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Abstract

Loop unfolding is an important optimization for parallel computers. l.oop
unlolding involves copying the body of a loop one or more times, with the intention
that the copied bodies exceute simultancously. A compiler uses several criteria to
decide if multiple copies of a loop body can and should execute concurrently. These
criteria are presented along with a discussion of foop unfolding. The Computation
Structures Group of the MIT Laboratory for Computer Science has been designing
a static dataflow parallel processing supercomputer, and a compiler has been written
for the functional tanguage VAL. This report describes an implementation of loop
unfolding for the VAL compiler.
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Chapter One

Introduction

The Computation Structures Group of the MIT Laboratory for Computer Science
has been designing a high speed static dataflow supercomputer. The front end of a
compiler for the functional language VAL has been writlen, and current work
focuses on Lthe compiler’s optimizer. In this thesis, | discuss the optimization of loop
unfolding and its spcciﬁc design and implementation for the VAL compiler. Loop
unfolding is the process whereby an optimizer copies the main body of a loop on¢ or
more times and modifics the framework of the toop, in such a way that the loop still
computes its original function. Using this optimization on a parallel computer
means that if data dependencies between cycles of the loop are few or nonexistent,

then most or all of the reproduced code can execute simultancously.

Paralic] computing is becoming the modern trend in computer science. To
effectively cxploit the capabilities of a parallel machine, compilers must be able to
perform transformations such as loop unfolding. In particular, loop unfolding is
one of the more fundamental optimizations of a dataflow computer [2]. Therefore,

it is an important issuc in the context of the static dataflow project.

Chapter 2 presents relevant background to the topic of loop unfolding, including a
discussion of other loop optimizations that work closely with loop unfolding.
Chapter 3 examines loop unfolding in-depth and describes various types of
unfolding. The major section of the thesis is Chapter 4, which discusses the specific
design and implementation of loop unfolding for the VAL compiler. Chapter 5

describes further, related work.



Conventions:

boldface Bollface indicates constructs and nodes in VAL and Intermediate
Graph Format.

italics Italics indicates variables and terms being introduced for the first
time.

Graphs may contain one of the following descriptors in their captions.

VAL The figurc contains VAL code.
IGF The figure is displayed in the Intermediate graph format.
SF The figure is displayed in the Simple Format.



Chapter Two

Background

[ will give some background information on several areas of the static dataflow

project, stressing how these areas relate to my particular rescarch project.

2.1 Static Dataflow Computer

The Computation Structures Group of the MIT Laboratory for Computer Science
has been designing a static dataflow supercomputer under the leadership of
Professor Jack B. Dennis. The computer’s specifications call for a hardware that
supports highly paralle! computations. While my particular research stems from this
static dataflow project, its applications can be extended to a compilation system for

any applicative language.

2.2 VAL

The VAL programming language [1] was developed primarily as a source language
for highly parallcl data driven machines, such as the MIT static dataflow computer.
VAL is a functional or applicative language; i.e., it is value oriented and free of side
offects. Such features make VAL an ideal source language for a compiler that
generates parallel code. The VAL compiler, and in turn, the static dataflow

computer attempt to exploit these features of VAL to the fullest cxtent. -

The semantics of a VAL program are fairly obvious and unambiguous; 1 will,
however, describe briefly some of the VAL constructs necessary (0 understand my

thesis. Figure 2-1 shows a typical VAL for loop. Most of the loops that we will be



for X1, x2 := (1, [2 do
if P1(X1, X2) then R1{X1, X2)
elseif P2(X1, X2) then R1(X1, X2)
elseif P3(X1, X2) then R3(X1, X2)
else iter X1, X2 := S(X1, X2) enditer
endif ’
endfor

Figure 2-1:VAL. - Typical Loop

concenuxlwhhawcﬁn%oops,wﬂhzlbodyconﬁsﬂngofunifcxpnmﬁon.Inlhcloop
in Figure 2-1, if PH(X[. Xz) is true, then the whole for expression evaluates to Rn(X{,
X)). The arity of R (X, X,) and tﬁe for expression must be the same; in general,
their arities can be greater than one. X, and X, arc loop variables; their values are
updated, and the for is instructed to repeat, via the iter expression. The iter
expression takes a subset of the loop variables on the left side of the = and the new
values to assign to them on the right side. In the example in Figure 2-1, S(X) is

assumed to return two values,

- 2.3 Compiler
The VAL compiler consists of the following components:

e parscr
o linker
s Optimizer

» code generator

10



« cell allocator.

N . *
Recent work has focused on the optimizer and code gencrator . My rescarch deals

with issues in the optimizer.

2.4 Intermediate Graph Format

I use the VAL Intermediate Graph Format to illustrate many of the examples in my
thesis. This format is used internally by the VAL optimizer, and it was developed
with the aim of facilitating the optimizations that we wish to perform. The format is
described in detail in [3]; here T will discuss the features that 1 will use in my

illustrations.

A program displayed in the Intermediate Graph Format counsists of a set of nodes
(where each node represents a certain construct) and links representing data paths
between the nodes. Inputs to a node consist of a number of arms, where each arm is
comprised of a number of args. Outputs from a node consist of a number of resulis,
where cach result is comprised of a number of ares. Fach link connects an arc of
one node to an arg of another node {these can be the same node). Figure 2-2 shows
a sample graph. All simple constructs (such as addition, array —select) have one arm
with two args, and one result with a number of arcs. ‘The node in Figure 2-3
represents the expression X+ Y. The result corresponds to the sum of X and Y, and

there is one arc for each place the result is used in the graph.

The complex constructs that we will be concerned with are:

o iterif

» for.

*
Dr. William B. Ackerman has been working on optimization, and Charles A. Goldman has been
working on code generation.

11



NODE
result with 1 arc

(1T <"

arm with 3 args

result with 2 arcs

Figure 2-2:1GF - Sampl.e Graph

Figure 2-3:IGF - Addition Node

These constructs are explained in the examples in Section 2.4.1 and Section 2.4.2.

12



2.4.1 Iteril

Figure 2-4 shows a fragment of VAL code and the corresponding graph.

if P1(X, F2) then R1(X, F2)
elseif P2(X, F2) then R2(X, F1)
glse iter X := S(X, F3) enditer
endif
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Figure 2-4: VAL, IGF - Typical Iterif

The VAL if and iter are combined into one construct, the iterif, when transformed
into a graph. The boxes at the top of the graph are called gates, the numbers inside
gates are called cases, and the alphanumeric characters in the gates represent the
variables that can pass through them. The entire graph of Figure 2-4 is referred to
as the iterif body. All inputs to the iteril body must pass through the gates; no links

may cross the dashed lines that connect the gates and the iterifl node. All inputs to

13



the subgraph for the 2™ clause of the iterif pass through gates with case #, and all
inputs 1o the subgraph for the predicate enabling the a'" clause pass through gates
with case -n. The outputs from the predicates, Pf and P2, go to the leftmost arm of
the iterif node. The predicates have arity one, and their outputs are cither true or
false. Each clause, R/, R2, and S, uses an arm of the iterif node. Each clause also

has an associated control, which is one of the following labels:

yes A yes clause or arm is one that will always iterate, such as the S
clause. 1t is produced by an iter in the VAL source program.
The arity of a yes arm is equal to the number of loop variables,
and the valucs going into it arc the new values to be assigned to
the loop variables. | will also refer 1o a yes arm as an iferating
arm.

no A no clause or arm, such as R/ or R2, is one that returns, or
" indicates that the loop is 1o exit. The arity of a no arm is cqual to
the arity of the for loop, and the values going into it are the
values to be returned from the loop. 1 will also refer to a no arm
as a refurn arm.

maybe A maybe clause or arm may or may not iterate, The link to a
maybe arm comes from another iterif node. This results from a
nested if in the VAL source program, where the iter is contained
within the inner if. The arity of a maybe arm is one. This single
link is special; it represents either the new values to be assigned
to the loop variables or the values to be returned {rom the loop.

In the internal representation of the Intermediate Graph Format, the gates, both

inputs and outputs, are part of the iterif node. The inputs to the gates comprise arm

1 of the iterif node, the outputs from the predicates arm 2, and cach clause

comprises an arm starting with arm 3. The output of gate 1 comprises result 0, the

output of gate 2 comprises result -1, the output of gate 3 comprises result -2, etc...

Every iterif has an output result at 1. This output goes to either the maybe arm of

another iterif node or to a for node.

14



2.4.2 For

Every iterif node is contained within the body of a for node. For nodes are similar
1o iterif nodes. They also have gates, all inputs must pass through the gates, and no
links may cross a dashed line. The internal representation of the gates is the samc as
for an iterif node. For node gates can have one of two cases.

1. / - The input to the gate is a loop variable. Its value is updated cach
loop cycle.

2.0 - The input is a free variable. Its value remains constant throughout

the entire execution of the loop. )
For nodes have one other input, which comes from result 1 of an iterif node. This
input is arm 3; arm 2 is left blank for implementation reasons.  Figure 2-5 shows a

complete VAL for loop and the equivalent for body graph.

2.5 Other Loop Optimizations

The loop unfolding optimization works intimately with other loop optimizations. [t
is necessary to discuss two particular toop optimizations, for a full understanding of

the theory behind and the power of loop unfolding;

1. progressing loop variables

2. successor variables

2.5.1 Progressing Loop Variables

A progressing loop variable is a loop variable that increases {or decreases) by some
fixed increment in each loop cycle {e.g., a variable that increases by five each cycle, a
variable that is divided by two each cycle). 1f such a variable exists, it is important
for an optimizing compiler, such as the VAL compiler, to find this variable and

incorporate the following information into the code for the program:

15



for X := I do
if P1(X, F2) then RI1(X, F2)
elseif P2(X, F2) then R2(X, F1)
else iter X := S(X, F3) enditer

endif
endfor
P 1 0 0 0 L
- X Fi | F2 | F3 ~
e ™~
v AN
// A | -1 21 211 1 2 2 3 3 \\
/ X F2 | X F2 | X Fz | x Fi | X 3

Y .
L .
\ P1 P2 | R2 rii;j%g /
. I
\\ N //

]
\\ ( contrlo-]l-sE=Rn} Fno es ) //
N /
N /

)

L

Figure 2-5:VAL, IGF - Typical For Loop

« the fact that it is a progressing loop variable
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« the type of progression, c.g., addition, etc ...

o the increment by which it progresses
The VAL optimizer encodes this information through the transformation shown in

Figure 2-6.

For gates before transformation For gates after transformation

1 11 o | O ——> 2
X |y { F1 | F2

——

X is an additive progressing loop variable

~with increment 2

Figure 2-6:1GF - Progressing Loop Variable Optimization

This optimization is important for the following Teasons.

o If all the loop variables are progressing loop variables, then we have
climinated ALL DATA DEPENDENCIES between successive cycles of
our loop. The loop is now susceptible to total parallelism. The
individual copies of the loop that execute in paratlcl are generated by
loop unfolding. For this reason, probably more than 90 percent of the
loops that we want to unfold have progressing loop variables.

« If the progressing loop variable is the index to an array access, then the
code generator can turn the chain of array accesses into a chain of auto
increments, provided that the targeted machine supports auto
incrementing by the amount that the variable is progressing, Currently,
the specifications for the MIT static dataflow machine call for auto
incrementing by one; however, both auto incrementing by powers of

17



*x

two and auto decrementing have been suggested

o I the progressing loop variable is an index to an array reference, then
the knowledge that this is a progressing loop variable is usclul for a code
generator that attempts to turn array references into streams,

2.5.2 Successor Variables

Two variables, v/, v2, are successor variables if the value of v/ in pass n of a loop is
equal to the value of v2 in pass n+ 1 of the loop (e.g., v/ =jj+c¢ j+2 ... and v2 =
j¢, j, j+¢ ..). Successor variables are not necessarily loop variables; they are
sometimes generated from a progressing loop  variable (e.g. X is an additive
progressing loop variable with increment two, /=X+1, and J= X-1). [and Jare,
therefore, successor variables. [f 7 and J are used as indexces to array A, then Afl] in
cycle n of the loop is equal to AfJ] in cycle n+ 1 of the loop. If we save the value of
Af1] from one loop cycte to the next, then we only have to perform one array access

in all but the first loop cycle.

The VAL optimizer performs this transformation by making the output of Afl] a
loop variable. However, since this type of foop variable must be treated specially,
the optimizer assigns it a unique case (case=2). Because successor loop variables
have a special case, the loop unfolding optimization must know how to deal with

these variables correctly.

”'l‘his past summer, with the help of Dr. William B. Ackerman, [ wrote a low-level dataflow
program that solved a tridiagonal matrix using the cyclic reduction algorithm. [ wrote the program
twice, once assuming auto incrementing of one, and once assuming auto incrementing by any power
of two between 0 to 32. The addition of auto incrementing by powers of two allowed approximately
33% of the cells (low-level dataflow code) from the inner loop to be moved to the outer loop, with the
addition of a relatively small overhcad. With a matrix of size 127, this meant the cxecution of 30%
fewer cells. Since the total number of cells exccuted in either case is w*out+(2"-1)*in (where out is
the number of cells in the outer loop, i is the number of cells in the inner loop, and 2"-1 is the size of
the matrix), this cfficiency increases with larger matrices.

13



Current work on the successor variable optimization, for the VAL optimizer, is
incomplete. It is, therefore, not possible at this point 10 determine the correct way
for the loop unfolding optimization to handie successor variables. In my
implementation, 1 will not the allow the unfolding of any loop that has successor

loop variables.

2.6 Graph Conventions used in Thesis

| use two models to display dataflow graphs in this thesis. When a lot of detail is
necessary, | use the Intermediate Graph Format described in Scction 2.4. When less
detail is required, 1 use the Simple Model. Figure 2-7 demonstrates the differences
between these two models. The simple model sippresses information about exact
gates and links in a graph, and is used primarily when the relative positions of

different components of a graph are important.

19



Intermediate Graph Format

A4lale|l2]1 |1 2|2 ]|3]3
X F21 X F2 | X F2 | X Fil X F3
P1
“
ITERIF /

controls = no no yes

/

Simple Format

/

\

SRS

ITERIF

Figure 2-7:1GF, SF - Comparison of Intermediate graph format and Simple

Format
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Chapter Three

Loop Unfolding

Loop unfolding is the process where a compiler generates onc or more copics of a
loop and modiflies the framework of the loop. The unfolding factor is the number of
copies being created. The intent is that if a loop must execute 10 times, it will only
have 1o exceute five times if the loop is copied once. [n Chapter 4, T will discuss an
implementation of loop unfolding for the VAL compiler described in Scection 2.3;
here, | will be concerncd with a general description of loop unfolding and a
discussion of its benefits. The matcrial in this chapter is discussed in greater detail

in [2].

3.1 Differcnt Types of Loop Unfolding
I will discuss four cases of loop unfolding:

1. Loops without a known number of cycles
2. Loops with a known number of cycles
3. Initial Unfolding

4, Final Unfolding

Examples of these four types of unfolding will be illustrated with VAL

3.1.1 Loops Without a Known Number of Cycles

If we have no knowledge about how many times a loop will cycle, then we must
execute the exit test with each copy of the loop. Figure 3-1 shows the

transformation of such a loop unfolded once.

21



for X := I do ,
if P(X) then R(X)
else
let NEW: int := S(X} in
if P(NEW) then R(NEW)
else
iter X := S(NLW) enditer
endif
endlet
endif
endfor

Figure 3-1: VAL - Unfolding Factor = 1, Unknown Number of Cycles

3.1.2 Loops With a Known Number of Cycles

If we know that the number of times a loop will cycle is a muitiple of #, then we can
unfold the loop up to a-/ times, while only having to execute the exit test once.

Figure 3-2 shows the transformation of such a loop.

for X := 1 do
if P(X) then R(X)})
else
iter X := S{(S(X)) enditer
endif
endfor

Figure 3-2: VAL - Unfolding Factor = 1, Known Number of Cycles

22



3.1.3 Initial Unfolding
Initial unfolding consists of copying the iterating function n times and first
executing these n cycles before entering the loop. Figure 3-3 shows the cfiect of an

initial unfolding of three.

for X := S(S(S(Il))) do
if P(X) then R(X)
else
iter X := S(X) enditer
endif
endfor

Figure 3-3: VAL - Initial Unfolding Factor = 3

We would want to perform an initial unfolding of # on a loop which was going to
execute at least n times, or when the number of times the loop was going to cycle
was equal to n mod m. In the latter case, we would also perform a regular loop
unfolding of m, where the unfolding is of the form where we know that the number

of cycles will be a multiple of m.

3.1.4 Final Unfolding

Final unfolding is similar to initial unfolding, except that the copies execute after
the foop terminates. The reasons for a final unfolding are analogous to the reasons

for an initial unfolding.

23



3.2 Benefits of Loop Unfolding

The primary reason for performing loop unfolding is so that the copics of a loop can
execute simultancously. Thus loop unfolding is beneficial for a parallel computer. |
described, in the discussion of progressing loop variables, how to achieve maximum
concurrency capabilities (see Section 2.5.1). 1t is believed that many loops have the
complete data independence between loop cycles, necessary 10 achieve this
maximum concurrency. All loops generated by the VAL forall structure [1] have
this feature; all forall loops can, therefore, be optimized by the progressing loop
variable optimization. One general use of the foralk structure is to apply some
function to every clement of an array. However, even when there is not complete
data independence between cycles of a loop, we can still achieve a large degree of
concurrency.  The optimizer determines the minimum critical path of data
dependencies between loop cycles. Other benefits of loop unfolding relate to areas

discussed in Chapter 3.

24



Chapter Four

Implementation

VAL contains two loop constructs, for and forall [1]; however, foralls are converted
to fors via other optimizations, so | will only discuss fors in this chapter. To simplify

the discussion of implementation, 1 will divide this chapter into two sections:
1. Basc Model
2. Extensions.
In actual use, some of the items discussed under Extensions are as important as the

items discussed under Base Model. However, for purposes of presentation, it is

expedient to present the implementation this way.

4.1 Base Model

In this section, I will describe how to perform a single unfolding on a simple loop.
A simple loop, such as the one shown in Figure 4-1, contains an iterif body which

has three main units:

1. n predicate clauses, or bodies
2. n return clauses, or bodies

3. one iterating clause, or body

The corresponding VAL program is shown in Figure 4-2. 1 refer to the iterif that
existed before the unfolding as the original iterif, and the iterif that was created

when the loop was unfolded as the new iterif.

There are two main parts to unfolding a simple loop:

25
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Figure 4-1:1GF - Simple Loop

1. reproducing or copying the iterif body

2. splicing in the copied iterif body.
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for X1, X2 = 11, 12 do
if P1(X1, F1) then R1(X2, F1)
elseif P2(X2, F1) then R2(X1, F2)
else iter X := S$(X1, F2) enditer
endif

endfor

Figure 4-2: VAL - Simple Loop

4.1.1 Reproducing an lerif Body
A typical iteril body is shown in Figure 4-1. For reproduction purposes, it does not
contain the inputs to the gates (however, it contains the outputs from the gatces) or

the one outpul from the node.

No links may cross dashed lines in a graph. The advantage of this nule becomes very
~ relevant here. Because of this restriction, we can blindly copy all the nodes residing
between the outputs of the gates and the inputs to the iterif node, without worrying
about copying extra material. Otherwise, we would need some knowledge of the
meaning to the subgraph we were copying. Besides being more difficult to

implement, this latter process would also takes much longer to execute.

We use three data structures in the copying process:

1. A node qucue: The need for a node queue will be shown in Section
4.1.1.2. Enqueueing and dequeuing have their usual meanings.

2. A node copy pointer: Each node in the original subgraph has a pointer
1o the node that is its copy. Node-copying refers to both creating a copy
of a node and placing a pointer to the new node in the copy pointer of
the original node.

27



3. A node network: A network containing pointers to all nodes that have
been copied is needed to clear, at the end of the copying process, the
copy pointers described above.

The copying process can be split chronologically into two parts:

1. initial links copying

2. main scction copying.

All links are bi-directional and are implemented as two separate links in the
software. For clarity, | refer to the node that the copying routinge is acting upon as

the from-node, and the node at the other end of the fink as the 7o-node.

4.1.1.1 Initial Links Copying
For each link in the sets of gate Otltbuts and iterif node inputs, the copying process
executes the following:
1. If the to-node does not have its copy pointer set, then the process node-
copies and enqueues the to-node.
2. A similar link is created between the new iterif node and the copy of the
to-node,
Figure 4-3 shows a typical section of a loop that would be copied during one call to

the copying process. The highlighted links are the initial links.

4.1.1.2 Main Section Copying

At this point in the copying routine, there are some nodes in the local queue. Until
the queue is empty, the routine recursively dequeues a node (i.e., the current from-
node) from the queue. For cach of the from-node’s links, the process executes the

following actions:

1. If the to-node does not have its copy set, then the process node-copies
and queues the to-node.

28
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initial links
are highlighted

o

Figure 4-3:SF - Initial Links

7 if the to-node has not been netted, then a similar link is created between
the copies of the from-node and the to-node.

Figure 4-4 shows the same subgraph as shown in Figure 4-3, except now the main
links are highlighted. The process ﬁhen places the from-node in the node network.
Thus, if a to-node does not have its copy set, it means that this is the first time the
to-node has been encountered. If a to-node has its copy set but is not netted, it
means that the node has been encountered but has not yet been a from-node.
Therefore the to-node does not necessarily have all its links copied. Finally, if a

to-node is netted, it means that it has been a from-node and, therefore, all its links
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Figure 4-4:SF - Main Links

have been copied.

4.1.2 Splicing

The copied iterif body must be spliced into the main graph at two locations:

1. the one output of the new iterif node

2. the gate inputs of the new iterif.

The first operation is relatively simple. As shown in Figure 4-5, the inputs, from the

iterating body, that fed the iterating arm of the original iterif node are replaced by
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OLD ITERIF NEW ITERIF
—>
controls = ... yes controls = ... yes
m}
OLD ITERIF
controls = ... maybe

Figure 4-5:IGF - Splicing in Iterif Output

the one output from the new iterif node. We must change the control corresponding

to this arm of the original iteril node from yes to maybe.

The second operation involves one of two actions, depending on the case of the for

gate that is the input to the particular iterif gate. The casc of the for gate can be
either:

1. 1, representing a loop variable

2. 0, representing a free variable.

For each gate input to the original iterif, we perform one of the two actions.
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4.1.2.1 Loop Variable

If the input to the iteril gate comes from a loop variable, then we want the input to
the equivalent gate on the new iterif to be what the valuc of the loop variable would
have been in the next cycle. More specifically, if the input to the iteril gate comes
from the n' loop variable, then the equivalent input on the new iterif comes from
whatever currently feeds the nth arg of the iterating arm of the original iterif node

(see Figure 4-6).

before transformation after transformation
1 1 1 1
~<— for gates — > i
X1 X2 x1 X2
< ijterif —=>
X2 gates X2

new iterif —>

gates X2

Figure 4-6:IGF - Splicing in Loop Variable

The case of the new gate is the same as the case of the equivalent gate on the old
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iterif.

4.1.2.2 Free Variable

If the input to the iterif gate comes from a frec variable, then we want to build a link
between the free variable and the equivalent gate on the new iterif. However, we
cannot build this link directly. Since the new iterifl is contained within the body of
the old iterif, building a dircct link from a for gate to a new iterifl gate would require
passing through the dashed lines of the original iterif. This, as noted before, is
ilicgal, Thercfore, we must first build a new gate on the original iterif. The case of
this gate is the case of the iterating arm of the iterif. We then build a link between
the free variable of the for and the new gate. Now we can build the new gate on the
new iteril. ‘The case of this latter gate is the same as the case of the equivalent gate
on the old iterif, and the input to this gate comes {rom the new gate that we butlt on

the old iterif.

We cannot simply make the input to the gate on the new iterif come from the output
of the equivalent gate on the old iteril, since in general, the case of the gate on the
old iteril, will not be the same as the case of the iterating arm of the old iterif. We
do not have to worry about the correct cycle of the loop as we did with loop
variables, because a free variable remains constant throughout the execution of a
loop. When creating new gates, it is very likely that some of the gates on the same
iterif are similar, i.e., they have the same input and case. Another optimization
combines similar gates into one gate, after the unfolding has been completed.
Figure 4-7 shows the transformation involving a free variable. Figure 4-8 shows the

overall unfolding of the loop in Figure 4-1.
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before transformation after transformation

0 0
<— for gates —>>
F1 F1
3
~<—iterif—>
F1 gates F1 F1

3 is case of iterating arm

new iterif —>

gates F

Figure 4-7:!GF - Splicing in Free Variable

4.2 Extensions

We must add several extensions to the basic model, in order for it to be able to

unfold any loop. The extensions are:

o multiple unfoldings
o dealing with progressing loop variables

« loops with nested iterifs

4



Figure 4-8:1GF - Unfolding, Basic Loop
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o loops with a let statement between the for and if statements
« loops with multiplc yes arms

« nested loops.

4.2.1 Multiple Unfoldings
In general we want to unfold a loop more than once. Adding this capability to the
base model consists of performing the base operations on an arbitrary number of
copies in parallel. There are four places in the base model where it necessary to
discuss the effects of this extension:

1. reproducing the iterif body

2. iterifl node output splicing

3. loop variables

4. free variables.
In the following discussion, 1 use NEW-ITERIFS to refer to all the copies of the
- original iterif; that is, every iteril except for the original one. | use OLD-ITERIES
to refer to every iterif, including the original one, but not including the last copy.

The variable n refers to the number of times we are unfolding the loop.

4.2.1.1 Reproducing the Iterif body

The algorithm for reproducing thc‘body of an iterif is basically the same as for a
single unfolding. A node’s copy-pointer now points to # nodes: one node for each
copy of the original iterif being made. Wherever we built a link in the basic model,

we now build # equivalent links: one for each copy of the iterif body.
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4.2.1.2 Iterif Qutput Splicing

We perform the base model operations, described in Section 4,12, n times. The
new link is created between the #™ node of OLD-ITERIFS and the n'" node of
NEW-TTERIFS (see Figure 4-9).

CLD ITERIF new iterif 2
controls = ...yes | ' controls = ... yes
rﬁ
old iterif 2, new iterif 1
controls = ... maybe
L]

m/

old iterif 1
confrols = ... maybe

Figure 4-9:1GF - Multiple Unfolding, Splicing in lterif Output
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4.2.1.3 Loop Variables

As with output splicing, cach time we encounter a loop vartable, we perform the
base model operations, described in Scction 4.1.2.1, n times. The new link is built
between the ™ iterif body of OLD-ITERIFS and the n'" clement of
NEW-ITERIFS (see Figure 4-10).

4.2.1.4 Free Variables

Again, we perform the base model operations, described in Section 4.1.2.2, n times,
whenever we encounter a free variable, In general, the new links are built between
the #-1™ clement of OLD-ITERIFS, the n™ element of OLD-ITERIFS, and the n'"
element of NEW-ITERIES. However, when =1, the source of the free variable is
the for (sec Figure 4-11). Figure 4-12 shows the simple format unfolding, with a

factor of two, of the loop shown in Figure 4-1.

4.2.2 Loops with Progressing Loop Variables
The transformation pcrformed on a loop by the Progressing Loop Variable
optimization and its importance in interacting with loop unfolding were discussed in
Section 2.5.1. When unfolding a loop and splicing in the copicd subgraphs at the
iterif gates, we perform the following two actions whenever we encounter a gate
whose input is from a progressing loop variable:

1. initializing A, i.c. the amount that the progressing loop variable is

incremented by each cycle

2. updating X, i.e. the name by which we will refer to the progressing loop
variable,

Unless stated otherwise, we assume that we are dealing with an additive progressing

loop variable,
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before transformation after transformation

1 1 ' 1 1
~— for gates —>
X1 X2 X1 X2
old iterif old iterif 1
X2 X2
old iterif 2
X2 new iterif 1
S
new iterif 2
X2

Figure 4-10:1GF - Multiple Unfolding, Splicing in Loop Variable
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before transformation _ after transformation

0 0
< for gates >
Fi F1

\_/ 7

old iterif old iterif 1
F1 F1 F1

3 is case of iterating arm

old iterif 2 3
F1 new iterif 1 F1

new iterif 2

Figure 4-11:IGF - Multiple Unfolding, Splicing in Free Variable
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\ K old iterif 1 )‘ - — // P ~

Figure 4-12:SF - Multiple Unfolding, Factor = 2
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4.2.2,1 Initializing Delta

As noted above, A is the wmount by which we would normally increment our X each
loop cycle. However, if we unfold the loop # times, we must increment X by
A * (n + 1) (where * is multiplication). Thus we add a multiplication node to the
graph. Its inputs are A and n+ / (the latter is a constant at compile time), and its
output, the new A, feeds into the for gate that the old A used to feed into (see Figure
4-13).

before transformation after transformation
) i n+1
4 ]
X A
additive progressing loop variable 3 | 4

unfolding loop n times

Figure 4-13:1GF - Initializing A

4.2.2.2 Updating X

When updating X, we perform the following operations » times.

e create two new gates on the n' element in OLD-ITERIFS, whose
respective inputs are the current A and the current X.

We determine the current A and X as follows:

o If n=1, then we create a new gate on the for whose input is the
original A. This will be our current A. The for gate that
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corresponding to X is our current X.

o If n#/1hen the current A is the output of the A gate that we
created on the #-1™ clement of NEW-ITERIFS, and the current X
is the output of the last addition node we created.

o create an addition node whose inputs are the outputs of the gates that
were just created

e create a new gate on the n'" clement in NEW-ITERIFS. The new gate
corresponds to the gate on the original iterif where we arc currently
splicing in the subgraphs. '

e feed the output of the addition node into the newly created gate (see
Figure 4-14).

We only have to initialize A and update X the f{irst time we encounter an original
iterif gate whose input is from a particular progressing loop variable. More than one
gate on the original iterif node can have its input come from the same gate of the for.
The first time we encounter the particular progressing loop variable we save pointers
to the n addition nodes created. When we later encounter this progressing loop
variable, we simply make the output of the ith addition node be the input to the ith
element of NEW-ITERIFS.

4,2.3 Loops with Nested Iterifs

We can unfold a loop with a nested iterif structure, where the yes arm resides on one
of the inner iterifs. As before, we have to place the copicd iterif body, or bodies,
between the iterating body and iterating arm input of the original iterif. The iterif
reproducing process does not require any changes. We still copy all the nodes
within the dashed lines of the original iterif. Nested iterifs within the original iterif
body do not affect the copying process. The main difference is that we now have an

arbitrary number of iterifs in each copy of the original iterif body. Before, we were

43



before transformation
3

for

> &

old iterif

additive progressing loop variable
unfolding loop n times

2 is case of iterating arm

after transformation

i n+1

3 4 0
for
X A
2 2
old iterif 1
X X 8
old iterif 2 2 2
X new iterif 1 X 3
new iterif 2
X

Figure 4-14:1GF - Updating X

only concerned with the one iterif in each copy; now we must keep track of the first

and last iterif in each copy. Thus the procedure for splicing in the copied iterif
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bodies is similar to the our previous micthod. The main change is that sometimes we
are concerned about the first iterifs (i.c., the first erif in cach copy), and sometimes

we are concerned about the last iterifs (i.c., the last iterif in cach copy).

4.2.3.1 Iterif Output Splicing

In the previous model, the output of the n+ 1" iterif node fed into what was

h iterif node. Now, we want the output of the

th

originally the iterating arm of the n
n+ 1 first iterif node to feed into what used to be the iterating arm of the n™ last
iterif node. The controls that must be changed from yes to maybe are those

corresponding 1o the yes arms of the fast iterif nodes (see Figure 4-15).

4.2.3.2 Loop Variables

In the previous model, we wanted the appropriate input to the n'" iterif node to be
fed to the appropriate gate on the n+ /™ iterif. Now we want the appropriate input

th

to the #»"" last iteril node to be fed to the appropriate gate on the n+ I”’ Sfirst iterif

{(see Figure 4-16).

4.2.3.3 Free Variables

In keeping with the restriction that no links may cross a dashed line, we must feed
free variables through the gates of each iterif in a nested iterif body. In Sections
4.1.2.2 and 4.2.1.4, we discussed how three iterifs are necessary to describe the path
of the links that feed a free variable into an iteril gate. We use the same convention
here. In general, we build a link between the n-1" nexi-1o-last iterif and the n-1*
last iterif. We then feed the variable through the iterifs of the next copy to the

appropriate gate of the »’ " last iterif (see Figure 4-17).
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original first iterif first, old iterif 1
controls = ... > controls = ... yes
original last iterif last, old iterif 1
controls = ... maybe - controls = ... maybe
first, new iterif 1
controls = ... maybe

.

last, new iterif 1
controls = .., maybe

Figure 4-15:1GF - Nested Iterif Unfolding, Iterif Output Splicing

4.2.3.4 Progressing Loop Variables

As with free variables, we now have to feed X and A (described in Section 2.5.1)
through the gates of all the iterifs of a given copy. In general, X comes from the n'*

addition node, and A comes from the a'" last iterif. We feed these two values



hefore transformation after transformation

1 1 1 1
~<— for gates — >

X1 X2 X1 X2

first,
origina first iterif
X2 x2 old iterif 1
original last,
X2 last iterif X2 old iterit 1
S

first,

X2 new iterif 1

)

X2 new iteril 1

last,

Figure 4-16:1GF - Nested Iterif Unfolding, Splicing in l.oop Variables

through the gates of all the iterifs of the n'h copy. At this point we proceed as in
Section 2.5.1 (see Figure 4-18). Figure 4-19 shows the overall unfolding of a nested
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before transformation after transformation

0 0
~<—forgates ——>
F1 F1
1 2 original 1 2 2 first,
F1 first iterit F1 F1 old iterif 1
original 3 last, 3 3
last iterif old iterif 1 1
3 is case of iterating arm 1 2 first,
F1 new iterif 1 .
last, 3
new iterif 1

Figure 4-17:1GF - Nested Iterif Unfolding, Splicing in Free Variables
loop.

4.2.4 For Loop with a Let Structure

A for loop in VAL that has a let between the for and if statements, such as the VAL

fragment in Figure 4-20, translates into the intermediate graph also displayed in

43



before transformation after transformation
T . i n+1

for

for
1 2 original X A 8

X first iterif A
\ 1 2 2 2 first,

original 3 X . X 8 old iterif 1
tast iterif \\
last, 3
3is case of iterating arm old iterif 1

1 2 first,

X new iterif 1

\

last, 3

new iterif 1

Figure 4-18:1GF - Nested Iterif Unfolding, Splicing in Progressing Loop
Variables

Figure 4-20. Such a loop can be unfolded; however, we must take special care in
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before unfolding after unfolding
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Figure 4-19:SF - Unfolding, Nested Loop

dealing with the let, since it occurs at a critical location in the loop. We must
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for X := I do

let F1 := LET1(X, F1) 1in
if P then R
else iter X := S enditer
endif
endlet
endfor
1 0
// X | Fi \\
LET_D N
/ AN
/ _ AN
/, // Fi N \\
/ \ O\

\ \C ITERIF )f /
\ controli—l: no no yes /

AN il /

\Q FOR )

Figure 4-20: VAL, IGF - For Loop with a Let

reproduce the body of the let adjacent to the first iterif of each copy of the original |
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iterif.

The general method for copying the body of the let is the same as for copying the

body an iterif. With an iterif, we made a copying specification, i.e., we said that we

were copying what was between the gate outputs and node inputs of onc iterif, to

the gate outputs and nodc inputs of another iteril. We do the same with a let;

however, our copying specification is more complicated than it was with an iteril.

First, the subgraph that we copy is specified by more than one nodc, and second, we

are not reproducing the let body at the exact equivalent location, as we did with an

iterif. With a Jet, we copy what is in between the from outpuis and from inputs to the

to outpuis and to inputs. These are deflined as follows:

from outputs

from inputs

to outputs

All the outputs of the for gates that do not go directly to the iterif
gates, feed into the let body. These outlputs comprise the from
oulpuls.

All the inputs to the iterif gates not coming directly from the for
gates, come from the let body. These inpuis comprise the from
inputs.

For each loop variable in the from outputs, we find where the
variable is iterated in the iterating body of the iterif (similar to
what we do when we encounter a loop variable, while splicing in
an iterif at its gates). We add the output that represents this
iteration point to the fo outputs.

For each free variable in the from outputs, we feed this variable
through all the iterif gates until we reach the /ast iterif adjacent to
where we are reproducing the let body. We add the output of the
gate that we build on this /ast iterif to the fo outputs.

For all progressing loop variables in the from outputs, we find the
addition node (adding X and A as described in Section 2.5.1) that
is adjacent to where we are reproducing the let body. The output
of this node is the cotrect current value of our progressing loop
variable. We add this output to the 1o outputs.
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to tnputs We take the inputs in from inputs and find where the eqguivalent
inputs are located on the first iteril that is adjacent to where we
are reproducing the body of the LET. These latter inputs
comprise the to inputs.

Figure 4-21 shows the unfolding of the loop in Figure 4-20.

4.2.5 Loops with Multiple Yes Arms

A loop that has more than one yes, or iterating, arm within its iterif structure
(whether nested or not) can be unfolded. However, it is usually not beneficial to do
so. When unfolding a loop, it is necessary to reproduce the copy of the original
iterif body at the location of each yes arm. However, the number of yes arms grows
exponentially (with base equal to the number of original yes arms) with each
unfolding. For example, if we originally had two yes arms, then we have to copy the
iterif body at two locations. Since each of the original yes arms is copied twice, we
now have four yes arms. The original two yes arms have now become maybe arms;
therefore, they do not count in the current number of yes arms. The next time we
unfold the loop we will have to copy the original iterif body at four locations,

yielding cight yes arms, and so on.

We will probably want to unfold certain loops somewhere in the order of 28 times.
Unfolding a loop that has only one additional yes arm is impractical, let alone
unfolding a loop that has more than two yes arms. Even if we were to only unfold
loops on the order of 23 times, unfolding a loop with more than one yes arm would

probably stiil be impractical.
4.2.6 Nested Loops

The complete model that T have presented so far can unfold nested loops without

explicitly adding any more capabilities to what already exists. Consider a one-level
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Figure 4-21:1GF - Unfolding, For Loolj with a Let

nested loop. The inner loop has no knowledge that it is nested; thus, it will be
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unfolded just like any other loop. We can also unfold the outer loop normally, since
the inner loop resides completely in one of the predicate, return, or iterating arms of

the outer loop.

Our model cannot handle the outer loop of a nested loop such as the one shown in

Figure 4-22.

[ \
\\ ¥
\ \eerY /
\orY

Figure 4-22:SF - Degenerate Nested Loop

Currently, all loops that we unfold must have the one input to the for coming from
an iterif node. However, a loop such as the outer loop shown in Figure 4-22 is not
worth unfolding. Because of the semantics of VAL, such a loop is degenerale, i.e., it

only executes once [1].
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Chapter Five

Further Work

The work that would most immediately follow my research project involves
completing the design and implementation of the successor variable optimization
and updating the unfolding optimization so that they work together. There is also a
much wider range of research related to loop unfolding, most of which is discussed
in [2]. These issues include:

e array interlace

« combining array interlace and loop unfolding

¢ how much to intertace and unfold

While an in-depth presentation of these issues is beyond the scope of this thesis, it is

worthwhile to discuss them briefly.

5.1 Array Interlace

[nterlace is the process of separating an array into » slices. The i slice of an array
contains all elements equal to i mod n. For example, if a nine-element array is
divided into three slices, the first slice has clements 1, 4, and 7, the second slice has
elements 2, S, and 8, and so on. Different slices, and the operations performed on
them can be assigned to different processors. As we will see in section 5.2, array

interlace is used in conjunction with foop unfolding,
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5.2 Combining Interlace and Urnfolding

Many loops perform a certain operation on every ¢lement of an array. If there are
no data dependencies, then as noted in section 2,5.1, there will probably be
progressing loop variables in the loop and we will want to unfold it. 1f we were to
unfold the loop four times, then the i copy of the loop would access the /i mod 4
elements of the array. Therefore, we would also want an array interlacing of four
slices. The /™ copy of the loop accesses its array clements from the i slice of the

array.

5.3 Coordinating Interlace and Unfolding Factors

In general, a loop does not access cvery element of an array. Suppose only the even
elements are accessed. The reference interval is then equal to two. (If only cvery
third element were accessed, the reference interval would be equal to three). Qur
desired interlace is cqual to rcference interval * unfolding. When the reference
interval 1s not equal to one, only the array slices that are a multiple of the relerence
interval are used. For example, suppose we have an array with 24 elements, but
only the even elements are used. An unfolding of threc and an interlace of six
would be appropriate. In the first cycle the thrce copies of the loop would access
array elements 2, 4, and 6 respectively. In the second cycle, they would access

elements 8, 10, and 12 and so on. We see that the odd slices are not used.

It is not always possible to have interlace = unfolding * reference interval. In such
cases it is more complicated to transform the program correctly; however, 1 will not
discuss how such a transformation is actually performed. One of the constraints on
the amount of unfolding is how much memory is available. Thus, when performing
loop unfolding, we have to consider the time/space tradeoff between faster

execution and more memory usage. A compiler has to weigh many factors before
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determining the amount of unfolding and interlace. If a compiler does not have the
capabilities to make these decisions, then the use of user input or advice has been
proposed. Since the VAL compiler does not currently have these capabilities, the
unfolding optimization uses a simple user interface when determining the unfolding

factor.
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