MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

Computation Structures Group
1985-86 Progress Report

Computation Structures Group Memo 263
August 1986

Source File = COVER.MSS.3, Last updated 22-SEP-87 at 4:13 PM

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

COMPUTATION STRUCTURES GROUP

Academic Staff

Arvind, Group Leader
I.B. Dennis
R.S. Nikhil

Research Staff

W. B. Ackerman
G. A. Boughton

R. A. Iannucci, Manager - Hardware Development

J. T. Pinkerton

Graduate Students

M.]. Beckerle
S.A. Brobst
A.A. Chien
T-A. Chu
D.E. Culler
G-R. Gao

B. Guharoy
S.K. Heller
R.A. Iannucci
S. Jagannathan

B.C. Kuszmaul
V.K. Kathail
G.K. Maa
G.M. Papadopoulos
K.K. Pingali
S.A. Plotkin
R.M. Soley

K. Theobald
K.R. Traub

B. Vafa

E. Waldin

COMPUTATION STRUCTURES GROUP

D. Anderson
A. Chang
S-W. Chen
D. Clarke

B. DeCleene
S. Desai

C. Goldman
E. Gomish
R. Griffith
R. Gruia

E. Hao

L. Hicks

F. Herrmann

Undergraduate Students

Support Staff

S.M. Hardy
N. F. Tarbet

Visitors

M. D. Atkins (IBM)

B. Blaner (IBM)
M. Mack (IBM)

H. Nohmi (NEC, Japan)

S. Kaushik
S.Ma

D. Marcovitz
D. Morais
M. Ng

R. Rabines
P. Rosenblum
S. Sanghani
J. Soong
Y-M. Tan

S. Younis

C. Winters

N. Skoglund (Ellemtel, Sweden)
S. Truve (Chalmers University of Technology, Sweden)

COMPUTATION STRUCTURES GROUP

Computation Structures Group

1. INTRODUCTION

The Functional Languages and Architectures Group (FLA) was started in January 1981,
splitting off from the Computation Structures Group (CSG) to continue research in tagged-token
dataflow architectures and functional languages. During this past year, the old CSG was
disbanded when its group leader, Professor Jack Dennis, began a leave of absence. Professor
Dennis and the remaining members of the old CSG joined the FLA group, led by Professor
Arvind. FLA has taken on the name of its predecessor, and thus the group organization has been
restored to what it was in 1980.

A major thrust of the new Computation Structures Group is in two interrelated projects--the
Multiprocessor Emulation Facility (MEF) and the Tagged-Token Dataflow Machine. The goal
of the MEF project is to construct a "sandbox” to facilitate research and development in parallel
architectures and languages. The most exciting development of the year has been the execution
of large dataflow programs on the 32-processor MEF. Though much work is continuing on the
METF front, the group is concentrating on dataflow research, now that a reliable MEF foundation
is in operation.

The goal of the Tagged-Token Dataflow project is to demonstrate the feasibility of general-
purpose parallel machines by simulation and elation, .

We have also implemented a preliminary version of a Parallel Graph Reduction Machine on
the MEF. We hope to solidify the prototype and use it to study these architectures in the coming
year.

As part of the Tagged-Token Dataflow project we have also been looking at several issues
related to language design and compilation, such as data structures, data types and storage
management, and the relationship and tradeoffs between data-driven and demand-driven
computation.

Professor Nikhil has begun studying the integration of databases into functional languages,
based on a model that has arich type structure and explicitly manages histories of states.

In addition, several of Professor Dennis’s students are pursuing different research goals.
Bradley Kuszmaul has been exploring the simulation of applicative languages on the Connection
machine [14]. Gao Guang-Rong continues to investigate compilation of VAL into efficient code
for the static dataflow machine [8].

IBM has continued to support a small group of engineers assigned to CSG whose function is to
assist in the design and development of the packet switch. This group has demonstrated the first
working pieces of the packet switch (the crossbar and the scheduler/arbiter) using a cMOS gate
array and MSI TTL components. The group has also refined and verified the serial link protocol
for the packet switch, and is well on the way to releasing a 10,000 gate array which performs the
serial receiver and transmitter functions, as well as FIFO buffer control.

COMPUTATION STRUCTURES GROUP

As a consequence of the MIT-IBM technical review meeting in the summer of 1985, CSG
initiated and hosted a series of seminars by prominent IBM people. The series, entitled "Large
and Complex Computer Systems in the Commercial World," was designed to give members of
the LCS community a view of issues and problems in the design of large-systems in the "real"
world.

Irving Wladawsky-Berger, Vice-President of Development for IBM’s Data Systems Division,
began the series with a talk entitled "Trends in Large Computer Systems" in which he discussed
technical problems in the growth of large systems. In December Thomas W. Scrutchin, technical
assistant to the manager of the Transaction Processing Facility, discussed the application of this
system to airline reservations and banking systems. Federal systems division representative Kyle
Y. Rone, a twenty-year veteran of IBM’s On-board Space Systems organization, came in
February to present an overview of the computer systems research that has gone into the space
transportation aspects of the nation’s aerospace program. Concluding the series in April, Keith
R. Milliken, a project manager at the IBM/T.J. Watson Research Center, talked about
YES/MVS, a program which applies Al expert systems techniques to assist operators of large
MYVS installations. Judging from the size of the audiences and from the lively discussions that
followed each talk, the series appealed to a wide cross-section of the Laboratory.

The group has decided to write all its new programs in Common Lisp, the new standard dialect
of Lisp. Through the efforts of Richard M. Soley, the group continues to have strong ties to the
Common Lisp standardization effort, both in the old Common Lisp committee, and the ANSI
X3J13 and ISO TC97/SC22 Lisp standardization committees.

2. PERSONNEL

We were fortunate to have Dr. G.A. Boughton, a member of the old Computation Structures
Group, join the new CSG as a research associate, assuming responsibility for the welfare of the
MEF, in particular the circuit switch. Dr. Bill Ackerman, another member of the old CSG, came
on board at the same time, but left for Apollo in February. He was a great help in getting all the
new Texas Instrument Explorers (Lisp machines) up and running. Nils Skoglund, a visitor from
Ellemtel, has returned to Sweden. During his stay, Nils developed the NuBus interface logic for
the NuCA (NuBus Channel Adapter), and began construction of a wire-wrapped prototype. The
bulk of the NuCA will be tested through incremental additions to this prototype.

The IBM group that has been working with us for the past several years has also changed.
Mark Atkins, a Senior Associate Engineer from Endicott, joined the group in November. Mark
has been working on the design of the 48 MHz clock subsystem and the FIFO control logic. At
the end of April, Bart Blaner returned to Endicott. During his stay, he completed work on the
serial protocol. He also completed detailed design on 80% of the serial receiver logic.

COMPUTATION STRUCTURES GROUP

3. MULTIPROCESSOR EMULATION FACILITY

This past year has been one of successes for the Multiprocessor Emulation Facility (MEF).
Thirty-eight Texas Instruments processors are now on site, with thirty-two fully operational as
part of the facility, connected via the circuit switch as well as standard Ethernet. The eight
existing Symbolic machines are now used primarily for software development. The old MEF
software base, designed and implemented by Richard Soley, was retired this past year, making
way for the new Id World MEF software supporting the new circuit switch.

3.1. The Current MEF Hardware and the Circuit Switch

During the past year, we have taken delivery of 38 Texas Instruments Explorer Lisp machines.
Each explorer is equipped with 8 megabytes of physical memory, 140 megabytes of disk storage,
ethernet, and bit-mapped display. Thirty-two of these machines are connected by a circuit
switching network. The circuit switch is based on the Butterfly switch protocols of Bolt, Bernak,
and Newman (BBN). The basic protocol has been robustified with the addition of routing header
encoding, data parity, and error signalling.

Every TI Explorer hosts a circuit switch node. Each node consists of four input links and four
output links. Any input can be routed to any free output through a 4 x 4 crossbar. One input link
and one output link is dedicated to the host processor, while the remaining three input and output
links can be connected to other nodes to form an arbitrary network topology. We have chosen a
modified hypercube, called a directed hypercube, as the MEF network [10]. Developed by
Steven Heller, the directed hypercube is similar to traditional hypercube networks except that
edges are directed; data can only flow in the direction of the edge. This enables the network to
accommodate sixty-four machines in a six-dimensional directed hypercube rather than the
maximum of eight processors that could be achieved using a traditional hypercube.

Message routing is source based. The host processor appends a string of routing instructions to
the head of each message. A routing instruction is an encoded designator of one of the four
output links at each node. The node strips off the leading routing instruction and forwards the
message along the requested link. If the requested link is already active with another message,
then the request is denied and the message is rejected a condition which is detected by the source
processor. The source processor is responsible for retransmission of a rejected message.
Although the hypercube topology makes analytic derivation of routing strings straightforward,
any real implementation is subject to failed links and nodes. Steven Heller and David Culler
have developed distributed algorithms that establish the topology of the network and then derive
shortest path routes without any preknowledge of the current topology. The algorithm is based
first on a network flooding, in which each processor broadcasts to all its neighbors every new
aspect of the network it has discovered until no new information is derived.

The links that are dedicated to the host processor (one input and one output) are interfaced
through FIFO buffering to the NuBus. These FIFOs, 2K bytes in each direction, not only

COMPUTATION STRUCTURES GROUP

perform synchronization but also word width and protocol translation to and from the 4-bit 6Mhz
circuit switch and the 32-bit 10Mhz NuBus. Additional logic is supplied for message disposition
reporting, retransmission, and instrumentation. The circuit switch node is implemented on a
single NuBus card. The approximately 200 TTL integrated circuits are interconnected using
Multiwire technology.

Each external link consists of seven signals in the forward direction: a four bit data path, a
message frame signal, data parity, and data/address demarcation. The reverse path consists of
two status signals, message reject and parity error, for a total of nine signals per link. Each signal
is driven NRZ through twisted pair and is differentially received through optoisolators,

The three input and three output links from each machine are not directly connected to other
machines to form the hypercube network. Instead, these links are bundled into twisted-pair flat
cables, three links per cable, and are brought to cluster centers that form three dimensional
hypercubes (eight processors). The cluster centers provide "dimension links" to hook together
up to eight clusters, for a total of 64 machines. Developed by G.A. Boughton, the cluster centers
also perform local clock distribution and supply unique node identifiers that can be sampled by
any circuit switch card.

The system is globally synchronous at a rate up to six megahertz, yielding a raw per link
bandwidth of three megabytes per second. The clocks are distributed by a network designed by
Saed Younis [23]. The distribution system, implemented on a single NuBus card and hosted by a
Lisp Machine, is autocalibrating and is able to hold a 10 nanosecond phase skew across the
entire facility (approximately 10 meters).

The circuit switch is in active use for sending tokens between machines in the dataflow
experiments being hosted on the facility. The network has also proven invaluable for facility
maintenance. Dinarte Morais has implemented a disk transfer protocol that can simultaneously
copy a 30 megabyte Lisp World file to all 32 machines in under four minutes.

Gregory Papadopoulos was primarily responsible for the design and prototype construction.
G.A. Boughton was responsible for the production, test, and installation of 35 boards now in
active use. Additional help was provided by Gregg Bromley and Shefali Sanghani. Mr. Bromley
implemented and tested the modified BBN protocols. Ms. Sanghani aided in schematic capture
and design verification.

3.2. The Packet Switch Development

The success of the circuit switch as an interim networking solution for the MEF has given us an
opportunity to develop more rigorously and verify the design of our packet switching network
card. The packet switch is intended to provide two orders of magnitude more usable bandwidth
than the circuit switch while significantly increasing the reliability of the net itself. The packet
switch provides, on a single card, an 8x8 crossbar, routing address translation logic, and serial <
parallel conversion circuitry. Serial links interconnect sister packet switch cards. Using one

COMPUTATION STRUCTURES GROUP

such card per Lisp machine, networks of various topologies can be composed. Robert Iannucci
has been responsible for the high-level design of the packet switch [12] and has coordinated the
implementation work as well. During the last year, we settled on a gate array technology for the
switch and made significant progress on the design.

Our switchover to LSI Logic Corporation as our gate array foundry has been largely successful.
We have fabricated our first chip---an 8x8 4 bit wide crossbar slice on a 2200 gate, 3u m 2 layer
metal array. Michael Mack designed and simulated this chip prior to manufacture on our
Apollo/Mentor workstations. We received first silicon in February, and are just completing our
acceptance testing. We are happy to report that the design is 100% operational and bug-free.
Based on a lotsize of 10 chips (all from the same run), we find the AC performance meets the
advertised worst-case specifications and, in some cases, exceeds the specs. The chip was
designed with fairly wide margins and, consequently, can be used at speeds approaching 10
megabytes per second per port, while the current Packet Switch architecture only requires 4
megabytes per second per port.

Our second chip (called "PASS"--- a not-too-clever acronym for PAcket Switch Slice) is in
detailed design now, and will be fabricated on a 10,000 gate 1.5u m 2 layer metal array. The
experience with the crossbar chip provides us with a data point which confirms the
manufacturer’s claim that if a design works under the timing simulator, it will also work in
silicon. This has boosted our confidence in the PASS design.

The PASS chip is made up of three subsystems: the serial receiver, the serial transmitter, and
the FIFO controller. Bart Blaner has made progress in partitioning the design along these lines,
and has also taken the lead in developing the receiver section. He has proposed, developed, and
analyzed a D.C. balanced serial transmission code which translates each four data bits into six
baud, a so-called 4b/6b code. This is an improvement over the more traditional Manchester-style
D.C. balanced codes which translate each bit into two baud (1b/2b code). He has also developed
and verified the serial link protocol which will be used for flow control and error recovery on the
serial links. The scheme is based on delimiting at message boundaries, and streaming i.e.,
without flow control) within a message. Bart and Sumanth Kaushik designed and implemented a
32 bit (Ethernet polynomial) CRC generator / checker circuit for the Receiver.

Mark Atkins has designed and begun to implement the PASS logic for the FIFQO Controller.
The controller provides the next in / next out pointers for static RAM control in addition to (1)
message delimitation allowing last message retransmission and (2) instrumentation for
measuring FIFO occupancy. He has also completed the high-level design of the clock logic both
on-card and within the PASS chip.

Michael Mack has begun design work on the transmitter. Michael and Andrew Chang have
also completed the design and TTL prototyping of our scheduler subsystem as well. A mid-
course redesign resulted in simplification of the clocking and interfacing of the scheduler. This
resulted in a 20% reduction in chip count as well. Preliminary work has already been done to
interface the crossbar chip to the scheduler prototype to test the interface.

COMPUTATION STRUCTURES GROUP

We have come to an agreement in principle with IBM on the use of one of their internally
developed high-speed bipolar phaselock loop chips as the serial line front end for each inter-
switch link. James Pinkerton has studied the analog portions of this serial link and has developed
(1) a Multiwire test card to study the impedance charateristics of on-card wire, (2) a printed
circuit jig and test circuit to characterize the IBM phaselock loop chip and (3) a specification for
our custom serial cable. Most noteworthy is the cable which represents the state of the art in
shielded twisted pair interconnection. We are seeking price quotations now and will select a
vendor shortly. One manufacturer has produced a sample of our cable which upon cursory
analysis comes close to meeting our specifications.

We have also reached a decision regarding our strategic direction for circuit card fabrication.
The circuit switch was designed for fabrication in Multiwire technology rather than in printed
circuit for reasons of (1) simplicity in layout, (2) ease of change, (3) quick turnaround, and (4)
economy for production quantities of thirty-five so. Our experience (and experience of others)
has demonstrated to us that we were misguided in expecting quick turnaround and economy over
printed circuit boards of equivalent complexity. These observations, coupled with the closing of
the Multiwire fabrication plant in New Hampshire, forced us to reconsider the use of printed
wiring.

3.3. The Hardware Laboratory and New Equipment

We approached IBM about our need for printed circuit design tools and asked that they donate
to us a P.C. layout facility. They have agreed, and we are in the process of installing four IBM
5080 color graphics workstations which, when connected to the previously loaned 4381 host
processor, will run the Circuit Board Design System (CBDS) developed by Bell Northern
Research and marketed by IBM. We intend to use this tool to implement circuit cards as simple
as two-layer, one-of-a-kind test fixtures up through an eight- or ten-layer high density card for
the packet switch. This facility should be operational by August 1986.

We have installed and have started using the equipment donated by Apollo (reported last
period) as schematic capture and simulation stations. We now have four workstations on our
design LAN (interfaced to the DARPA Internet) along with 1.5 GB of file space and a 6250 bpi
streaming tape drive.

To support our LSI Logic work, we have installed their design verifier and Software Data Book
packages on these workstations. This provides us with a library of macrocells (NANDs, NORs,
SSI-type structures, I/O pads, etc.,) and a set of tools for analyzing the manufacturability, timing,
and loading characteristics of our gate array designs. The design verifier is usable with LSI
Logic’s LL3000, LL5000, LL7000, and LL900O families, spanning the gap from 34 m low
density cMOS to 1.5p m 10,000 gate cMOS.

We have made some progress in exercising our lab instruments through the IEEE 488 bus. We
have developed a spectrum analyzer package for the IBM PC which interfaces to our Tektronix

COMPUTATION STRUCTURES GROUP

7854 Digitizing Mainframe. When completed, this package will facilitate the analysis of the
serial link section of the packet switch in addition to serving as a general-purpose spectrum
analyzer.

4. TOOLS FOR DATAFLOW EXPERIMENTS

Our goal of investigating the feasiblity of general-purpose parallel machines has necessitated
developing a variety of tools, including a compiler for generating dataflow graphs from
programs written in Id, vehicles for executing these graphs, and an environment to facilitate
application development (editing, compiling, debugging) and architectural study. The first
version of the compiler is fully operational, as is a reasonably efficient graph interpreter, The Id
World environment provides an Id mode within ZMACS, similar to Lisp mode, to allow
interactive editing, compilation, execution, and debugging. Given a working dataflow program,
we want to investigate its behavior when executed on a dataflow machine. To this end we have
developed three vehicles for modeling the execution of dataflow programs on hypothetical
dataflow architectures. The first provides an extremely abstract model, similar to the U-
interpreter, with unit operation costs, unbounded processing power, zero communication delay,
and ideal program distribution. This provides a notion of the inherent properties of the program.
The second vehicle is a complex of thirty-two machines, each pretending to be a dataflow
processing element and communicating by passing tokens. No statement is made about the
internal structure of the processing element, however, resource management issues, such as how
work and data are distributed over the complex, are addressed in earnest. An important
ancilliary benefit is that we really get to indulge in the multiprocessor experience, keep a large
number of machines alive and doing what they are supposed to. The third vehicle, a detailed
simulator running on an IBM mainframe, allows us to look down inside the processor, in
addition to observing system-level resource management concerns.

4.1, Id Compiler

Version 1 of the Id Compiler [11], which is being maintained by Ken Traub, continues to run.
Several small modifications have been made in the past year, including a new schema for loop
contructs which bounds the resources required to execute loops. While Version 1 has served the
needs of the group adequately up to the present time, its limitations have become more and more
apparent as work on the dataflow project progresses. Besides the issue of compiler robustness,
the need for compiler-related experiments---program transformations, compile-time type
checking, optimizations, architectural changes, and the like---has sharply increased.

To help accommodate experiments in program transformation, an alternative syntax for Id,
called PID, has been developed. PID code strongly resembles Lisp, and as a result is easily
manipulated by programs written in Lisp. An undergraduate, Eric Hao, has written a program
which translates from PID to Id, so that PID programs may be compiled by the Id compiler and

COMPUTATION STRUCTURES GROUP

subsequently run on the simulator or GITA [9]. Together with a modification to the Id compiler
which permits translation from Id to PID, Eric’s translator allows an Id program to be translated
to PID, subjected to a source-to-source transformation by a LISP programs, and finally translated
back into Id for compilation and execution. Steven Heller has demonstrated the power of this
simple technique by implementing the program transformation described by Keshav Pingali
which causes a program to be executed in a demand-driven manner on a data-driven machine
[21].

While the PID-to-Id translator was a quick way of enhancing the power of Version 1 of the Id
compiler, the need still exists for a compiler designed to accommodate all manner of compiler-
related experiments. Version 2 of the Id compiler is currently under development, and is
specifically designed to support experimentation. Its major design goals:

» Provide a common core of data structures and abstractions that is general and
powerful enough to support all conceivable dataflow compilers. This common core
is described in Ken Traub’s "A Dataflow Compiler Substrate” [22].

¢ Provide a well-documented modular structure that allows the easy addition and
removal of compiler phases, such as type-checking or common subexpression
elimination. In this way, experimental compilation techniques can be introduced at
each step of the compilation procedure.

¢ Make the major transformation phases of the compiler (parsing, program graph
generation, machine graph generation, and assembly) as specification-driven as
possible. This allows easy modifications to syntax, schemata, and machine
architecture,

¢ Implementation in Common Lisp, to insure portability.

Development of Version 2 is well under way, and is expected to compile its first program in
August 1986.

4.2. GITA

Last summer a new vehicle, GITA (for Graph Interpreter for the Tagged-Token Architecture)
for executing dataflow programs was developed to provide an expedient means for executing and
testing compiled Id programs. This facilitated final check-out of the compiler and preparation of
programs for simulation experiments. The first version of GITA was designed by Ken Traub
and Richard Soley, and implemented in Common Lisp by Traub, Soley, and Dinarte Morais to
run on Symbolics and TI machines [17]. A second version of GITA was developed by David
Culler, Greg Papadopoulos, Andrew Chien, Richard Soley, Steven Heller, Dinarte Morais, and
Bhaskar Guharoy which runs in a distributed fashion on the MEF using the circuit switch.

In the abstract model, a configuration of a program is described by an assignment of tokens to
arcs in the graph. A node is enabled to execute (or fire) when tokens with matching tags are
present on its input arcs. When an enabled node fires, it consumes its inputs and generates result
tokens on its output arcs. Dataflow programs are determinate, so any enabled node can be fired

COMPUTATION STRUCTURES GROUP

at any time. Capturing this abstract model in a real interpreter is surprisingly straight-forward.
GITA maintains a queue of unprocessed tokens and a collection of unmatched tokens which
have been processed. The main loop dequeues an unprocessed tokens and processes it as

follows:
1) If the token requires no partner, the instruction it is destined for is executed and the
result tokens are added to the unprocessed queue.

2) If the token requires a partner, the collection of unmatched tokens is searched. If a
partner is found, the destination instruction is processed as above.

3) Finally, if no match is found the token is added to the collection of unmatched
tokens.

Of course, the name of the game is represention and access to the various data structures, and
this has worked out very nicely. GITA currently processes about 2400 dataflow operations per
second on a Symbolics 3600 and 1000 on a TI Explorer.

4.3. U-GITA

In addition to executing dataflow programs, GITA provides a basis for modeling certain
abstract machines. In particular, it is possible to model the kind of greedy execution one
associates with the U-interpreter. Given a configuration with tokens distributed throughout the
graph, all enabled activities fire in a single time-step, producing tokens on result arcs. There is
no bound place on the number of activities fired and no communication delay. This is realized
within GITA by time-stamping the tokens themselves. While executing a dataflow program it is
possible to construct execution profiles describing the behavior of the program on an ideal
machine. Typically, we look at the parallelism (number of operations per time step) and
resource requirements, e.g., number of unmatched tokens. It is also possible to model the
abstract behavior on a machine with a fixed number of processors.

44. MEF-GITA

A collection of Lisp machines with a high-speed interconnection network is made to act like a
collection of (rather slow) dataflow machines by having each execute the GITA interpreter.
Tags and I-structure addresses must be meaningful globally, as in a true datalow machine.
Machines spawn work off to other processors and service and request structure operations. All
communication is in the form of packets passed across the high-speed network. The resource
management issues in this context are essentially as if we had real dataflow machines, except the
time-scale is somewhat distorted and the primitives available within each processor are quite
powerful. As with the abstract machine, it is possible to construct execution profiles to help
understand the details of program behavior on the machine.

The three versions of GITA are one in the same source. Different statistics are collected in the
different modes. In fact, we run U-GITA on MEF to construct profiles more rapidly than would

COMPUTATION STRUCTURES GROUP

be possible with a single Lisp machine. Work has started on providing a uniform way of feeding
statistics collected on these various abstract machines, and the simulator discussed next, into the
Ilustrate facility.

4.5. SITA: A Simulator for the Tagged-Token Machine

The simulator for the TTDA has been described in previous reports. It provides a detailed
picture, essentially register transfer level, of the dataflow machine in operation. The simulator
has continued to evolve in response to the needs of the project, and it finally has a catchy name.
The changes reflect our growing understanding of the architecture. The simulator was modified
to support the bounded loop schema developed by David Culler [7]. This allows the unfolding
of loops to be controlled by a runtime constant in the simulator, Simulation results have made it
clear that current structure allocation schemes fail to take advantage of the pairing of ALU
pipelines and I-structure controllers. As a result, little benefit is derived from the local paths
between the ALU and the I-structure controller in a PE. In response to this observation, the
simulator is being restructured to allow different numbers of I-structure units and ALU pipelines.
This does not preclude organizing them in tightly coupled pairs. The restructuring allows us
more latitude in experimenting with different machine configurations.

Our computational power was increased considerably last fall by the addition of an IBM 4381.
This faster processor allows us to simulate the TTDA at 2.5 times the rate that was previously
possible. The simulator on the IBM 4381 now executes approximately 80 Dataflow
Instructions/second.

4.6. 1d World

The first version of Id World was completed this past year, integrating tools for editing,
compiling, executing, debugging, and analyzing Id programs in an environment similar to what
Lisp users enjoy. A new Id Mode within ZMACS allows dataflow programmers to live in the
style to which Lisp hackers have become accustomed. From within the editor it is possible to
compile meaningful pieces of dataflow programs. The resulting graph is automatically loaded
into GITA. On the MEF, the graph is transparently broadcast to all the MEF machines over the
circuit switch. When dataflow programs are invoked, GITA is brought into action, so your Lisp
machine (or even 32 of them) look to you like a dataflow machine. The real four de force is the
Id debugger developed by Dinarte Morais. If your dataflow program breaks, you find yourself in
the Id debugger, which is like the Lisp machine debugger with some important differences.
Instead of a stack trace, you are presented with an invocation tree, since after all this is truly a
parallel machine. The program structure is physically distributed over the entire MEF, but the
debugger makes that entirely transparent,

The other role for Id World is to provide a uniform interface to the three abstract machines.
Currently we can record and display profiles from U-GITA or MEF-GITA, but work remains in
areas of statistics collection, storage, and presentation.

COMPUTATION STRUCTURES GROUP

5. EXPERIMENTS ON MEF

5.1. Dataflow Experiments

The focus of our experiments has been resource management in the TTDA. The resources
include token storage, ALU processing cycles, structure storage, and structure memory
bandwidth, We have begun to examine how policies for managing these resources effect system
performance. The experiments are being conducted on SITA or GITA, according to whichever
provides the more powerful tool for highlighting the behavior of interest.

Simulation studies have exposed work distribution and data structure mapping as two crucial
issues in constructing a scalable multiprocessor. If we hope to achieve speedup in regions of
limited parallelism, work distribution is the critical factor. If we hope to fully utilize the
machine in regions of high utilization, then structure contention becomes a very serious problem.
Future experiments will further probe these crucial issues.

5.1.1 Token Storage Management

The token storage requirements of tagged-token machines will be quite large as parallelism
unfolds and multiple contexts for procedures in the parallel invocation tree are accumulated. In
his master’s thesis [4], Stephen Brobst suggests that a hierarchical memory may be an effective
way to organize the token storage unit of a tagged-token machine. A token cache can be used to
take advantage of temporal locality in the token matching process to yield a high throughput of
enabled instructions to the execution unit. For effective cache performance, however, prudent
management of program parallelism must be exercised to avoid oversaturation of the token
cache. The bounded loop schema developed by David Culler was shown to have a significant
impact in this regard.

5.1.2 Structure Storage Management

In any parallel machine, data structure distribution and contention is an important problem. To
this end, Andrew Chien [6] has examined structure referencing patterns for the SIMPLE code
and several smaller programs. Despite the fact that GITA has limited fidelity in timing aspects
of the TIDA, these measurements (done with one processor) have given us significant insight
into the temporal patterns of structure references. Preliminary indications of "hot spots™ have led
us to reconsider seriously the benefits of spatial locality in a parallel processor. This has led to a
restructuring of SITA, separating the I-structure units from the ALU pipelines and allowing
structures to be allocated across structure memory units.

MEF GITA experiments have also given us some insight into the structure storage management
problem. We have found that structure contention can be significant. Our initial allocation
mechanism places entire structures on a single PE. This, not suprisingly, leads to structure
reference contention when a large number of processors are employed. Future experiments will
consider the effects of allocating structures consecutive elements are on consecutive processors.

COMPUTATION STRUCTURES GROUP

5.1.3 Work Distribution

A number of SITA experiments have focused on the scalability of the architecture. Recent
experiments conducted by Andrew Chien on highly parallel programs show that the architecture
tolerates significant network and memory latency with only minimal increases in overall run
time. Scalability studies have shown that linear speedups are achievable for programs with large
armounts of parallelism. However, careful attention must be paid to work distribution in regimes
of low parallelism if the linear speedup is to continue into larger numbers of processors. These
results reflect the study of a very limited class of programs.

With each MEF GITA processor pretending to be a dataflow machine, we have strong
motivation for developing truly distributed mechanisms for allocating work across the collection
of machines. Our approach has been to start simple and look for shortcomings before
developing complex mechanisms, such as proposed for the TTDA. Currently, each processor
makes independent allocation decisions, without concem for decisions made by other processors.
We have experimented with diswributing work in a random manner and in ways that take
advantage of program structure. So far we have observed good speed-up on most applications,
but also certain limitations.

Distributing work on a code-block basis appears to be too coarse. In many cases, there is
sufficient instruction level parallelism to keep many processors busy, but not a sufficient number
of active code-blocks. This is exacerbated by inequities in the allocation of work. If most
processors have one code block, a few have two, and a few have none, all may have to wait for
the slowest. We plan to investigate finer-grained allocation mechanisms and simple load
leveling techniques.

5.1.4 Limitations of MEF GITA

Our initial experiments with MEF GITA have had a dual purpose: (a) to understand the impact
of certain resource allocation policies, and (b) understand the bias introduced by MEF GITA as
an imperfect execution vehicle. Thus, we have Tun a collection of applications on a varying
number of processors and have begun to cross-check our observations against results obtained on
the simulator.

One must be somewhat cautious in drawing conclusions from results obtained on MEF GITA,
since there are significant differences between that vehicle and what we expect a real dataflow
machine to be. One difference is that in MEF GITA processing structure requests draws away
from processing of dataflow instructions (since Lisp machine cpu cycles devoted to one subtract
from those available to the other), whereas in a real machine these would proceed independently.
Also, we expect a dataflow machine to be heavily pipelined, whereas MEF GITA is not.

In addition to resource management experiments, MEF GITA has provided a basis for
architectural studies. These include (a) analysis of dynamic instruction mixes as compared to
conventional machines, (b) token storage requirements of dataflow programs, (c¢) effects of loop
bounding, and (d) impact of reference count storage reclamation,

COMPUTATION STRUCTURES GROUP

3.2. DisCoRd: Parallel Graph Reduction on the MEF

Under the guidance of Rishiyur Nikhil, Patrick Lincoln has implemented an emulator for a
parallel graph reduction machine on the MEF. It is called DisCoRd, and was part of his
bachelor’s thesis [16].

Graph reduction is another parallel model of computation for functional programs based
directly on the abstract rewriting semantics of functional languages. (Interestingly, recent work
by Keshav Pingali on demand-driven evaluation in dataflow architectures indicates that perhaps
one can obtain a unified view of dataflow and graph reduction.)

The system consists of two independent parts: a) a compiler which translates programs in a
functional language to a collection of combinator definitions (in ZetaLisp) and a table of
strictness information for each combinator,! and b) the parallel graph reduction machine. We
have concentrated mainly on b), leaving open compilation issues in a) for future research.

The parallel graph reduction machine consists of an interconnection of processing elements
(PEs). Each PE consists of a reduction engine, a network manager, and a load manager. The
reduction engine has a "ready queue" of tasks representing subgraphs to be reduced; for each
task it may perform a reduction, or spawn more tasks to evaluate sub-expressions, based on
strictness information. The load manager periodically broadcasts the size of the ready queue to
neighboring PEs, and maintains an estimate of the sizes of ready queues in neighboring PEs.
The network manager is responsible for all communication to other PEs, and uses the load
information to decide which PE should receive spawned tasks.

The DisCoRd system allows the experimenter to specify the number of logical PEs and their
logical interconnection topology, and the mapping onto the actual physical resources of the
MEF. It starts up Lisp processes representing the logical PEs on the MEF Explorers, establishes
the communication links, loads the ZetaLisp combinator code, and starts execution by placing
the main program expression graph on one PE’s ready queue. DisCoRd is instrumented to
measure abstract computation steps and elapsed time.

The DisCoRd system is not yet very stable--there are several obvious coding improvements to
be done, and it uses only Ethernet connections instead of the MEF’s circuit switch. We have had
time thus far to perform only rudimentary experiments, reported in Patrick Lincoln’s thesis,
which demonstrate the flexibility of the DisCoRd testbed. This summer (1986) Rishiyur Nikhil
expects to make it more robust and then conduct meaningful experiments to evaluate the
feasibility of parallel graph reduction.

1A function is said to be strict in an argument if, whenever the argument is undefined, the function application is
also undefined.

COMPUTATION STRUCTURES GROUP

6. LANGUAGE RESEARCH FOR THE TAGGED-TOKEN DATAFLOW
ARCHITECTURE

Investigation of language-related issues for the Tagged-Token Dataflow Architecture continues
under the direction of Rishiyur Nikhil, motivated by the belief that such research must be an
integral part of any research into parallel architectures.

6.1. Id/83s

The base language we have been using for many years to program the TTDA machines is a
functional language called Id. Originally proposed in [2], Id has evolved in a somewhat ad hoc
and erratic manner over the last few years.

In June/July 1985, Rishiyur Nikhil and Arvind used their preparation for the summer course
"6.83s: Functional Programming and Dataflow Architectures” as an opportunity to redesign Id
completely, incorporating their latest understanding of issues in data structures and data types.
The resulting language is called "1d/83s", and is reported in [2083s].

6.1.1 I-structures in 1d/83s
A fundamental aspect of Id is a data-structuring facility called "I-structures”, which attempt to
solve what we believe are serious problems in purely functional models of data structures.

In a functional language, data-structures are never "updated”. They are created as complete
values, and "update” operations create new values. Thus the operation

update{a, i, v)

where a, i and v are an array, index and value respectively, produces a new array value that is
just like a except at index i where it has value v. In general, the implementation may have to
copy the rest of a. To minimize this copying, most functional langnages provide linked
structures (such as lists) built out of "smaller” units such as cons-cells, so that a updated value
can share as much as possible of the original value. Arrays are then simulated by appropriate
operations on linked structures. Unfortunately, for structures that logically behave like arrays,
linked structures increase access times (to at least log(n)) , make some traversals extremely
inefficient, and preclude some parallel accesses.

I-structures were first proposed by Arvind in[3] as a solution to this problem, affording
parallel, constant-time access, and avoiding excessive copying. I-structures evolved out of very
operational intuitions about data-structures in memory. The key idea was to separate the activity
of allocating storage for a data-structure from the activity of filling in its components. Thus an
array, when allocated, contains "empty” slots which are later filled by other concurrent
operations. To preserve determinacy, only one value is allowed to be written into any slot, and
any attempt to read a slot is delayed until it is non-empty.

The semantic implications of I-structures were not so easy to pin down. It was unclear as to

COMPUTATION STRUCTURES GROUP

what were the appropriate linguistic constructs to manipulate I-structures. For a long time, I-
structure constructs in Id clung to a conventional expression-oriented syntax, in keeping with the
functional nature of the language.

In the last year, work by Keshav Pingali has greatly deepened our understanding of I-structure
semantics. It is now apparent that with I-structures, Id is no longer in the class of purely
functional languages, and can no longer be given classical A-calculus-based semantics. In
particular, Pingali has discovered a close connection between I-structures and so-called "logic
variables” in logic programming languages. He has developed an elegant semantics for
functional languages with I-structures, based on solving sets of equations involving so-called
"closure” operators.

It was initially difficult for us to realize that we had gone beyond functional languages. I-
structure operations do have the flavor of imperatives. However, the constraints on assignment
and selection guarantee that programs remain determinate. Id/83s has been designed to reflect
this new understanding of I-structures. There are three constructs relevant to I-structures:

¢ array (n) is an expression that allocates an "empty” array of size n and returns as
value a descriptor to that array. This value is a first-class value.

® x[1i] is an expression analogous to selecting a component of an array---it returns
the ith value of the array x, gfter it becomes non-empty.

*x[i] = visa statement analogous to updating an array location---t stores value v
in location i of array x, provided the location is empty. Multiple writes into a
location are run-time errors. :
Because of the assignment statement, the language is no longer purely expression-oriented---
conditionals, loops, and abstractions can also be statements.

Several programs have been written in Id/83s, including a version of SIMPLE (a moderately
large program that is a classic benchmark for evaluating high-performance machines) written by
Arvind, giving us some confidence that we have a robust language design.

6.1.2 Types in 1d/83s

Rishiyur Nikhil has been studying the question of incorporating a data-type system and type-
checking into Id/83s. We have become increasingly convinced of the necessity for the compiler
to have detailed data-type information about a program. This conviction stems from various
sources.

First, in studying the garbage collection problem on the dataflow machine, we have come to
realize the necessity of the compiler to determine which arcs in dataflow graphs carry I-structure
references and which do not. Without this knowledge, it is necessary to insert conditional
garbage collection code at every fork point and at every array-select instruction—-this is an
unacceptable overhead.

Second, even code that manipulates scalars needs to perform rudimentary type-checking to
avoid misintrepretation of scalar data. This is analogous to tag-checking in Lisp

COMPUTATION STRUCTURES GROUP

implementations, and is also an unacceptable overhead.?

Third, it is our experience (corroborated by many other researchers) that compile-time type-
checking is a powerful debugging tool. Many "silly" errors, such as applying CDR to a number,
so typical in Lisp programs and so often discovered after months or years of use of a program,
Just do not occur in a statically typed system. It is a common folk theorem that when
programming in languages like ML or Miranda, most errors are caught by the type-checker.

There are thus two separate but not unrelated questions: a) What data-type system, and b) What
type-checking methodology should we adopt for 1d/83s?

In answer to question a), we insist that the type system should not seriously constrain the
programmer-- one should not have to abandon completely the expressive power of an untyped
language.? A key to this objective is to adopt a type-system with sufficient polymorphism, such
as that of CLU or ML. We are looking at the second-order typed A-calculus as a possibility
because we believe that it is a clean and well-understood system that subsumes the type systems
of ML and CLU, the only other type systems we know that are practical and meet our needs for
expressive power. This type system was proposed independently by Girard in 1971 and
Reynolds in 1974,

In answer to question b), we would like the type-checker to perform as much type-inference as
possible, i.e., to be able to type-check a program without the programmer having to laboriously
annotate the code with type declarations, We envisage a facility in Id World where the
programmer can point to a sub-expression and ask for its type, and optionally have it
automatically inserted. We expect the Id World system to keep wrack of dependencies between
functions, and to redo incrementally the necessary type-checking when a function is edited.

We have been investigating several issues in the use of the Girard-Reynolds type system in Id.
It is well known that this type system does not permit full type-inference--—-i.e., if the
programmer were to omit all type declarations, the problem of reconstructing those declarations
automatically is undecidable. Thus, some annotation is necessary. We are investigating
questions such as: How much type declaration is necessary, and is there a simple model for the
programmer to decide where to insert such declarations? If essential declarations are omitted, is
it acceptable for the type-checker to produce a (weaker) Milner-typing instead? If at times the
programmer wishes to bypass the type system (and we believe there will always be such
situations) is there a clean way of limiting the scope of this circumvention? The Girard-
Reynolds type system is based on a purely functional language (the A-calculus). Does it extend
cleanly to Id, which also has I-structures?

ZOn Symbolics machines, ALU operations are done “optimistically” in parallel with tag checking which generates
a fault if there is a type-error. Wearing our RISC hats, we believe that this adds unacceptable complexity to the
hardware---most of this checking could and should be done at compile-time.

3The type system of Pascal is an example of one that does not meet this goal.

COMPUTATION STRUCTURES GROUP

Because of the immediate need for a working language, we did not include a type system as
part of 1d/83s. However, using intuitions that Rishiyur Nikhil has gained from long experience
with Milner-type systems, we have designed Id/83s with type-checking in mind. An example of
this influence is seen in the separation of lists (homogeneous collections) from tuples
(heterogeneous collections). We are confident that we can cleanly augment it with a modern,
polymorphic type system,

To answer some of the type-checking questions, Shu-Wie Chen has completed a bachelor’s
thesis (5] in which he has built an experimental programming system with an incremental Milner
type system, along the lines suggested in [19]. Currently, it uses a small functional language
typical of many functional languages; we expect to move this system soon into Id World using
the new compiler being developed by Ken Traub.

6.1.3 Garbage Collection Experiments on MEF
Now that we have started running large experiments on the MEF, the garbage collection
problem for the Tagged Token Dataflow machine looms seriously.

Because I-structures are "first-class” objects in Id, they must be allocated dynamically, and
reclaimed using some form of garbage collection. We do not think a conventional mark-sweep
scheme is suitable for the TTDA, partly because it does not generalize well to the multi-
processor situation, and partly because it is difficult, in the TTDA, to identify reliably the "roots"
of reachable structures.

We are thus exploring garbage-collection based mainly on reference-counts.4 The problem
still to be solved is this: Because of the non-determinacy in the scheduling of events and in the
unpredictability of network transit times, "decrement-refcount” messages and "increment-
refcount” messages may arrive at an I-structure in any order. The reference count stored in the

structure may thus spuriously drop to zero, and the structure may be reclaimed prematurely.

Bhaskar Guharoy is instrumenting the I-structure code in GITA to keep track of reference-
count message histories for each structure. We hope to obtain a better idea of how often
reference counts go to zero spuriously, and to develop a probabilistic model of how long
reference counts stay spuriously at zero. With this understanding, we will be predict with high
probability when a reference count is truly zero, and use that as a signal to move that structure to
slower storage, reasonably assured that it will never be accessed again.

Rishiyur Nikhil has also been looking at program analysis to identify conditions under which
we can reliably identify I-structures whose extent in time coincides with the lifetime of a code-
block. We already have a method of detecting termination of code-blocks; the reclamation of
such I-structures may then be triggered by the termination signals of their parent code-blocks,
and we can elide their reference-counting instructions altogether.

“Reference counts cannot be used to reclaim cyclic structures, but we do anticipate cycles to be very common in
Id programs,

COMPUTATION STRUCTURES GROUP

6.2. Demand-driven Evaluation

Demand-driven evaluation is often described informally as "doing only those computations that
are required to produce the output of the program.” In his doctoral thesis, Keshav Pingali defined
a functional language L and gave two semantics for it ; an operational semantics using dataflow
graphs and a denotational semantics using fixpoints on an abstract domain. The informal notion
of "minimal computation required to produce the output of an L program" is characterized
formally by the least prefix point of the program. He then showed how L programs can be
transformed so that a data-driven evaluation of a transformed program performs only these
computations. The target language for the transformation was a functional language that is a
superset of L. These result can be extended to any functional language without non-sequential
functions such as the parallel-or.

Pingali’s thesis describes another transformation for achieving the effect of demand-driven
evaluation, for which the target language is a functional language in which data structures
behave like logical variables in a logic programming language such as Concurrent Prolog. This
target language can be looked at as a variation of Id83/s in which I-structure cells can be written
into more than once : if a write is attempted in any I-structure cell which already contains some
value, the incoming value is unified with the contents of the cell. Steven Heller has taken up the
task of implementing this transformation. Future work will include:

* defining the notion of demand-driven evaluation for a language with I-structures;

* performing various optimizations to reduce the overhead of the demand code;

* producing graphs which are self-cleaning, i.e., which do not leave tokens behind
when the program terminates.

6.3. Databases and Functional Languages

In the last year Rishiyur Nikhil has restarted research into databases in functional languages.
In [18] he demonstrated the attractiveness and feasibility of the use of functional languages as
front-end query languages for existing database systems. The semantic advantages included the
availability of an expressive, computationally complete query language with a rich type system
into which conventional data models (such as the relational model) have a simple and natural
embedding. He demonstrated an efficient implementation by establishing a correspondence
between conventional database operators and stream operators in a graph-reduction execution
model for functional languages.

We are now studying the problem of including databases as an integral part of functional
languages (rather than relying on an existing, external, conventional database system),

COMPUTATION STRUCTURES GROUP

6.3.1 Data Models and Type Structure

In our view, a data mode! is nothing more than a data type system; a schema for a database is
nothing more than a type declaration within that type system; and a database itself is nothing
more than an object having the type declared in the schema. With this perspective, it is evident
why conventional databases are not used for the hundreds of applications that could use them---
mail systems, operating system tables, text-processor device and font databases, CAD/CAM
engineering databases, erc., Conventional data models (even the much-touted relational model)
just do not offer the rich type systems that we are accustomed to (and find indispensible) in
programming languages. Not only are the type-systems fundamentally inadequate, but they are
riddled with ad hoc limitations (such as what types may be components of what other types,
maximum field sizes expressed in bytes, ezc.,) that have no semantic justification,

We therefore consider it axiomatic that the fact that an object is to be stored in a database
should not be reason for any loss of allowable type structure in that object. Database objects
(i.e., those that are stored persistently) should be freely usable with transient objects. Itis up to
the system implementor to design methods that allow the programmer to store and retrieve any
object in a type-safe and efficient manner.

6.3.2 Modelling State

At any given point in time, a database is supposed to model an abstracted state of the world.
As the state of the world changes with time, the database is expected to keep track of these
changed states.

We can ask: How should a database system model the evolving state of the world?
Conventional database systems maintain only a "current” state. A change of state in the world is
mimicked by erasing some information from, and adding other information to, the database so
that once again it represents the "current” state of the world.

We believe that there are many semantic and pragmatic problems with this conventional view.
First of all, it seems unlikely that humans model the world this way-- we are capable not only of
having an estimate of the current state of the world, but also of previous states. We may "forget"
information, perhaps because it is unnecessary, but we do not consciously erase information. In
fact, it can be argued that this capability is necessary to make intelligent decisions about the
future,

Second, we believe that erasure of information in databases is motivated mainly from
efficiency considerations, and because we are so used to thinking in terms of constructs from
imperative programming languages. In many database situations (e.g., banks, personnel, billing)
where it is necessary o keep a record of all past states of the database, one usually designs
special, ad hoc methods to retain information that would normally be erased; these methods are
not part of the data model, and are often designed on a per database basis.

When a current state database is shared by many users, it becomes an overly critical resource.
Most users do not demand the current state-- a "recent” state is generally adequate, In CAD

COMPUTATION STRUCTURES GROUP

databases, users often need access to a consistent state of the database for extended periods of
time during which they can experiment with various designs. If the contention due to such
undemanding users is to be avoided, additional mechanisms must be created to extract snapshots
of the database for them.

A central feature of databases is that state transitions, no matter how large, are truly atomic. In
a database that maintains only a "current” state, implementing this abstraction is extraordinarily
difficult. Further, users who wish only to read the database (no state transition) must contend
with those who want to write it (cause a state transition). In a database that models histories of
states, these problems are greatly alleviated.

6.3.3 Functional Databases

Our view of databases in functional languages thus emerges. A state of the world is modeled
as a persistently stored environment, binding names to values (and perhaps types). A query on
this state is just an expression evaluated in this environment. A database is a history of states,
and an update transaction is a meta-level expression that extends this history by creating a new
environment (such as by redefining a function SALARY mapping PERSONs 10 NUMBERs)
based on the existing history. Depending on the application, we may permit only linear history
extensions, or we may permit branching extensions---both have their uses. Extensions occur
atomically---a failed update transaction simply leaves the history unchanged. For linear history
extensions, update transactions are serialized to preserve atomic state transitions.

Explicit environment-specification operators in the query and update languages allow queries
and updates to depend not only on the most recent state, but on any previous state.

With this philosophical background we have been a) studying language issues to express this
model of state, and b) possible implementation strategies. The major difficulty in a) is to have a
view of types that is consistent across histories, i.e., to have meaningful operations that may
update a data-type definition from one state to the next.

For implementations it appears that histories of states can be superimposed nicely on graph-
reduction models of memory. Each state is associated with its own private graph memory which
can share large subgraphs with previous states via pointers to previous graph memories. Thus, a
new state initially contains only the portions of the environment that are "updated” with respect
to the previous state. Using standard copying garbage-collection techniques, other parts of the
new state can be moved up to the new graph memory to improve locality transparently to the
user, and old parts of the state history can be cleanly pruned or re-attached dynamically
according to available storage capacity.

COMPUTATION STRUCTURES GROUP

7. WORK UNDER PROFESSOR DENNIS’S SUPERVISION

7.1. The VIM Project

The VIM project aims to develop an experimental computer system based on principles of data-
driven instruction execution and functional programming languages. The project is unique in
striving for a system that will serve multiple users with a degree of semantic coherence well
beyond what contemporary computer systems are able to offer. It also differs from other efforts
to build systems to support functional programming in that the issues of efficient execution of
functional programs over a hierarchical memory are addressed and solutions sought. The system
uses a base language that is a form of acyclic dataflow graph, and a user language VIMVAL that
is an extension and revision of the functional language VAL.

7.2. Accomplishments

In the past five years, substantial progress has been made on VIM. The resolution of successive
issues has brought the project to the point where only a few problem areas need to be addressed
before a major implementation effort can be mounted.

The project began in 1981 when we realized that our earlier proposals for a general purpose
computer system based on dataflow principles could not be adequately evaluated due to the
absence of experience in formulating and running functional programs. The nature of
programming itself would be so changed by the kind of system we proposed that all past
experience would be irrelevant to the detailed design decisions required to define a practical
machine.

From the beginning, our plan has been to build an experimental system made of ordinary off-
the-shelf components that can evaluate the functional programming style and particular
mechanisms for supporting modular programming of a given user community. Once Justified by
our experience with this unique experimental programming environment, plans could be refined
and developed for the kind of powerful and efficient computer systems envisioned in our earlier
work,

The first step was the formulation of an operational computer system that encompassed all
essential features of the proposed system. This operational model may be viewed as an early
simplified specification of the base language of our system. Initially the plan of development
was to define a series of operational models of increasing detail such that the most refined model
was a specification of the VIM implementation-- a set of microcoded routines running on a
suitable microprogrammable computer such as a Lisp machine.

In the academic year 1981-82 the attraction of having a working interpreter for VIMVAL
prevailed and an implementation was written by Joseph Stoy, visiting scientist from Oxford
University. Many issues concerning the efficient encoding of instructions and data for the

COMPUTATION STRUCTURES GROUP

complete language were resolved at that time. In addition, our understanding of the VIMVAL
language was refined and improved.

The next step was to develop and evaluate alternate approaches to representing and operating
on data structure values stored in the VIM heap. Since the heap is intended to be implemented on
a hierarchical memory comprising semiconductor and disk systems, and since efficient
concurrent handling of many memory transactions is desired, we proposed using fixed-size
chunks of memory as the unit of allocation to a data structure. The corresponding creation,
augmentation, and access algorithms were designed and specified by Bhaskar Guharoy, who also
developed suitable mechanisms, based on the reference count technique, for disposing of chunks
no longer accessible to computations.

In a major study [13], Suresh Jagannathan showed how backup and recovery mechanisms may
be built into VIM so that users suffer negligible loss of information in the event of a system crash
due to any single failure. The technique is based on saving information that permits
reconstruction of the results of all function evaluations performed from initiation of a user
command to the time of the crash. A small online stable store is proposed to hold the backup data
prior to writing it on backup tape.

One significant change in our plans is the switch from a strongly typed language in the spirit of
ClIU to the use of optional type declarations and a Milner-style type inference technique. The
refinement of Milner’s theory and an elegant statement of the type-inference algorithm for
VIMVAL are given in the prize-winning bachelor’s thesis of Bradley Kuszmaul [14].

Recently, a new operational model for the VIM base language has been formulated by Guharoy
and Jagannathan. This work reflects our present thoughts on the elements of the VIM base
language. It has been extended to help establish the correctness of the data structure access
algorithms and to establish the correctness of the backup and recovery algorithms.

Several new studies have focused on the user programming environment supported by the VIM
system. A proposal for the user command language has been drafted by Joseph Stoy. This
proposal raises many questions about the role of environments (which in VIM serve the function
of directories in other systems), and the impact of the command language on the VIM type
system. These issues are the subject of current doctoral research by Earl Waldin.

Other topics for future study include evaluation of approaches to supporting nondeterminate
computation using guardians, the application of non-determinacy to data base systems and
backtrack programming, and study of language constructs for defining data structure values in
general recursive data types.

COMPUTATION STRUCTURES GROUP

7.3. Compiling for the Static Dataflow Machine

A compiler that produces efficient dataflow machine code from programs written in the
applicative language VAL [1] is crucial to the success of the static architecture in large scale
scientific applications. To keep the architecture simple and efficient for computations involving
large arrays of numerical data, most of the decisions about resource assignment (allocation of
data structures to space in array memory and of dataflow instructions to processing elements)
have been entrusted to the compiler.

To accomplish an effective resource allocation, the compiler must transform the program so
that its structure is a good match to the processing power and memory space of the target
machine. Global program transformations are needed because the several sections of a large
program must be capable of operating together in a way that allows full utilization of
performance without requiring inordinately large amounts of memory for intermediate results. It
is reasonable to attempt such global program transformations because VAL is a functional or
applicative language, and therefore interactions among program parts occur only at points that
are evident from the syntactic structure of the program---the impossibility of "side effects"
removes the major difficulty that inhibits use of global optimizations in compilers for
conventional languages.

A pipelined code mapping scheme as a conceptual basis for such a compiler has been
developed in Gao Gaung-Rong’s doctoral research, which will be completed soon. His thesis
explores the transformations that can be made to achieve high performance for numerical
programs when executed on a computer based on dataflow principles. We demonstrate how the
massive parallelism of array operations in such programs can be effectively exploited by the
fine-grain parallelism of static dataflow architecture.

The key is to organize the dataflow machine program graph such that array operations can be
effectively pipelined. We introduce a simple value-oriented language to €Xpress user programs.
Program transformation can be performed on the basis of both the global and local dataflow
analysis to generate efficient pipelined dataflow machine code. A pipelined code mapping
scheme for transforming array operations in high-level language programs into pipelined
dataflow machine programs is described in Gao’s doctoral thesis, The machine architecture
support for efficient pipelining also is briefly addressed.

Certain results of the thesis research, as well as its application of the pipelined code mapping
scheme to some numerical problems, are reported in the publications of the group.

7.4. Simulating Applicative Architectures on the Connection Machine

We have simulated applicative architectures on the connection machine. This work was done
as a master’s thesis by Bradley C. Kuszmaul [15].

The connection machine (CM) is a highly parallel single instruction multiple data (SIMD)

COMPUTATION STRUCTURES GROUP

computer, which has been described as "a huge piece of hardware looking for a programming
methodology.” Applicative languages, on the other hand, can be described as a programming
methodology looking for a parallel computing engine.

By simulating architectures that support applicative languages ("applicative architectures™)
(e.g., dataflow and combinator reduction architectures) on the CM we can achieve the following

goals:

* Quickly and easily experiment with the design and implementation of applicative
architectures.

* Run large applicative programs effeciently enough to gain useful experience.

e Support programming environments that allow us to do general purpose
computation on the CM.

Bradley Kuszmaul’s thesis describes the techniques which we use to simulate applicative
architectures on the CM, and the discuss implications for the generalized case of simulating
multiple instruction multiple data (MIMD) systems on single instruction multiple data (SIMD)
computers.

Publications

1. Arvind, and D.E. Culler. "Managing Resources in a Parallel Machine."
Proceedings of IFIP TC-10 Working Conference on Fifth Generation Computer
Architecture, Manchester, England, North-Holland Publishing Company, July
15-18, 1985,

2. -. "Dataflow Architectures." MIT/LCS/TM-294, MIT Laboratory for Computer
Science, Cambridge, MA, February 1986. (To appear in First Annual Review in
Computer Science).

3. Arvind, and R. A. lannucci. "Two Fundamental Issues in Multiprocessing."
Computation Structures Group Memo 226-4, MIT Laboratory for Computer
Science, Cambridge, MA, January 1986. January 1986.

4. Brobst, S.A., T. Malone, K. Grant, and M. Cohen. "Toward Intelligent Message
Routing Systems." Proceedings of the 2nd International Symposium on Computer
Message Systems, Boston, MA, September 4-6, 1985. (Also available as CISR WP
\#129 and Sloan SP \#1709-85.)

3. _. "The Dataflow model: An Alternative to von Neumann Architectures.”

Proceedings of the 5th International Conference in Computer Science, Santiago,
Chile, July 15-17, 1985.

6. Gao, G-R. "A Maximally Pipelined Tridiagonal Linear Equation Solver."
International Journal of Parallel and Distributed Computing), 1986 (to appear).

7. -. "A Pipelined Code Mapping Scheme for Tridiagonal Linear Systems."
Proceedings of the 1986 Working Conference on Highly Parallel Computer
Architecture, Nice, France, March 24-26, 1986.

8.

10.

11.

12.

13.

14.

15.

16.

17,

18.

19.

20.

COMPUTATION STRUCTURES GROUP

-. "Massive Fine-Grain Parallelism in Array Computation: a Dataflow Solution.”
Proceedings of Future Directions of Computer Architecture and Software
Workshop, Charleston, VA, May 5-7, 1986.

Heller, §.K. "Directed Cube Networks: A Practical Investigation.” Computation
Structures Group Memo 253, MIT Laboratory for Computer Science, Cambridge,
MA, July 1985.

Tannucci, R.A. "Dataflow Computer Architecture: an Introduction.” Lecture Notes

for the International Summer School on Advanced Programming Technologies,

- Facultad de Informatica, San Sebastian, Spain, September 1985.

Nikhil, R.S. "Practical Polymorphism." Proceedings of Functional Programming
Languages and Computer Architecture., Springer-Verlag, LNCS 201, Nancy,
France, September 1985.

- "Functional Databases, Functional Languages." Proceedings of the Workshop
on Persistence and Data Types, Appin, Scotland, August 1985,

Nikhil, R.S., and Arvind. "Id/83s." Computation Structures Group Memo 249, MIT
Laboratory for Computer Science, Cambridge, MA, July 1985.

Papadopoulos, G.M. "Redundancy Management for Synchronous and
Asynchronous Systems,"NATO AGARD Lecture Series No. 143, NASA Dreyden,
CA; Copenhagen, Denmark; Athens, Greece; October 1985.

- "Design Issues in Data Synchronous Systems." NATO AGARD Lecture Series
No. 143, October 1985.

Pingali, K.K., and Arvind. "Efficient Demand-Driven Evaluation (I)." ACM
TOPLAS, vol. 7, no. 2, April 1985. Corrigendum: ACM TOPLAS, vol. 8, no. 1,
January 1986.

_. "Efficient Demand-Driven Evaluation (I@)," ACM TOPLAS, vol. 8, no. 1,
January 1986.

Pingali, K.K., and VK. Kathail. "An Introduction to the A-calculus.” Computation
Structures Group Memo 258, MIT Laboratory for Computer Science, Cambridge,
MA, March 1986.

Soley, R.M. “Generic Software for the Emulation of Multiprocessor
Architectures.” MIT/LCS/TR-339, MIT Laboratory for Computer Science,
Cambridge, MA, July 1986.

Traub, K.R. "A Dataflow Compiler Substrate." Computation Structures Group
Memo 261, MIT Laboratory for Compiler Science, Cambridge, MA, August 1986.

Theses Completed

. Beckerle, M.J. "Logical Structures for Functional Languages." S.M. thesis, MIT

Department of Electrical Engineering and Computer Science, Cambridge, MA,
February 1986.

Bromley, G.F. "Waiting/Matching for Tagged-Token Dataflow Architectures."
S.B. thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1986.

COMPUTATION STRUCTURES GROUP

10.

11,

12.

13.

14.

15.

16.

Brobst, S.A. "Instruction Scheduling and Token Storage Requirements in a
Dataflow Supercomputer.” S.M. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, May 1986.

Chen, S-W. "A Practical Polymorphic Type-inference Type-checking System.”
S.B. thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1986,

Gao, G-R. "A Pipeline Code Generation Scheme for Static Dataflow Computers."
Ph.D. thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, September 1986.

Gornish, E. "Loop Unfolding for a Static Dataflow Machine.” S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge, MA,
May 1986.

Hughes, G.W. "A Unified View of Consistancy in Fault-Tolerant Computer
Design." S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, November 1985.

Jagannathan, S. "Guaranteeing Data Security in a Static Dataflow Machine." S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, September 1985.

Kuszmaul, B.C. "Simulating Applicative Architectures on the Connection
Machine.” S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1986.

Lincoln, P.D. "DisCoRd: Distributed Combinator Reduction.” S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge, MA,
May 1986.

Marcovitz, D. "A Comparison of Two Signal System Architectures for a Static
Dataflow Machine." S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, February 1986.

Morais, D.R. "Id World: An Environment for the Development of Dataflow
Programs Written in Id." S.B.thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1986.

Pingali, K.K. "Demand-Driven Evaluation on Dataflow Machines." Ph.D. thesis,
MIT Department of Electrical Engineering and Computer Science, Cambridge,
MA, May 1986.

Pinkerton, J.T. "A Method for Translating from a Hierarchical Design System into
a Flat Design Structure." S.B. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, May 1986.

Wanuga, T. "Routing Network Performance in a Static Dataflow Machine." S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, September 1985.

Younis, S. "The Clock Distribution System of the Multiprocessor Emulation
Facility." S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1986.

COMPUTATION STRUCTURES GROUP

Theses in Progress

- Chien, A.A. "Congestion Control in Routing Networks." S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge, MA,
expected August 1986.

. Chu, T-A. "A Design Methodology for VLSI Self-timed Systems." Ph.D., MIT
Department of Electrical Engineering and Computer Science, Cambridge, MA,
expected September 1986.

. Gao, G-R."A Pipeline Code Generation Scheme for Static Dataflow Computers.
Ph.D. thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1986.

. Kathail, V.K. "Optimal Evalvators for Lambda-calculus Based Functional
Languages.” Ph. D. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, expected September 1986.

. Kaushik, S. "A Hardware Error Checker for the Packet Switch." S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge, MA,
expected May 1986.

- Maa, G. K. "Scalability of the Tagged-token Dataflow Machine." S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge, MA,
expected December 1986.

Talks

. Arvind. "MIT Tagged-Token Dataflow Project." G.E.C., Penta Hotel, London,
England. July 15, 1985.

. _» "Managing Resources in a Parallel Machine." IFIP TC-10 Working Conference
on Fifth Generation Computer Architecture, UMIST, Manchester, England, July
18, 1985.

. — "Dataflow: A Way of Doing Reduction"and 3 more lectures on Dataflow and
Reduction, First Autumn Workshop on Reduction Machines, Ustica, Italy,
September 3-13, 1985,

. —. "Why Dataflow Architectures?." High Technology Futures, CDC, Riverwood
Conference Center, Monticello, MN, September 19, 1985.

. _. "Dataflow Research in Japan." High Technology Futures, CDC, Riverwood
Conference Center, Monticello, MN, September 19, 1985.

— "Why Dataflow Architectures?" Distinguished Lecture Series, Cornell
University, Ithaca, NY, October 17, 1985.

_ "Why Dataflow Architectures?” Distinguished Lecture Series, Brown
University, Providence, RI, October 31, 1985.

. _ "Demand-Driven Evaluation on Dataflow Machines." Brown University,
Providence, RI, October 31, 1985.

COMPUTATION STRUCTURES GROUP

9.

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21

22,

23.

24.

25.

26.

_. "Why Dataflow Architectures?” Oregon Graduate Center, Portland, OR,
November 14, 1985.

— "Why Dataflow Architectures?” Carnegie Mellon University, Pitisburg, PA,
November 22, 1985.

—. "Demand-Driven Evaluation on Dataflow Machines." Invited talk, Fifth
Conference on Foundations of Software Technology and Theoretical Computer
Science, New Delhi, India. December 18, 1985.

—. "Why Dataflow Architectures?" Tata Institute of Fundamental Research,
Bombay, India, December 20, 1985,

_. "Dataflow Architectures.” Tata Institute of Fundamental Research, Bombay,
India, December 20, 1985.

_. "[-Structures.” Tata Institute of Fundamental Research, Bombay, India,
December 23, 1985.

_. "Parallel Machines are Coming." Tata Consulting Services, Bombay, India,
December 23, 1985.

_ "Why Dataflow Architectures?" Institute Lecture, LLT., Kanpur, India, January
1, 1986.

_. "Why Dataflow Architectures?" LL.T., Delhi, India, January 3, 1986.

—. "The Dynamic Dataflow Architecture.” Advanced Course on New Approaches
to the Architecture and the Design of Embedded Systermns, E.T.H., Zurich,
Switzerland, March 6, 1986.

_. "Characteristics of a Processor for a General-purpose Parallel Machine."
Workshop on Design and Performance Issues in Parallel Architectures, University
of Maryland, College Park, MD, March 17, 1986.

Brobst, S.A. "Applying Microcomputers in a Small Organization." AIESEC
Spring Regional Conference, Boston, MA, March 8, 1986.

_- "Toward Intelligent Message Routing Systems." 2nd International Symposium
on Computer Message Systems, Washington D.C., September 6, 1985.

— 'Benchmark Analysis of High Performance MIMD Machines." Harris
Corporation, Advanced Technology Division, Melbourne, Florida, June 20, 1985,

—. "Performance Evaluation of the Tagged-Token Dataflow Architecture.”
Workshop on Performance Evaluation of High-Speed Computers, Institute for
Computer Sciences and Technology, National Bureau of Standards, Gaithersburg,
Maryland, June 6, 1985.

Culler, D.E. "Parallel Processing." Parallel Processing Tutorial, Newport, R.L, June
10, 1986.

Dennis, J.B., "Dataflow Computing--An Inside View.” Comell University, Ithaca,
NY, March 19, 1986.

_. "Dataflow Computing--An Inside View." New York University, New York, NY,
March 20, 1986.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

41,

42,

43.

COMPUTATION STRUCTURES GROUP

_. "Dataflow Computing--An Inside View."” Yale University, New Haven, March
21, 1986.

_. "The VIM Project: Experimental Computer Design Using Dataflow
Programming Principles, MIT, Laboratory for Computer Science, April 23, 1986.

Iannucci, R. A,, "The MIT Multiprocessor Emulation Facility", MIT Summer
Course 6.83s, MIT, August, 1985.

_. Six Lectures on Dataflow Architectures and MEF, International Summer School
on Advanced Programming Technologies, Facultad de Informatica, San Sebastian,
Spain, September, 1985.

_. "The MIT Multiprocessor Emulation Facility and Dataflow Projects.” The
University of Manchester, Department of Computer Science, Manchester,
ENGLAND, September, 1985.

—. "The MIT Multiprocessor Emulation Facility and Dataflow Projects.” IBM
Cambridge Scientific Center, Cambridge, MA, November 1985,

_ "Dataflow Research at MIT." IBM System Technology Division Headquarters,
Endicott, NY, May 1985.

_. "Dataflow Research at MIT." IBM Data System Division Headquarters, White
Plains, NY, September 1985.

_. "Dataflow Research at MIT." IBM Cambridge Scientific Center, Cambridge,
MA, December 1985.

Pingali, Keshav K., "Lazy Evaluation on Dataflow Machines." University of
Pennyslvania, Philadelphia, PA, March 20, 1986.

_. "Lazy Evaluation on Dataflow Machines." Microelectronics and Computer
Technology Corporation, Austin, TX, March 3, 1986.

_. "Lazy Evaluation on Dataflow Machines." University of Texas, Austin, TX,
March §, 1986.

— 'Lazy Evaluation on Dataflow Machines." Yale University, New Haven, CT,
April 1, 1986.

. _. "Lazy Evaluation on Dataflow Machines." University of Washington, Seattle,

WA, April 8, 1986.

_. "Lazy Evaluation on Dataflow Machines." Stanford University, Stanford, CA,
April 10, 1986.

_- "Lazy Evaluation on Dataflow Machines.” Cornell University, Ithaca, NY, April
17, 1986.

_+ "Lazy Evaluation on Dataflow Machines." University of Illinois, Urbana, IL,
May 12, 1986.

- Nikhil, Rishiyur S.,"Functiona! Databases, Functional Languages."
45.

_. "Functional Databases, Functional Languages." Microelectronics Technology
Corporation, Austin, TX, June 1985.

COMPUTATION STRUCTURES GROUP

46.
47.

48.

49.

—. "Practical Polymorphism." University of St. Andrews, Scotland, August 1985.

—. 'Functional Databases." Digital Equipment Corporation, Hudson, MA, February
1986.

"Functional Programming Languages.” Three lectures in Professor Barbara
Liskov’s graduate course on programming languages, November 1985.

Papadopoulos, G.M. "Redundancy Management for Synchronous and
Asynchronous Systems." NATO AGARD Lecture Series No. 143, NASA Dreyden,
California; Copenhagen, Denmark:; Athens, Greece; October 1985.

50. _. "Design Issues in Data Synchronous Systems.” NATO AGARD Lecture Series

No. 143, NASA Dreyden, California; Copenhagen, Denmark; Athens, Greece;
October 1985.

(1]

[2]

(3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]

COMPUTATION STRUCTURES GROUP

References

Ackerman, W.B. and J.B. Dennis.

VAL--A Value-oriented Algorithmic Language: Preliminary Reference Manual.

Technical Report MIT/LCS/TR-218, MIT Laboratory for Computer Science, Cambridge,
MA, June, 1978.

Arvind and K.P. Gostelow and W. Plouffe.

An Asynchronous Programming Language and Computing Machine.

Technical Report, Department of Computer Science, University of California, Irvine,
Irvine, CA, December, 1984.

Arvind and Thomas, R.E.

I-Structures: An Efficient Data Type for Functional Languages.

Technical Report Computation Structures Group Memo 178, MIT Laboratory for
Computer Science, Cambridge, MA, October, 1981.

S.A. Brobst.

Token Storage Requirements in a Dataflow Computer.

Master’s thesis, MIT Department of Electrical Engineering and Computer Science, May,
1986.

S-W. Chen.

A Practical Polymorphic Type-inference Type-checking System.

Technical Report S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May, 1986.

A.A. Chien.

Structure Referencing in the Tagged-token Dataflow Architecture.

Technical Report Computation Structures Group Memo 268, MIT Laboratory for
Computer Science, Cambridge, MA, October, 1986.

D.E. Culler.

Resource Management for the Tagged-Token Dataflow Architecture.

Master’s thesis, MIT Department of Electrical Engineering and Computer Science,
January, 1985.

G-R. Gao.

A Pipeline Code Generation Scheme for Static Data Flow Machine.

PhD thesis, MIT Department of Electrical Engineering and Computer Science,
September, 1986.

E. Hao.

PID Translator User’s Manual.
August, 1985.

UROP Final Report.

S.K. Heller.

Directed Cube Networks: A Practical I nvestigation.

Technical Report Computation Structures Group Memo 253, MIT Laboratory for
Computer Science, Cambridge, MA, July, 1985.

COMPUTATION STRUCTURES GROUP

[11]

[12]

[13}

[14]
1}

[15]

[16]

[17]

[18]

[19]

[20]

S.K. Heller and K.R. Traub.

Id Compiler User’s Manual.

Technical Report Computation Structures Group Memo 248, MIT Laboratory for
Computer Science, Cambridge, MA, May, 1985.

R.A. Tannucci.

Packet Communication Switch for a Multiprocessor Computer Architecture Emulation
Facility.

Technical Report Computation Structures Group Memo 220, MIT Laboratory for
Computer Science, Cambridge, MA, October, 1982.

S. Jagannathan.

Guaranteeing Data Security on a Static Data Flow Machine.

Master’s thesis, MIT Department of Electrical Engineering and Computer Science,
October, 1985.

B.C. Kuszmaul,
Type Checking in V{\sc im V{\sc al

Technical Report $.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May, 1984,

B.C. Kuszmaul.

Simulating Applicative Architectures in the Connection Machine.

Master’s thesis, MIT Department of Electrical Engineering and Computer Science, June,
1985,

P.D. Lincoln.

DisCoRd: Distributed Combinator Reduction.

Technical Report S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May, 1986.

D.R. Morais.

1d World: An Environment for the Development of Dataflow Programs Written in Id.

Technical Report $.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May, 1986.

Nikhil, Rishiyur S.

An Incremental, Strongly-Typed Database Query Language.

PhD thesis, Moore School, University of Pennsylvania, Philadelphia, August, 1984.

Available as Technical Report MS-CIS-85-02.

R.S. Nikhil.

Practical Polymorphism.

In Proceedings of Functional Languages and Computer Architecture. Springer-Verlag,
LNCS 201, Nancy, France, September, 1985.

Nikhil, R.S. and Arvind.

Id/83s.,

Technical Report Computation Structures Group Memo 249, MIT Laboratory for
Computer Science, July, 1985.

[21]

[22]

[23]

COMPUTATION STRUCTURES GROUP

Pingali, K.K.

Demand-driven Evaluation on Dataflow Machines.

PhD thesis, MIT Department of Electrical Engineering and Computer Science, July,
1986.

Traub, K.R.

A Dataflow Compiler Substrate.

Technical Report Computation Structures Group Memo 261, MIT Laboratory for
Computer Science, Cambridge, MA, March, 1986,

S.G.Younis.

The Clock Distribution System of the Multiprocessor Emulation Facility.

Technical Report §.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June, 1986.

COMPUTATION STRUCTURES GROUP

COMPUTATION STRUCTURES GROUP

1. Introduction
2. Personnel
3. Multiprocessor Emulation Facility
3.1. The Current MEF Hardware and the Circuit Switch
3.2. The Packet Switch Development
3.3. The Hardware Laboratory and New Equipment
4. Tools for Dataflow Experiments
4.1. Id Compiler
4.2. GITA
4.3. U-GITA
4.4. MEF-GITA
4.5. SITA: A Simulator for the Tagged-Token Machine
4.6. 1d World
5. Experiments on MEF
5.1. Dataflow Experiments
5.1.1 Token Storage Management
5.1.2 Structure Storage Management
5.1.3 Work Distribution
5.1.4 Limitations of MEF GITA
5.2. DisCoRd: Parallel Graph Reduction on the MEF
6. Language Research for the Tagged-Token Dataflow Architecture
6.1. Id/83s
6.1.1 I-structures in Id/83s
6.1.2 Types in Id/83s
6.1.3 Garbage Collection Experiments on MEF
6.2. Demand-driven Evaluation
6.3. Databases and Functional Languages
6.3.1 Data Models and Type Structure
6.3.2 Modelling State
6.3.3 Functional Databases
7. Work Under Professor Dennis’s Supervision
7.1. The VIM Project
7.2. Accomplishments
7.3. Compiling for the Static Dataflow Machine
7.4. Simulating Applicative Architectures on the Connection Machine

oAU R

