any modifications to the bulk of the graph manipulation phases.

- The program graph is also likcly to have fewer instructions in it than the corresponding machine graph, and

s0 optimizations may be faster. It is important to realize, however, that program graphs are not entirely
independent of implementation details; for example, data-driven and demand-driven (a la Pingali) program
graphs for the same program will be quite different.

Although there are conceptually two kinds of graphs, both program graphs and machine graphs are
built on the same abstractions. Hence, this document only describes one kind of graph data structure, called a
dataflow graph. The distinction between program graph and machine graph, then, is not onc built into the
compiler substrate, but is enforced as a convention by the compiler modules that manipulate graphs.

Again, it is emphasized that this document only describes the substrate of the Id Compiler, Version 2,
and that this substrate is applicable to a wide variety of compilers and compiler related programs. Details of
the programming language Id, what constitute legal parse trees and legal program graphs for 1d, what
constitutes legal machine graphs for the Tagged-Token Dataflow Architecture, and how Tagged-Token
machine code is represented are described in another document.

1In the past, the program graph has also been referred 1o as the "abstract graph”.
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2. General Issues

2.1. Common Lisp

The compiler substrate and all compilers built on top of it are written in Common Lisp. Every
attempt has been made to make the compiler conform to the specifications and conventions defined in
Stecle’s Common LISP: The Languagez, hereafter referred to as "The Common Lisp Manual”, The compiler
substrate and any compiters built on top of it are to depend only on language features found in this manual, as
far as possible. Furthermore, programs should conform as much as possible to coding conventions and
practices described in the manual. These include, but are not limited to, conventions for naming symbols
(pages 24-25), for indicating comments (page 348), for naming predicates (page 71), and for indicating ni1
(page 4). 'The compiler writer should strive for consistency with Common Lisp and with the compiler
substrate in naming and choosing arguments for functions,

It is assumed that the reader of this document is intimately familiar with all the material in the
Common Lisp Manual.

2.2. Packages

The code that makes up the compiler substrate is found in the 1d-compiler-v2 package, and the
symbols described in this document are all in that package (descriptions in this document do not include the
id-comp1ler package qualifier as it is understood that all symbols described here that are not a part of the
Common Lisp system are in the id-compi ter package). This package has nicknames id, id-compiler,
and 1dv2,.

Deficiency: In the very short term. the nicknames id and id=-comp 11er may not exist to avoid conflicts with the
existing Id Compiler (Version 1). This will no longer apply wien the old compiler's package has been renamed to
{d-compiler-vl.

In addition, the symbols described in this -document are cxactly the external symbols of the
1d-compiter package. It is intended that compiler modules will exist in other packages which use the
id-compiler package3, allowing modules to refer to compiler substrate functions without package
qualifiers, yet preventing modules from conflicting with each other and with internal functions of the
substrate. For the benefit of users developing code, 2 1d-compiler-user package is provided which is
just a package that uses the id-compiTer and the 11sp package, with nothing in it initially.

2.3, Defining Compilers

[This section will describe a facility for the automatic composition of compilers from component
modules. The facility will take care of managing which modules operate on an entire program and which
operaic on a piece (eg, procedure definition) at a time, compiler version numbers, modules
interdependencies, efc. The goal is to make it casy to splice experimental modules into the compiler, handle

2Steele, Guy, Common LISP: The Language. Digital Press, Burlington, Massachusetts, 1984,

1I'he word "use” in this context is defined in Chapter 11 of the Common Lisp Manual.
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compiler options, and the like.]
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3. Data Structures

3.1. Lexical Tokens and Parse Trees

3.1.1. Lexical Tokens

As discussed in Chapter 1, lexical tokens may or may not be used in a compiler implérrienfation
depending on the parser chosen. An implementation for tokens is given here, however, because it is expected
that most compilers will use a regular-expression lexical analyzer/LALR parser pair as their parser.

The job of the lexical analyzer is to break the source text into small, contiguous pieces called fokens®,
some of which are passed on to the parser. Each token is a conceptually indivisible syntactic unit, such as an
identifier, a number, a keyword, a mark of punctuation, etc. A token has at lcast two slots: a class, which
indicates what kind of syntactic unit the token represents, and the value, which gives the actual fragment of
source text corresponding to-the token. For cxample, the fragment Var1 might result in a token whose class
is :INTEGER and whose valuc is "Var1". The parser only examines the class slot when making parsing
decisions, but may include the data from the value slot in the parse tree it produces. It is worth pointing out
that the lexical analyzer may suppress the generation of tokens for some pieces of the program text such as
whitespace and comments; the parser never sees these,

In addition to the class and value slots, a token has a slot for a place, which indicates the token’s
position within the source file:. This information is transferred to the parse tree by the parser, and is used by
later compiler phases to construct messages to the user that refer to specific places within his/her program.
Places are described in Section 3.1.3.

The rclationship between the lexical analyzer and the parser is somewhat unusual in that the lexical
analyzer supplies tokens to the parser only upon demand. This is in contrast to all other modules of the
compiler, which are invoked by a top-level procedure that passes data from one module to another. As a
result, lexical tokens are quite short-lived in that the parser removes the information from a token and
discards it shortly after receiving the token. To help prevent necdless consing and garbage collection, a list of
unused tokens is maintained, to which tokens should be explicitly returned when they are no longer needed.

3.1.1.1. Selectors

token-class foken [Function]
Returns the contents of the class slot of foken, which is a keyword symbol indicating to what lexical class
the token belongs. May be used with setf.

token-value token {Function]

Returns the contents of the value slot of wken, which is a string giving the fragment of source text
corresponding to the token. May be used with satf.

4beximl tokens, of course, are not to be confused with tokens that carry data in a dataflow machine!
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token-place foken [Function]
Returns the contents of the p1ace slot of foken, which indicates where in the source text the token occurred.
May be used with setf.

3.1.1.2. Constructors

make-token class value &optional place [Function]

Returns a token whose class, value, and place slots have been initialized from the corresponding
arguments. The place slot will be n11 if no place argument is given. make-token uses a token on the free
token list if one exists, otherwise it creates *token-allocation -quantum* new tokens, puts them on the
free list, and then uses one of them.

return-token foken [Function]

Puts token onto the list of free tokens, where it can be reused.

*token-allocation-quantum* ‘ [Variable]

Controls how many new tokens are created when the list of free tokens becomes empty.

3.1.2. Parse Tree Nodes

The parse tree is the data structure that is produced by the compiler’s parser, and represents the
source program in a form that reflects its syntactic structure, Following parsing, the parse tree may be
subjected to several transformation phases such as macro expansion or type checking. These phascs may
annotate the parse tree (add information to nodes already existing in the tree) or alter the tree itself (add or
delete nodes). Finally, the transformed parse tree is passed to code generation phases of the compiler. A
fuller description of parse tree manipulations can be found in Chapter 1.

As the name suggests, the parse tree is a tree structure, where each node of the tree is called a Parse
Tree Node, or ptnode for short. The representation of a parse tree in the Id Compiler differs somewhat from
the usual theoretician’s conception of a parse tree. Consider the following (admittedly ambiguous) grammar:

(1) Expression — Expression + Expression
(2) Expression «— Expression * Expression
(3) Expression — ~ Expression

(4) Expression +— Identifier

(5) Expression «— Number

Note that the grammar contains three types of symbols: Non-Terminals, which always appear on the left
hand side of productions as well as on the right; Keyword Terminals like +, which appear in the source exactly
as they do in the grammar; and Pseudo-Terminals like Identifier and Number, which actually represent classes
of terminals that are treated exactly the same by the parser. The distinction between keyword terminals and
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-pseudo-terminals is one not normally drawn in the literature, but as will be seen is guite important here.

Now consider the following fragment of source code: Var1 + 6.847. A theoretician might draw
the parse tree for this expression as a node with three descendants: a node with the single descendant Var1,
the character +, and a node with the single descendant 6.847. 'This kind of representation is awkward in a
compiler for two reasons. First, the compiler must search the descendants for keywords to determine whether
the expression is an addition, multiplication, or negation. Second, the parse tree contains nodes for
productions (4) and (5) which are pretty much information-free.

A more uscful representation is used here. To address the first problem, each node of the parse tree
contains not only a list of descendants, but also a tag indicating which production of the grammar was
responsible for that node. The presence of this tag means that the only descendants included in the parse tree
are non-terminals (other parse tree nodes) and pseudo-terminals; keyword terminals are not found anywhere
in the parse trec. To address the second problem, the writer of the grammar may indicate that certain
productions are not to produce parse tree nodes. Note that it is reasonable to suppress a particular production
only if its right hand side is a single non-terminal or pseudo-terminal.

A parsc tree node, therefore, has at least two slots: a tag identifying a production, and a list of
descendants (children). Several other slots are also included: a pointer to the node’s parent, for ease in

 traversing the parse tree, a place which indicates the position within the source file of the text that produced

the node, and an other-slots slot which holds any additional information or annotations modules of the
compiler wish to attach.

Pscudo-terminals are also represented as ptnodes; they can be distinguished from ptnodes
representing internal parse tree nodes by the value of their production tag slot. While pseudo-terminals have
o children, they do have a value. The value of a pscudo-terminal immediately after parsing is just the string
corresponding to that pscudo-terminal as taken from the source text. Processing phases immediately
following parsing may change the values of pseudo-terminals to more convenient representations; for
example, the value of a pseudo-terminal representing a constant may be changed from a string to an actual
integer or flonum. When a ptnode is used for a pscudo-terminal, the ch{Tdren slot holds the valye.

Production tags are keyword symbols. For pseudo-terminals, the symbol is pseudo-terminal name as
it appears in the grammar, for example, : IDENTIFIER for the pseudo-terminal Identifier. For productions,
the tag is assigned by the parser generator, and will consist of the left-hand side’s non-terminal followed bya
slash and a unique number, for example, the parser gencrator might assign the tags :EXPRESSION/1,
tEXPRESSION/2, and :EXPRESSION/3 to the first three productions of the grammar above. Later phases
of compilation may add ptnodes to the graph, and care must be taken to either choose an appropriate
pseudo-terminal or non-terminal tag, or invent a new tag, depending on how the new node is to be treated by
the succeeding phases of compilation. A facility is provided for dispatching on the tag slot without knowing
the precise tag; see the grammarcase macro.

Figure 3-1 shows the parse tree for the expression Varl + 6,847 with respect to the grammar
given above.

3.1.2.1. Selectors
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PTNODE

Tag :EXPRESSION/1
Children ( ~—_ ]
Parent [Place]

Place NIL

Other-Slots

PTNODE PTNODE
Tag :IDENTIFIER Tag :NUMBER
Children "Var1" Children "6.847"
Parent L Parent LR
Place [Place] Place [Place]
Other-Slots Other-Slots
Figure 3-1: Parse Trec for Varl + 6,847
ptnode-tag ptnode [Function]

Returns the production or pseudo-terminat tag for the node. May be used with setf.

pitnode-children pfnode [Function]

If pinode represents a pseudo-terminal, as indicated by the tag slot of ptnode, ptnode-children returns
the value of the terminal. Immediately after parsing, the value of a terminal is a string giving the ¢xact

appearance of the terminal in the source program, but a later analysis phase might change this to some other
type such as a symbol or fixnum.

If ptnode is not a pseudo-terminal, ptnode-chi1dren returns a list of ptnodes which are the
children of ptnode, where the first element of the list is the leftmost child.

May be used with setf.

ptnode-value ptnode [Function]

A synonym for ptnede-children, which can be used with pseudo-terminal ptnodes for clarity. May be



A DATAFLOW COMPILER SUBSTRATE (MARCH 24, 1986) 11

uscd with setf.

ptnode-parent pinode [Function]

Returns the pinodes parent ptnode, or n11 if ptnode has no parent. May be used with setf.

ptnode-place prnode [Function]

Returns a place identifying where in the source file the construct represented by pinode occurred, Exactly
what place is indicated depends on the production and the parser:  for example, if the production is
something like Let-Expression — 16t Binding-list 1n Expression, the place might indicate the first character
of the keyword 1et, while for a production like Expression «— Expression + Expression it might indicate the
+. May be used with setf.

Additional selectors may be defined by def ine-ptnode-slot (g.v.).

3.1.2.2. Constructors

" make-ptnede g children &key :parent :place [Function]

Makes and returns a new ptnode, initializing its tag, children, parent, and place slots from the
corresponding  arguments.  Both non-terminal and pseudo-terminal ptnodes can be created with
make-ptnods.

make-parent-ptnode wg children&key :parent :place [Function]

Makes a ncw non-terminal ptnode, initializing its tag, children, parent, and place slots from the
corresponding arguments; the argument ckildren must be a list of ptnodes. The new ptnode is returned, and
is also stored as the parent of each of the elements of children, regardless of whether those ptnodes already
have a value in their parent slot. This will often be more useful than make-ptnoda.

3.1.2.3. Mutators

In addition to the functions below, all of the selectors in Section 3.1.2.1 and any selectors defined by
define-ptnode-slot may be used with setf.

replace-ptnode-child pinode n new-child [Function]

Replaces the #th element of the children siot of pinode with new-child, and replaces the parent slot of
new-child with ptnode. Ptnode must be a non-terminal ptnode and have at least n+1 children. Children are
numbered from the left beginning with zero (just as are elements of lists for Common Lisp’s nth function).

replace-ptnode-childran pinode new-children : [Function]

Replaces the childraen slot of pinode with new-children, which must be a list of ptnodes, and replaces the
parent slot of each of the elements of new-children with ptnode. (Note: the list is not copied.)
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3.1.2.4, Miscellaneous

define-ptnode-slot selecior-name [Macro]

Defines a new “slot” for ptnodes which may be used as if it werc one of the slots alrcady provided by the
compiler substrate. For example, the form

(define-ptnode~-slot ptnode-desired-type)

defines a new ptnode slot called desired-type, which may be accessed by {ptnode-desired-type
ptnode) and written by {setf (ptnode-desired-type ptnode) value). Selector-name must be a
symbol whose print name begins with ptnode-, and may not be any of the symbols ptnode-tag,
ptnode-children, ptnode-value, ptnode-parent, ptnode-place, or ptnode-other-slots.
The slot is actually implemented as a property stored on the property list contained in the other-slots slot
of ptnodes. The indicator used is a keyword symbol giving the name of the slot; for the example given, the
indicator would be :desired-type. Note that initial values for slots defined by define-ptnode-slot
may not given in calls to make-ptnode ormake-parent-ptnode; they are always initialized to n11.

Rationale: The "other slots™ mechanism was designed to meet three goals: to provide a convenient way to annotate
ptnodes, to keep different annotations separated, and to provide an easy way of making commonly used annotations
a permanent part of the compiler substrate. The latter might be desirable because built-in slots are both faster and
take up less space. Changing an annotation from a define-ptnode-slet slot to a built-in slot will require no
~ changes in programs that make use of the slot, since both kinds of slots are manipulated in the same way.

1

let-ptnode-children ({var}*) pinode {form}* [Macro]

let-ptnode-children is used to bind variables to the children of a ptnode. Specifically, the form

(tet-ptnode-children (var-! var? ..) ptnode
Jorm-1
Jorm-2

is equivalent to the form

{(1et ({vari (first (ptnode-children pinode)})
{var-2 (second (ptnode-children pinode)))

Jorm-1
Jorm-2
)
except that 1et-ptnode-children takes special care that pinoede is evaluated only once. It is an error for

ptnode to be a pseudo-terminal or to have fewer children than there are vars. While is it is legal for ptnode to
have more children then there are vars, this usage is discouraged.

grammarcase keyform {({({key}*) | key} {form}*)}* | [Macro]

This form, which is similar to Common Lisp's case macro, is provided for dispatching on the tag slot of
ptnodes. Its general form is
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(grammarcase keyform
{ keylist-1 consequent-1-1 consequem-l -2.)
{ keylist-2 consequent-2-1 ...)
(keylist-3 consequent-3-1 ...}

)

grammarcase first cvaluates keyform, which must evaluate to a ptnode, and then takes the
ptrode-tag of the result, yielding the key object. grammarcase then considers each clause in turn.” If the
key object maiches any item in a clause’s keylist, then the consequents of that clause arc executed as an
implicit progn, with the value of the last consequent being returncd as the value of the grammarcase. If
the satisfied clavse has no consequents, or if no clause is satisficd, grammarcase returns ni1.

Each item in a keylist must be either a keyword symbol or a list of the form (symbol <-
symbol-or-string symbol-or-string ..). The latter form is provided so that a production may be referred to by
its appearance, rather than by the keyword symbol assigned to it by the parser generator. This feature may
only be used when the grammar is known at compile time and has been loaded into the Lisp world [more
detail tater].

If there is only one item in a keylist, then the item itself may be used as the keylist. In addition, the
symbols t and otherwise may be used in place of a keylist; if used, they must appear in the Jast clause,
which will be executed if all of the other clauses fail. Here is an example of grammarcase:

{grammarcase X
(:identifier
(handle-identifier x))
((expression <- "(" exprassion ")")
{handle-parenthesized-expression x))
((:constant
(expression <- "{" constant "]"))
(print-warning "Constants used")
(handle-constants x))
(otherwise
{print-error "Unknown ptnode tag")))

This is equivalent to the following:

(case (ptnode-tag x) :
(:identifier
{(handle-identifier x))
(:exprassion/1
(handle-parenthesized-expression x))
((:constant :expression/2)
(print-warning "Constants used") :
(handle-constants x)) l
{otherwise 3
(print-error "Unkaown ptnode tag"))) f
i
Note that the actual symbols used in place of :expression/1 and :expression/2 would

depend on the grammar being used at the time. |
{
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3.1.3. Places

A place is a small data structure that indicates a particular place within the source file. It has three
slots: 11ne, which gives the line number of the place, column, which gives the horizontal position within
that linc, and charactar, which gives the position within the text when viewed as a sequence of characters,
“All tree fields are zero-based. The idea is that 19ne and coTumn arc most useful when printing messages,
while character is most useful for use with text editors and other programs that actually manipulate the
source file. {The definition of places is subject to change.]

3.1.3.1. Selectors and Constructors

place-11ine place [Function]

Returns the contents of the 11ne slot of place. May be used with setf.

place-column place [Function]

Returns the contents of the column slot of place. May be used with setf.

place-character place [Function]

Returns the contents of the character slot of place. May be used with setf.

make-place /ine column character [Function]

Returns a new place whose slots are initiatized according to the arguments.

3.14. Parse Trees

When passing a complete parse tree from module to module, it is often necessary 1o pass along some
additional information, such as the compiler version, efc. The parse-tree abstraction is provided for this
purpose: it contains the root node of the parse tree along with a property list that can give any additional
information needed.
make-parse-tree roo-pinode &optional plist [Function]
Creates and returns a new parse tree, whose root node is root-pinode, and with property list plist. The default
for plist is an empty property list.
parse-tree-root parse-tree [Function]

Returns the root node of parse tree parse-tree. May be used with setf.

parse-trea-plist parse-tree [Function]

Returns the property list of parse tree parse-tree. May be used with setf. The following function is
probably more useful.
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parse-tree-get parse-iree indicator &optional default [Function]

Returns the indicator property of parse-tree’s plist, or default if that property does not exist. In other words,
parse-tree-get combines parse-tree-plist with gatf. May be used with setf.

3.2, Dataflow Graphs

When all parse tree manipulations are complete, the parse tree is converted to a dataflow graph.
Initially, the dataflow graph has a level of detail comparable to that of the original source program; this graph
is called the program graph. At some point toward the end of compilation, the program graph, which may
have undergone various transformations, is converted to a graph containing more detail and which is more
specific to the particular target dataflow architecture; this graph is called the machine graph. After possibly
further manipulations, this graph is assembled into object code for the target machine.

A single abstraction suffices to represent both program graphs and machine graphs; the distinction is
merely one of restrictions imposed by the various compiler modules. As these restrictions depend on the
language being compiled and the target architecture, they will not be discussed in this section. Instead, the
abstractions for manipulating dataflow graphs, be they program graphs or machine graphs, are described
here.

Figure 3-2 shows a fragment of a dataflow graph and its internal representation within the compiler.,
The components of this figure are explained in the sections that follow.

3.2.1. Instructions

A dataflow graph is simply a collection of instructions, which are connected together by arcs. Each
instruction contains an epcode, which identifies what operation the instruction performs, a certain number of
inputs, and a certain number of oufputs. Although the compiler substrate assigns no semantics to instructions
m dataflow graphs, instruction inputs should be thought of as receiving data from other instructions, and
instruction outputs should be thought of as sending data to other instructions. Collectively, the inputs and
outputs of an instruction are referred to as its ports.

A dataflow graph is constructed by wiring the outputs of some instructions to the inputs of other
mstructions; it is not possible to wire outputs to outputs or inputs to inputs. An additional restriction is that
while outputs may have any number of arcs leading away from them, each input may have only one arc
leading to it. The implications of this restriction are discussed below. While arcs are thought of as being
unidirectional, leading from outputs to inputs, they arc actually implemented as bidirectional links for easy
traversing of graph structure.

An instruction actually has cight slots: opcode, parameter, inputs, input-map, outputs,
output-map, mark, and other-slots. opcode is a keyword symbol identifying the instruction, as
described above. The paramater slot is intended for use when one opcode stands for a whole family of
instructions. For example, there might be an instruction with opcode CONSTANT which emits a certain value
upon the receipt of any input; the parameter stot could be used to indicate which constant is to be emitted
for particular CONSTANT instruction. The slots 1nputs and outputs contain arrays which hold the inputs
and outputs of the instruction. The sizes of these arrays are fixed at the time the instruction is created, and
their exact contents is discussed below. The slots input-map and output-map cach contain a data
structure called a port map, which allows the inputs and outputs of an instruction to be referred to by
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symbolic names. Certain graph manipulation algorithms require the ability to mark nodes of the graph as
they are encountered (so that cach node is processed onty once, for insiance), and so a mark slot is provided
for this purpose. Finally, other~slots holds a property list for additional slots defined by compiler
modules, analogous to the other-s1ots slot of ptnodes (see Section 3.1.2.

An instruction’s inputs and outputs are each numbered consecutively from zero, and can be referred
to by number. Usually, however, it is more convenient to refer to a port by a symbolic name that suggests its
function. A symbolic name for a port may be a simple name (a keyword symbol), or it may be a subscripted
name consisting of a keyword symbol and a non-negative integer. Subscripted names are particularly useful
for complicated instructions like IF and LOOP used for 1d/83s, whosc ports can be logically grouped into sets
of varying size. The IF instruction, for example, has three sets of outputs: a set of outputs feeding the graph
for the "then” side, a set of outputs feeding the "else” side, and a set of outputs that is the result of the
conditional itself. Using symbolic port names, a compiler module can casily refer to the second "clse” output,
for example, even though the actual port number for that output may depend on how many "then" outputs
the instruction has.

The rules for naming inputs or outputs are as follows:

¢ An input or output may have at most one name. (Arvind’s principle)

* No two inputs or two outputs of the same instruction may have the same name, although an input
and an output may have the same name (it is always possibie to tcll whether an input or cutput is
meant),

® A name is efther a keywo'rd symbol (a simple name) or a cons whose car is a keyword symbol and
whose cdr is a non-negative integer (a subscripted name).

e A simple name is an abbreviation for a subscripted name with a subscript of zero.

o If (symbol . n) is a name for an instruction’s port, then so is (symbol . i), for all i from zero
through n.

e Subscripted names with consecutive subscripts always map to ports with consecutive numbers.

In other words, port names define a partition of an instruction’s ports, with the first port in a partition always
having subscript zero.

There must be some way of translating symbolic names for ports to the corresponding numbers, and
so cach instruction contains an input map and an output map which give the appropriate translations. Maps
can be created with the function make-port-map, which takes a description of the port names as input.
Since the configuration of ports for an instruction cannot change, the maps for an instruction cannot change,
and so a map may be shared by several instructions that have the same configuration of inputs or outputs. In
fact, such sharing is encouraged because it saves space. One way to do this is to create maps for commonly
used configurations and save them in some variables or in a table. The only function provided for
manipulating maps is make-port-map; the user should not attempt to play with the internal structure of
maps,
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make-1instruction opcode input-map output-map 8key :parameter ‘ [Function]

Creates and returns a new instruction, whose opcode, input-map, output-map, and parametar slots
have been initialized from the corresponding arguments. The number of inputs and outputs is inferred from
the information in input-map and output-map, which must be port maps as crcated by make~port-map.
Opcode must be a keyword symbol,

make-port-map map-description [Function]

Creates and returns a port map, based on a description of its contents. The description is a list of descriptors,
cach of which is cither a keyword symbol or a cons of a keyword symbol and a positive integer. Each
descriptor specifics a given number of ports with the same symbol and subscripts running consecutively from
zero. If a descriptor is just a symbol, it is the same as the cons of that symbol and the number one. The map
created assigns port numbers to the names in the descriptor from left to right. Naturally, no symbol may
appear in the description twice. Here’s an example:

(make-port-map '((:structure . 1)
(:subscript . 3)
:value
(:trigger . 2)))

returns a port map that describes the following mapping of port names to port numbers:

Number Name Number Name
0 :STRUCTURE 4 :VALUE
1 (:SUBSCRIPT . 0) 5 (:TRIGGER . 0)
2 (:SUBSCRIPT . 1) 6  (:TRIGGER . 1)
3 (:SUBSCRIPT . 2)

instruction-opcode instruction _ _ [Function]

Returns the contents of the opcode slot of instruction. May be used with setf, although this fact is of
limited utility since the number of inputs and outputs of an instruction cannot be altered after creation.

instruction-parameter instruction ' [Function]

Returns the contents of the parameter slot of instruction. May be used with setf.

define-instruction-slot selector-name [Macro]

Defines a new "slot” for instructions, analogous to define-ptnode-slot. Selector-name must be a
symbol whose print name begins with fnstruction-, and may not be any of the symbols
instruction-opcode, instruction-parameter, instruction-1input-map,
instruction-output-map, instruction-inputs, instruction-outputs,
instruction-mark, or instruction-other-slots.

instruction-n-inputs instruction : [Function]

Returns the number of input ports that instruction has.
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‘Anstruction-n-outputs instruction [Function]

Returns the number of output ports that instruction has.

Are o
instruction-input-name-to-number insrruction input-name [Function]

7y i .
Returns the input number corresponding to the input of instruction named input-name, or n11 if that input
name does not exist,

instruction-output-nams-to-number instruction output-name [Function]
Returns the output number corresponding to the output of instruction named otlput-name, or ni1 if that
output name does not exist.

instruction-1input-number-to-name instruction input-number [Function]

Returns the input name corresponding to the input of instruction with number input-number, or ni1 if there
is no input with that number. Always returns a subscripted name.

“instruction ~output-number-to-name instruction output-number [Function]

Returns the output name corresponding to the output of instruction with number oulput-number, or ni1 if
there is no output with that number. Always returns a subscripted name.

wire-instruction-to-1instruction instruction-I output instruction-2 input [Function]

&optional annotation

Wires instruction-I's output cutput to instruction-2's input input. Output and input may be either port
numbers or port names. The argument annotation is discussed in Section 3.2.3,

3.2.2. Instruction Sources and Sinks

The only primitive provided thus far for wiring  instructions  together s
wire-instruction-to-instruction, which takes the instructions and port names/numbers as
scparate arguments. Often, however, it is convenient to pass around an object that refers to a particular input
or output of a particular instruction. Two additional primitive types are provided for this: instruction sinks,
and instruction sources. The terminology is that a sink is anything to which an instruction’s output may be
wired, and a source is anything to which an instruction’s input may be wired. Putting it another way, a sink is
something that can absorb a dataflow token, while a source is something that can emit a dataflow token. An
instruction sink, therefore, describes a particular input of a particular instruction, while an instruction source
describes a particular output of a particular instruction. As will be seen in a fater section, there are other kinds
of sinks and sources as well.

make-1instruction-sink instruction input Roptional annotation [Function]

Creates and returns an instruction sink referring to input input of instruction instruction. Input may be either
an input name or an input number. The annotation argument is discussed in Scction 3.2.3.
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make-1instruction-source instruction output optional annotation [Function]

Creates and returns an instruction source referring to output output of instruction instruction. Output may be
cither an output name or an output number. The gnnotation argument is discussed in Section 3.2.3.

wire-source-to-sink source sink &optional annotation [Function]

Wires the source source to the source sink. If source and sink are instruction sources and sinks, respectively,
then this is equivalent to wire-instruction-to-instruction. Other kinds of sources and sinks are
discussed in Section 3.2.4. The annotation atgument is discussed in Section 3.2.3.

wire-source-to-instruction source instruction input &optional annotation [Function]

Equivalent to calling wire-source-to-sink with a call to make-instruction-sink as the second
argument. -

wire-instruction-to-s{nk instruction output sink &optional annotation [Function]

Equivalent to calling wire-source-to-sink with a call to make-1instruction-source as the first
argument,

Sources and sinks make it easy to write procedures such as the following:

(defun compile-binding (1hs rhs)
{1et ((lhs-sink (compile-1lhs Ths))
(rhs-source {compile-expression rhs)))
(wire-source-to-sink rhs-source Ths-sink)))

where compile-1hs and compile-rhs return a sink and a source, respective_ly.

3.2.3. Arcs

Instruction sources and sinks serve an additional role beyond being passed around by modules of a
compiler: they are actually stored in the inputs and outputs slots of instructions themselves. The
inputs slot of an instruction contains an array with as many elements as there are inputs, each element
containing either an instruction source, if the input is wired, or n1 1, if it is not. The instruction source points
to the instruction output to which the input is wired. Similarly, the outputs slot of an instruction contains
an array with as many elements as there are outputs, and the elements of the array contain instruction sinks.
Because an output may feed several inputs, however, each element of the array contains not a single
instruction sink but a list of instruction sinks. The order in which sinks appear in these lists is unimportant,

instruction-inputs instruction [Function]

Returns the array containing the inputs of instruction, as described above. May not be used with setf.

instruction-outputs instruction [Function]

Returns the array containing the outputs of instruction, as described above. May not be used with setf.
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instruction-1input instruction input [Function]

Returns the contents of input input of instruction instruction. Input may be cither an input number or an
input name. The valuc returned is cither an instruction source, if the input is wired, or n11, if it is not. May
be used with setf, although the wiring functions are the preferred way of altering instruction inputs.

Instruction-output instruction output [Function]

Returns the contents of output ousput of instruction instruction. Output may be either an output number or
an output name. The value returned is a (possibly empty) list of instruction sinks. The order of sinks in this
list is unimportant. May be used with setf, although the wiring functions are the preferred way of altering
instruction outputs. :

instruction-sink-instruction instruction-sink ' [Function]

Returns the instruction referred to by instruction-sink. May not be used with setf.

instruction-sink-input instruction-sink [Function]

Returns the input number referred to by instruction-sink. Note that the value returned is always a number, as
make-1instruction-sink converts input names to input numbers. May not be used with setf.

instruction-sink-annotation instruction-sink ' [Function]

Returns the annotation slot of instruction-sink. May not be used with sef.f.

instruction-source-instruction instruction-source “ [Function]

Returns the instruction referred to by instruction-source. May not be used with se tf.

instruction-source-output instruction-source ' [Function]

Returns the output number referred to by instruction-source. Note that the value returned is always a
number, as make-1instruction-source converts output names to output numbers. May not be used
with setf.

instruction-source-annotation instruction-source [Function]

Returns the annotation slot of instruction-source. May not be used with setf.

As can be seen from the above definitions, sources and sinks are immutable objects; the way an
instruction’s inputs and outputs are changed is by storing new sources and sinks, not by modifying the
existing ones. Hence, there is no danger in sharing sources and sinks. Note too that instruction sources and
sinks always carry port numbers instead of port names, as this minimizes the number of name-to-number
translations that have to be performed.

When an instruction output is wired to an instruction input, the resulting connection is called an arc,
In the graph, the arc is represented by a source and a sink® a sink peinting to the second instruction is stored
in the appropriate output if the first instruction, and a source pointing to the first instruction is stored in the
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appropriate input of the second instruction. There is a certain amount of redundancy here, but having both
the source and the sink available makes it casy to traverse a graph in any direction.

remove-arc instruction-1 output instruction-2 input [Function]

If there is an arc from output oufput of instruction instruction-1 to input input of instruction instruction-2,

remove-arc removes it by removing the sink from instruction-1I's output and removing the source from
instruction-2's input. Returns either t or n11, depending on whether the arc actually existed or not,
respectively,

Associated with every arc is an annotation, which may be used to describe the data flowing on the arc,
This annotation might be, for example, an indication of a variable name from the source program. Once an
arc is put in place, both the source and the sink comprising that arc carry a pointer to the annotation, for
convenience (only one of them really necds to carry it). Sources and sinks can also carry annotations even
when they are not part of an arc, and these annotations are used in determining what the final annotation for
an arc will be. When two instructions are wired together, the following rules for determining the annotation
arc applied in the order given:

1) If the call to the wiring function includes the optional annotation argument, then the vatue of that
- argument becomes the annotation.

2) If the wiring function takes a sink as an argument, and that sink carries an annotation, then that
annotation becomes the annotation for the arc.,

3) If the wiring function takes a source as an argument, and that source carries an annotation, then
that annotation becomes the anootation for the arc.

4) Otherwise, the arc has no annotation.

Design Note: It was decided that sinks should take priority over sources in determining arc annotations becatise
each source may be wired to many sinks, but not vice versa. Thus, in some sense, sinks carry more specific
information. More complicated schemes, such as retaining bogh the sink’s and source’s annotation if they exist, were
rejected as needlessly complex. The annotation policy is subject to revision.

A sink or source has no annotation if the annotation slot contains n11, and so n11 can never be
used as an annotation. Unlike the other-slots slots of ptnodes and instructions, the annotation slot of
sources and sinks are not constrained to be property lists, and there is no "define slot” feature for arc
annotations.

arc-annotation instruction-I output instruction-2 input [Function]

Returns the annotation of the arc connecting output oufput of instruction instruction-1 with input input of
instruction instruction-2. May be used with setf.

3.2.4. Frames

A situation that commonly arises during compilation to dataflow graphs is that you want to wire
something to an instruction, but you don’t know what that something is. For cxample, consider the
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expression @ + b. To compile this, you must create a + instruction, and then wire a and b to its inputs,
Depending on when you encountered a + b, however, you may or may not yet have generated the graphs
that produce a and b. To deal with this situation, the compiler substrate includes a facility called frames.
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Figure 3-3: A Typical Frame

Figure 3-3 depicts a typical frame. As the figure shows, the name "frame" was chosen by analogy to a
picture frame — in this case, the frame encloses a dataflow graph. A frame consists of a number of frame
inputs and a number of frame outputs, collectively, a frame’s inputs and outputs are known as its points. Fach
point serves as a wiring point, to which one source and any number of sinks may be connected. If the source
and sinks are an instruction source and instruction sinks, the net effect is to cause the source to be wired to
cach of the sinks. For exampie, in Figure 3-3, if the output of an instruction were to be wired to frame input
:A, then that output would be automatically wired to the inputs of the + and APPLY instructions shown,

As the figure shows, each frame input and frame output has a name associated with it. Frame point
names are like instruction port names, and the rules for naming frame inputs and outputs are exactly the
same. Unlike instruction ports, however, frame points can only be referred to by name; there is no number
corresponding to a frame input or output. Another difference is that while the number of ports of an
instruction is fixed when the instruction is created, frames are always created with no points at all, and
additional inputs and outputs may be added to a frame at any time, although they can never be removed.
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It should be noted that there is really no difference between a frame input and a frame output, since-

each can have one source and any number of sinks wired to it. But frames are most commonly used to
"enclose” a subgraph, and so it is uscful to separate the frame's points into those that lead to the enclosed
subgraph (the frame inputs) and those that lead away from the enclosed subgraph (the frame outputs).
Having separate frame inputs and outputs allows a frame to have both an input and an output with the same
name. - : .

Here is how frame points work. A frame point is created by ‘adding an input or output to some
frame. Any number of sinks may then be wired to the point, and they will be recorded in the frame. When a
source is wired to that point, the system automatically wires the source to each of the sinks recorded for that
point, and then records the source in the frame. Each time a sink is wired to the point thercafter, the sink is
automatically wired to the point’s source. Any attempt to wire another source to the point is an error.

Any kind of sink or source may be wired to a frame point, including sinks or sources referring to
other frame points. This allows the creation of chains of interconnected frame points, with the systern taking
care of proper propagation of information. Since a frame point may have only one source but several sinks,
interconnected frame points actually form a tree structure. When an instruction source is wired to the root of
such a tree, that instruction output is wired to all instruction sinks at the leaves of the tree, and to any
additional sinks that are later wired to the leaves. The system will detect any attempt to create a circular
interconnection of frame points, and will signal an error.,

There is an important difference between wiring instructions to instructions and wiring instructions
to frame points. When an instruction is wired to another instruction, an arc is created consisting of a
source/sink pair recorded in the output and input of the instructions involved. Thus, if instruction A is wired
to mstruction B, a pointer to instruction B is stored within instruction A and a pointer to instruction A is
stored within instruction B. When an instruction is wired to a frame point, however, that fact is recorded only
in the frame, and not in the instruction. For example, if an output of instruction C is wired to frame point D,
an instruction source is recorded within I)'s frame, but no sink is recorded in instruction C’s output.
Similarly, if an input of instruction E is wired to frame point F, an instruction sink is recorded in F’s frame,
but no source is stored in E’s input. The arcs between instructions and frame points and between pairs of
frame points are called virtual ares, to contrast them with true arcs between instructions.

This fact is significant because it means you cannot tell if an instruction is wired fo a frame point by
examining the instruction. Consider the following situation: instruction input A is wired to frame point B,
and then that same input is wired to instruction output C. One might expect the latter wiring to cause an
error, since it will be the second time instruction input A is wired. Because wiring the input A to the frame
point did not affect A’s instruction, however, the wiring of A to instruction output C does not cause an error,
and an arc between A and C is placed normally. An error does occur if an instruction output is later wired to
frame point B, since the system will then attempt to wire that output to instruction input A, and A is already
wired. ;

Design Note: The behavior of frame points as described in the preceding paragraph was chosen to make the
implementation of frames more efficicnt, even though it resulls in anomalous situations as described. The
alternative was to record virtual arcs in the same manner as real arcs, which means that virtual arcs would have to be
replaced whenever a chain of interconnected frame points was extended, or finally conneeted to instructions. The
scheme adopted allows frames to be used heavily with little overhead, but the behavior of frame points may be

revised if the anomalous situations described become a problem. i

Frames are an intermediate data structure only; they cannot be passed from compiler module to
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compiler module.

make-frame [Function]

Creates and returns a new frame with no points.

add-1input-to-frame frame name [Function]
add-output-to-frame frame name [Function]

Adds a framc input (output) named name to frame frame. It is an error if an input (output) with that name
already exists. Name may be either a keyword symbol or the cons of a keyword symbol and a non-negative
integer; specifying just a symbol is equivalent to specifying the cons of that symbol and zero. If name is a
subscripted name, then inputs (outputs) are created for all names with the same symbol and subscripts
running from zero to the given subscript, if any of those names do not already exist.

add-next-input-to-frame frame name [Function]
add-next-output-to-frame frame name [Function]

Name must be a keyword symbol. If frame has no input {output) named name, an input (output) named

(name . 0) is added to frame. Otherwise, an input (output) named (name . n+ 1) is added to frame,
where n is the subscript of the input (output) of frame that has symbol name and the largest subscript.
Returns the name of the input (output) that was actually created.

frame-input-names frame &optional svmbols-only? [Function]
frame-output-names frame &optional symbols-only? [Function]

If symbols-only? is ni1 or unspecified, returns a list of frame input (output) names for frame, where each
element of the list is the (subscripted) name of the input (output} with the highest subscript of all names
bearing that name’s symbol. Otherwise, just returns a list of symbols, one for each frame input (output) with
a different symbol.

frame-input-exists? frame name [Function]
frame-output-exists? frame name [Function]

Returns t if frame has a frame input (output) with name name, n11 otherwise.

frame-number-of-1inputs-with-symbo1 frame symbol [Function]
frame-number-of-outputs-with-symbol frame symbol [Function]

Returns the number of frame inputs (outputs) of frame Jrame whose symbol is symbol. This number is one
greater than the subscript of the name with the highest subscript, or zero if there are no inputs (outputs) with
that symbol.

make-frame-input-source frame name &optional annotation [Function]
make-frame-output-source fiume nante &optional annotation [Function]

Creates and returns a source referring to the frame input (output) named name of frame frame, This source
may then be wired to an instruction input, or to another frame input or output. Asnnotation is discussed
below. :
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make-frame-input-sink frame name &optional annotation [Function]
make-frame-output-sink frane name &optional annotation [Function]

Creates and returns a sink referring to the frame input (output) named name of frame Jrame. This sink may
then be wired to an instruction output, or to another frame input or output. Annotation is discussed below.

The function wire-source-to-sink works for any combination of instruction, frame input, or
frame output sources and sinks. In addition, the following functions are provided in case one of the
arguments to wire-source-to-sink would be a call to one of the make-7-s1nk or make-7-source
functions,

wire-frame-output-to-frame-output frame-I output-1 frame-2 output-2 [Function]
&optional annotation
wire-frame-output-to-frame-input fiame-I output frame-2 input [Function]
&optional annotation
wire-frame-output-to-instruction-1input frame output instruction input [Function]
&optional annotation
wire-frame-output-to-sink frame ouiput sink &optional annotation [Function]
wire-frame-input-to-frame-output frameI input frame-2 output [Function]
_ &optional annolation
wire-frame-input-to-frame-input frame I input-1 frame-2 input-2 [Function]
&optional annotation
wire-frame-input-to-instruction-input frame input instruction input [Function]
' &optional annotation
wire-frame-input-to-s1ink frame inpu: sink Roptional annotation [Function]
wire-instruction-output-to-frame-output instruction output-1 frame output-2 [Function]
&optional annotation
wire-instruction-output-to-frame-input instruction output frame input [Function]
&optional annotation
wire-source-to-frame-output source frame output &optional annotation [Function]
wire-source-to-frame-1input source frame inpui &optional annotation [Function]

The rules for annotating an arc are necessarily complicated by the presence of frame points. Here are the
rules when frame points are involved:

¢ When a frame point is wired to an instruction or another frame point, a virtual arc is created and
recorded in the frame (see above). The annotation for this virtuat arc is derived from the rules on
page 22: annotations given in call to the wiring function take priority, followed by annotations on
the sink involved, followed by annotations on the source.

¢ When a chain is completed, the annotation that will be included in the actual arc from instruction
output to instruction input is determined by starting at the virtual arc leading to the instruction
input and tracing up the chain until an annotation is found. If no annotation is found, the actual
arc will have no annotation.

Although the rules for arc annotation may seem horribly complex, they are designed to the following simple
principle: the system should automatically choose the annotation that best describes the arc, By using setf
with arc-annotat ion, the compiler writer can always override an annotation chosen by the system.
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3.2.5. Dataflow Graphs

When passing a complete dataflow graph from module to module, it is often necessary to pass along
some additional information, such as the compiler version, efe. The dataflow-graph abstraction is
provided for this purpose. Like the parse-trea abstraction, the dataf Tow-graph abstraction packages
up a graph along with a property list carrying additional information. Unlike a parse tree, however, a
dataflow graph is not necessarily connected, and so it docs not suffice to include a single instruction in the
dataflow-graph structure. Instcad, it carries a root ser, which is a lst containing onc or more instructions
of the graph. Any instruction reachable from onc of the instructions in the root set is considered part of the
graph. The root set must therefore contain at least one instruction from each connected component of the
graph; it does not matter if more than onc instruction from each component is included.

make-dataflow-graph root-ser Roptional plist [Function]
Creates and returns a new dataflow graph, whose root set is root-set, and with property list plist, The default
for plist is an empty property list.

dataflow-graph-root-set dataflow-graph [Function]

- Returns the root set of dataflow graph dataflow-graph. May be used with setf.

dataflow-graph-plist dataflow-graph [Function]

Returns the property list of dataflow graph dataflow-graph. May be used with setf. The following function
is probably more useful.

dataflow-graph-get dataflow-graph indicator &optional default [Function]

Returns the indicator property of dataflow-graph’s plist, or defauls if that property does not exist. In other
words, dataflow-graph-get combines dataflow-graph-plist with getf. May be used with
setf.
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4. External Representation

It should be possible to extract the intermediate form of a program between any two compiler
modules, process it off-line or with another picce of software, and then feed it back in for the completion of
processing. To this end, the external representation of parse trees and dataflow graphs is given here. The
external representation of machine code for the tagged-token dataflow architecture, while based on material
in this Section, is described in another document.

For any type of compiler output, there are three possible formats in which it can appear:

1) Standard format, which can both be written by the compiler and read back in for further
processing. A file in standard format is a sequence of standard characters, and so can easily be
transferred between machines through a variety of media, including electronic mail.

2) Binary format, which also can be written and read by the compiler. A file in binary format is a
sequence of eight-bit bytes, and so may contain unprintable and control characters if viewed as
ASCII or some other character set. Its advantage is that binary format files occupy less space, and
can be read and written more rapidly by compiler software.

3) Verbose format, which can be written by the compiler but not read in. Verbose format is easily
rcad by humans, and exists for hand inspection of compiler output.

Standard and binary format are meant to be interchangeable, in that both catty the same information,
and both are machine readable. Parse trees and dataflow graphs have a fixed, documented representation in
these formats. Verbose format, on the other hand, is not machine readable, and is not standardized. It is
mentioned here only for completeness,

The Standard and Binary formats for parse trees, dataflow graphs, and other types of compiler output
are not defined directly, but are defined in terms of an intermediate form called the Compiler Input/Output
Base Language, or CIOBL. The role of CIOBL is depicted schematically in Figure 4-1. Expressing external
representations in terms of CIOBL has two advantages: programs for converting new types of compiler
input/output can deal with 1/0 at a very abstract level, and both standard and binary format for the new type
become immediately available. The compiler substrate does not just provide a generafl external representation
for any internal data structure because particular data structures may have properties (e.g., lack of sharing)
that lead to more efficient representations than the most general. Furthermore, requiring an explicit
translation from internal to external representation means that file formats can remain the same cven when
internal data structures are revised.

CIOBL is a fairly simple language consisting of objects of the following five types: Integers, Floats,
Symbols, Strings, and Lists. Strings must contain only Common Lisp standard characters. Lists may contain
any number of objects of any of the five types, and as in Lisp the empty list is indistinguishable from the
symbol ni1. This base language was chosen to be adequate to represent complex data structures but yet
quite portable between different ID Compiler implementations and other programs that interact with the
compiler. A file simply consists of a sequence of zcro or more objects from the base language; the detailed
structure of a file depends on the type of data structure being represented,
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Figure 4-1: 'The Role of the Compiler Input/Output Base Language

4.1. Parse Tree Files

A parse tree file contains zero or more parse trees. Each parse tree, as described in Section 3.1.4,
consists of a tree of ptnodes along with a property list which can be used to give information about the whole
tree. Furthermore, another property list is included at the beginning of the file which gives information about
the whole file. Values included in this property list might include compiler version, date compiled, etc.

The format of parse tree files is as follows:
global-plist {parse-tree-plist root-pinode}*

where global-plist is the property list for the whole file, and each parse-tree-plist is the property list for the
parse tree immediately following. Each plist is of the form:

({indicator value}*)

where each indicator is a symbol, and each value is any object in the compiler input/output base language.

Each root-ptnode s the root ptnode of a parse tree, where a ptnode is of the form:
(tag place other-slots children)

The fields tag, place, other-slots, and children give the values for the corresponding slots of the ptnode.
Children is cither a list of ptnodes or some other value, depending on whether the ptnode is an internal node
or a terminal node, respectively. Note that the parent slot of ptnodes is not written to files, since it can be
inferred from the children fields.
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For example, a parse tree file containing the parse tree of Figure 3-1, with an empty file property list
and parsc trec property list, would appear as the following (italicized comments are not part of the file);

() File Property List
Parse Tree Property List
(:EXPRESSION/1 NIL NIL ((:IDENTIFIER NIL NIL "Vari")
(:NUMBER NIL NIL "6.847")))

4.2. Dataflow Graph Files

A dataflow graph file contains zero or more dataflow graphs. Like the parse tree file, the dataflow
graph file also contains a property list for the whole file as well as property lists for each dataflow graph in the
file. The format is as follows:;

global-plist {dataflow-graph-plist root-set (instruction*) (map*)}*

The format of property lists is as for parse tree files. Root-ser is a list of integers, each indicating an
instruction in the graph’s root sct; instructions are numbered consecutively from zero. (While the root set
could be determined by analyzing the connectivity of the graph after reading the file, it is included explicitly
for convenience.) Instructions have the following format;

(opcode parameter other-slots input-map-number output-map-number { (destination*)}*)

The opcode, parameter, and other-slots ficlds give the values for the corresponding slots of the
instruction. The input-map-number and output-map-number fields indicate which of the port maps following
the list of instructions in the file arc the input map and output map, respectively, of the instruction. The maps
are pumbered consecutively from zero. 'There are as many destination lists as there are outputs of the
instruction, and each destination list may contain any number of destinations. A destination has the following
format: ’

instruction-number input-number annotation

‘The instruction-number ficld refers to another instruction in the same graph in the same file; the
instructions are numbered consecutively from zero. Input-number indicates which input of the instruction the
output is wired to, while annotation gives the annotation for that arc. Note that the pointers from inputs to
outputs are not included in the file, since they can be inferred. Note too that the mark stot of instructions is
not written to files.

Each map is a list in a form acceptable as input to make-port-map. The reason that maps are not
included directly in instructions is because maps will probably be shared among many instructions, and this
format allows that sharing to be expressed, reducing the size of dataflow graph files.

As an example, the dataflow graph in Figure 4-2 would be represented as follows:
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Figure 4-2: A Small Dataflow Graph
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4.3. Formats

The preceding sections described file formats in terms of the compiler input/output base language

consisting of symbols, strings, integers, floats, and lists. This section gives the standard and binary formats in
which this base language can appear.
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4.3.1. Standard Format

Standard format is a representation for the compiler input/output base language that contains only
Common Lisp standard characters. 1t is specifically designed to be compatibie with Lisp’s reader. The
standard format representation of CIOBI. objects is as follows:

Symbols A symbol is represented by its print name, including the package qualifier relative to the
id-compiler package. If necessary, the symbol name and/or package name is enclosed
in a pair of vertical bar {(#\ |} characters. Vertical bars are necessary if the print name
otherwise would not be correctly interpreted by Common Lisp’s read function. The
backslash escape is never used in standard format.

Strings A string is represented by the value of the string enclosed in quotation marks, with any
quotation marks that are part of the string preceded by backslash characters. The string
must contain only Common Lisp standard characters.

Integers An integer is represented by a sequence of digits, optionally preceded by a hyphen. The
digits give the absolute value of the integer in base 10, and the hyphen indicates a negative
number. The first digit is never a zero unless the integer itself is zero; zero is represented
by the digit zero.

Floats A float is represented by a sequence of characters of the form
[-)digit*[. digit* Y E[-1digit™ |, with no intervening spaces. The meaning of such a string is
according to Common Lisp’s rules for representing floating point numbers. See the
Common Lisp manual, page 17.

Lists Lists are represented by the character #\(, followed by the clements of the list, followed
by #\). Fach of the elements of the list must be separated by at least one whitespace
character. Whitespace is opticonal following the #\ ( and preceding the #\ ).

Successive objects in a file are separated by whitespace. Whitespace means one or morg characters
from the set {#\Space, #\Newline, #Tab, #Linefeed, #\Page, #\Return}. Note that the last four
characters in this set are semi-standard, and so the compiler will never include them in output, although they
will be accepted as whitespace on input (if the compiler is being run on a system that has these characters).

The above description may seem compiex, but it is just a description of the usual Lisp printed form of
symbols, strings, integers, floats, and lists.

The actual encodings of characters that appear in standard format files depend on the Lisp
implementation that produced those files, For example, a compiler running on a Lisp Machine would
probably use the Lisp Machine character sct, while a compiler running on an IBM/370 would undoubtedly
usc EBCDIC. The files are portable because most file transfer software is designed to translate from one
character set to another, and limiting standard format files to Common Lisp standard characters virtually
guarantees that such translations exist.
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4.3.2. Binary Format

Binary format is a compact representation for the compiler input/output base language designed to
occupy little space and to be quickly read and written. A file in binary format is a sequence of cight-bit bytes,
and so may contain characters not in any character set. For this reason, it is Iess likcly to be transferable
betwecn machines than standard format.

Binary format is designed so that the length of each object is known, so there is no need for
whitespace or other separators. All objects in binary format are represented by a punctuation byte that
indicates the type of object, followed by zero or more bytes that give the value of the object; the number of
bytes that form the object is determined by the punctuation byte, and in some cases, by the first few bytes
following the punctuation byte. For convenience in programming, constants have been defined which give
the value of punctuation bytes. The values corresponding to these constants are given below:

Value  Constant Name Value  Constant Name
J <symbol> 24 <pos-lang-integer>
1 <keyword-symbol)> 25  <neg-integer-8>
2 <long-symhol> 26 <neg-integer-186>
3 <nil> 27  <neg-integer-24>
10 <string> : 28 <neg-integer-32>
11 <long-string> : 29  <neg-long-integer>
20  <pos-inteqger-8> : 30 <float>
21 <pos-integer-16> 31 <long-float>
22 <pos-integer-24> 40  <list-begin>
23 <{pos-integer-32> 41 <Klist-end>

Nete that the angle brackets are actually part of the names of these constants. When these names
appear in the descriptions below, it is to be understood that the values of these constants are actually meant,
The programs that manipulate binary format files should, of course, use the names for the constants rather
than their values.

Symbols The usual format for symbols is
{symbol1> n charl char2 charn

where char; char, ... forms the print name of the symbol, including a package qualifier
relative to the id-compiler package, if necessary. Since keyword symbols are quite
common, a special format is provided for them:

<keyword-symho1> n char, char, ... char,

This saves a byte over the usual format since the package qualifier need not be given. If
the print name of the symbol is longer than 255 characters, the long format must be used:

<{long-symbol1>mb_ b .. b,char, char,.. char,

where m gives the number of bytes in the integer », which is represented by b 1 bm—Z b0'

Finally, the symbol ni1 may be represented by the single character <ni1)>. There is no
need for vertical bars or other escape characters in binary format.
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Strings

Integers

Floats

Lists

If the string is 255 characters or less, the following format is used:
<string> nchar, char, ... char,

Otherwise, the long format must be used:
<{long-string>mb_ b ,..b,char char,..char

which is similar to the long format for symbols explained above. There is no need for
backslashes preceding quotation marks in binary format.
Because small integers are more common than large ones, several formats for integers are

used depending on the size of the integer.

Size of Integer Punctuation Character Number of Bytes After Punctuation

2P3¢n < 232 <{neg-tong-integer> [See Below]
2en<-2 <neg-integer-32> 4
—224<n5—216 <neg-integer-24> 3
-216¢ n<-256 <neg-integar-16> 2

-256<n<0 <{neg-integer-8> 1

0 < n<256 {pos-integer-8> 1

2560 < n< 218 <{pos-integer-16> 2

29 < n<2?*  <pos-integer-24> 3

2% < n< 23 {pos-integer-32> 4

22 < n<2%% <pos-long-integer> [See Below]

With the exception of <{pos-Tong-integsr> and <neg-long-intaegerd, the
punctuation character is followed by the most significant byte, then the next most
significant byte, ere.,, and finally the least significant byte of the absclute value of the
integer represented. {pos-long-integer> and <neg-long-integer> arc followed
by a byte giving the number of bytes that follow, and then the bytes of the integer itself.

Fioats appear in the following format;
<float> nchar, char, ... char,

where charl charz charn is how the float would be represented in standard format. If the
standard format representation would take more than 255 characters, the long format is
used:

<{long-floatd>mb . b , '"_bo char, char, ... d“"nf

Lists appear as the character {1ist-begin>, followed by the contents of the list,
followed by the character <1ist-end>. The empty list is always represented as {n11>,
never by <1ist-begin> followed by <11st-end>.

For example, if the following sequence appeared in a standard format file:

(:EX 3 "odd\"str" 5.6 "Test"™ NIL |ODDsYM| -70C00 {A 0)})
it would appear as the following in binary format (where numbers indicate the numeric value of a particular

byte):
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{1ist-begin> <keyword-symbol1> 2 #\E #\X {pos-integer-8> 3
<string> 7 Mo N\d #\d #\" #\s AL #Ar

{float> 3 #M\6 #\, #\6 <{string> 4 AT #e MAs Mt i
{symbol1> 8 #\0 #\D #\D #\s #\Y #\M

<{neg-integer-24> 1 17 112 <1ist-begin> <{symbol> 1 #\A
{pos-integer-8> 0 <list-end> <{1ist-end>

The standard form takes 55 characters, while the binary form takes 48 bytes.

Unlike standard format files, binary files are not meant to be transferred with any character set
translations; instcad, they must be transferred in “image mode”. Indeed, the punctuation bytes and bytes
giving field lengths might accidently be translated if interpreted as characters. This means that some stand
must be taken with regard to the encodings of characters as they appear in the binary format representations
of symbols, strings, and floats.

The convention adopted, then, is that bytes representing characters will be the ASCII encodings of
these characters. ASCII was chosen since it is the most commonly used character set (note that since only
standard characters will appear in binary format files, the Lisp Machine character sct encodings are the same
as ASCII). This means that compiler implementations on the IBM/370, for example, will have to translate
between ASCII and EBCDIC when handling binary format fites,

Given the foregoing, a "dump” of the above example would be (in decimal);

040 001 002 069 088 020 003 010
007 111 100 100 034 116 116 114
030 003 €53 046 054 010 004 084
101 116 116 003 000 008 079 068
063 1156 089 077 027 001 017 112
040 000 001 065 020 000 041 041

4.4. File Manipulation Functions

The compiler substrate defines a new data type, the CIOBL. stream, which provides a clean interface
between the standard and binary format interpreters and the compiler’s 170 modules. CIOBIL. streams
resemble Common Lisp streams in that they produce or absorb data. But while Common Lisp streams
produce or absorb either characters or integers, CIOBL streams produce or absorb CIOBL. objects. None of
the Common Lisp stream functions work on CIOBL streams; instead, a set of functions is provided
specifically for manipulating CIOBL streams.

A CIOBL stream is created by specifying a Common Lisp stream and an indication of whether
standard or binary format is to be used. The CIOBL siream may then be used to read or write CIOBL objects
without regard for which format is being used, the CIOBL stream performing the appropriate translations and
operations on the underlying Common Lisp stream. In this way, a single program can do I/O in both
standard and binary format.

make-ciobl-stream siream binaryp [Function]

This creates and returns a CIOBL stream that performs 170 on Common Lisp stream stream. If binaryp is
true, stream must be a binary stream, and binary format is used, otherwise stream must be a character stream,
and standard format is used. The CHOBL stream may be used for cither input or output as long as stream
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supports input or output, respectively.

close-ciob] ciobl-stream & ey :abort [Function]

This is analogous to Common Lisp’s ¢1ose, cxcept that it works on CIOBL streams.

with-ciob1-stream (varstream) {declaration}* {form}* [Macro]

The form stream is evaluated and must produce a Common Lisp stream (not a CIOBL stream?). The variable
var is bound with the result of calling make-ciob1-stream on the stream as its value, and then the forms
of the body are exccuted as an implicit progn; the results of evaluating the last form are returned as the value
of the with-ciobl-stream form. The stream is automatically closed on exit from the
with-ciobl-stream form, no matter whether the exit is normal or abnormal. The stream should be
regarded as having dynamic extent.

In other words, with-ciobl-stream is like with-open-stream, except that it calls
make-ciob1-streamand that cTose~ciob] is used to closc the stream upon exit instead of ctase.

ciobl~-stream-p object _ [Function]
ciob1-stream-p is true if its argument is a CIOBL stream, and otherwise is false.

(ciobl-stream-p x) = (typep x 'ciobl-stream)

read-ciob1 ciobl-stream &optional eoferrorp eof-value return-list-p [Function]

raad-ciobl attempts to read a CIOBL object from CIOBL stream ciobl-stream, and returns two values; the
object read, and a symbol indicating status. If the next object in the input stream is a symbol, string, integer,
or float, then the first value returncd is that object and the second value returned is the symbol :symbod,
:string, :integer,or : float, respectively.

If the next object in the input stream is a list, then what is returned depends upon the value of
return-list-p. 1f return-list-p is true, then objects are read from the input stream until the end of the list is
reached, and the first value returned is a list of the objects (some of which may themsclves be lists), and the
second value returned is the symbol : 1ist. The next call will read the object following the end of the list. If
return-Iist-p is false, however, then the first value returned is n11 and the second :T1st-begin, and the
next call will read the first object in the list.

A call to read-ciob1 when the next thing in the stream is the delimiter for the end of a list {a close
parenthesis or <11st-and>, respectively), then the values returned are ni1 and : 1ist-end, regardless of
the value of rewrn-list-p. If eoferror-p is true, then reading past the end of file signals an erroy, but if
eof~error-p is false, and the input stream is at the end of file, then the first value returned is eofvalue and the
second value is :e0f. If return-list-p is true, and end of file is reached within a list (ie., before reaching the
delimiter that closes the list), then an error is signalted regardless of the value of eoferror-p. The default
values for return-list-p and eof-error-p are both true.

Rationale: The return-lfist-p feature is provided so that files may he read without actually creating the intermediate
CIOBL form in memory. For example, when a ptnode is to be read, instead of reading the list that describes the
node and extracting the fields of the list, the clements can be read one at a time and placed directly into ptnode
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structures,

The reason that reading an end-of-list delimiter outside a list does not signal an error even when return-list-p is true
18 5o that you can read the elements of a list and have lists returned when the elements are themselves lists, but also
be able to easily detect when the list whose elements you are reading is finished.

While the status value obviates the need for enfvalue, it and eof-error-p are provided for consistency with other
Common Lisp reading functions.

write-ciob1 object ciobl-stream | [Function]

write-ciob1 writes object to ciobl-stream in the appropriate format. An error is signalled if objectis not a
valid object in CIOBL.

Deficiency: A method is needed for automatically escaping to user-provided code when non-CIOBL data types are
encountered by write-ciobi.

write-ciob1-11st-be gin ciobl-stream [Function]
write-ciob1-11st-end ciobl-stream [Function]

These functions are useful for writing a list to a file without actually building the list in memory and passing it
to write-ciobl. It is important that every call to write-ciobl-11 st-begin be followed by a
matching call to write~ciob1-Tist-end, or an invalid file will result. Remember, too, that an empty list
must be written as the symbol n11 and never as a list-begin immediately followed by a list-end.

finish-ciobl-output ciobl-stream [Function]
force-ciobl-output ciobl-stream ' " [Function]
clear-ciobl-ocutput ciobl-stream : [Function]

These functions call finish-output, force-output, or ¢l aar-output on the Common Lisp stream
underlying ciobl-stream. It is also legal to call the latter functions directly on the underlying stream, since the
CIOBL translators do no buffering themselves,

read-parse-tree ciobl-siream &optional eoferrorp eof-value | [Function]

Reads a parse tree, including its property list, from ciobl-stream and returns a parse-tree object. If
ciobl-stream is at the end of file, an error is signaled unless eof-error-p is false, in which case no error is
signaled and eof-value is returned. An error is always signalled if end of file is reached in the middle of a
parse tree. The default value for eoferror-p is true. An entire parse tree file would be read by first calling
read-ciob? to read the file’s global plist, then calling read-parse-tree repeatedly until end of file was
reached.

write-parse-tree parse-iree ciobl-stream : [Function]

Writes parse-tree, which must be a parse tree object, onto ciobl-strean. An entire parse tree file would be read
by first calling write-ciobl to write the file's global plist, then calling write-parse-tree for each
parse tree to be written to the file,
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read-dataflow-graph ciobl-stream &optional eoferrorp eof-value [Function]
write-dataflow-graph dataflow-graph ciobl-stream [Function]

These functions are analogous to read-parse-trese and write-parse-tree, cxcept that they handle
dataflow graph objects instead of parse trees.

4.5. File Naming Conventions

For consistency’s sake, a few conventions are introduced for the naming of compiler input/output
files. The “type" field of file’s pathnames (sometimes called the "extension") indicates what kind of
information is found in the file. For files which contain information representable in CIOBL, the type also
indicates what format the data is in. If the type of a standard format file is xxx, then the binary format
version of that file has type xxxb, and the verbosc format version has type XXxv.

Standard format parse tree files have type pt. Standard format dataflow graph files have type dg.
The binary format and verbose format types are constructed as described above., Compiler listings, which
contain the source code along with error messages, statistics, line numbers, and the like, have type 1isting.
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5. Miscellaneous

5.1. Errors

Compiler modules may detect errors or other conditions that require some indication to the compiler
user. The following function is provided for making such indications. Note that this is completely orthogonal
to Common Lisp’s error system; this facility only handles the display of messages. If a compiler module
invokes the error system, the action taken by the compiler may depend on whether the compiler is running
interactively or not, or on other factors.

message class format-string &rest format-args ‘ [Function]

This function displays a message to the compiler user. The message is obtained by applying format to the
arguments nil, format-string, and format-args (which yields a string). The argument class describes the
severity of the condition which caused the message, and is used to decide whether or not to actually display
the message, and where to display it (e.g., console or listing file). The following classes are defined:

:unracoverable
An error from which the compiler cannot recover, compilation of the entire file is
immediately terminated.

:error A program error which prevents reasonable compilation. The compiler may continue to
process the program (so that other errors may be detected), and may even generate code,
but any results are almost assuredly incorrect.

iwarning The compiler has made an assumption about what the user intended, or has dctected a
situation which, while legal, probably represents a program bug.

:informatory Anything which does not represent a program or compiler error, but which might be of
interest to the compiler user. For example, a report on how well an optimization phase
performed.

:debug A message of interest only to the maintainers of the compiler.
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