LABORATORY FOR
COMPUTER SCIENCE

INSTITUTE OF
TECHNOLOGY

MASSACHUSETTS

~

_

Structure Referencing in the
Tagged Token Dataflow Architecture

An Initial Investigation

Computation Structures Group Memno #268
1 October 1986

Andrew A. Chien

This rcE(m describes research donc at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Funding for this project is provided in part
by the Advanced Rescarch Projects Agency of the Department of Defense under the

Ciffice of Naval Rescarch contract N00014-75-C-0661,

~

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Table of Contentis

1 Introduction
2 A Spectrum of Structure Allocation Schemes
3 Description of the Study
3.1 Motivation for the Study
4 Results of the Study
4.1 Hotness of Data Structures
4.2 Significance of Hotness
4.3 Popularity of Data Structures
5 Summary and Conclusions
& Implications for a Structure Mapping Policy

k-
D~NOODWWNNMN =

1 Introduction

In a high performance computer system, management of the structure storage can have significant
impact on the program execution speed. For example, in a CRAY-XMP, the mapping of structures to
the interleaved memory can effect the number of bank conflicts that a processor experiences. These
hank conflicts can significantly reduce the effective memory bandwidth as well increase the memory
latency to certain requests. Such conflicts arise when a single processor's memaory requests conflict

or when different processors’ requests conflict.

In all multiprocessors, this problem exists in some form. Some common solutions are to use many
interleaves, to use simple caches for "read only" information, or to use "snoopy"” caches for
everything. Use of many interleaves does not take advantage of the locality of the program (temporal
or spatial), but does avoid serious contention problems. This can be viewed as a baseline sclution to
the problem. The "read only" caching schemes make it difficult to maintain high enough hit rates to
keep the processor pipelines busy. Snoopy cache schemes do not extend easily to non-bus based
systems. Thus the problem of taking advantage of locality while avoiding contention remains

unsolved.

The fundamenta! problem is that one would like to localize the structures to that we can take
advantage of spatial locality in the program. However, any such localization of structures leads to
increased "contention” or demand for the memory or memories in which structure has been
localized. This contention not only Izads to increased latency for memory requests to the popular

module, but may decrease the overall throughput of the network -- slowing the entire machine!

Recent discussion in the Computation Structures Group has raised questions about the "mapping”
of structures to the machines. Varying degrees of localization have been proposed and very little
experimental evidence exists to compare them. In this document, we study structure referencing
patterns in the Tagged Token Dataflow Architecture. By doing so, we are able to discern some basic
features of these patterns. These basic features are not likely ta change except as a result of a major
change in the structure referencing or work decomposition paradigms. These basic features will
allow us to make some strong statements about what kinds of allocation schemes are likely to work,

and how much locality we need to get in order to make an increase in contention worthwhile,

2 A Spectrum of Structure Allocation Schemes

Two major structure mapping policies are compared in the context of our experimental results. they
are at opposite ends of the spectrum with respect to localization. We shall refer to any scheme which
places structures (the smallest storage units allocatable by the manager) on single memory units as
wvertical”. The "vertical” scheme completely localizes a structure. In contrast, a "horizontal”
ailocation scheme is one in which each structure is spread over many (all, if possible) of the memaory
modules. There are many variations and hybrids of these schemes, but they only confuse the issues.
We will refer to the hybrid schemes as "diagonal”. The "horizontal" scheme does just the opposite.
The impaortant tradeoff in these schemes is locality (and a concomitant decrease in communication
requirements) versus an increase in contention. It is interesting to note that because many small
scale multiprocessors (2-20 processors) are bus based, one usually sees purely horizontal schemes
(inte_rieaved memories), because it minimizes the contention, but causes no decrease in locality.
Everything is on the same bus! However, as we move to systems of more processors, the bus

bandwidth becomes saturated and such solutions are infeasible.

3 Description of the Study

Because the temporal pattern of structure usage is strongly dependent on architectural details such
as execution order, network speed, manager policy, etc. we felt that it would be difficult to get
meaningful temporal behavior results on any of the simulation/emulation vehicles which have been
constructed. Therefore, we chose to use the Graph Interpreter for the Tagoed Token Architecture to
study the (independent of time) structure of the cumulative data references generated by some
programs. The statistics we chose to collect are the number of references ner data structure in the

program and the number of different contexts that refer to that structure.

3.1 Motivation for the Study

Two simple statistics over a variety of programs, and problem sizes allow us to make some
interesting assertions about the eventual pattern of data structure references in our machine. The
major characteristics of this pattern should not change, as they are only a function of the application
pragram, and the basic machine level view of structures. For example, if most of the structures are
only referred to by one or two contexts, then we would suspect that we could do a very good job of
enhancing locality. Furthermore, this enhancement need not greatly increase contention or restrict
the manager's work decomposition policy. f most of the structures are referred to by many contexts,
then we might suspect that localization may result in greatly increased contention, while not
enhancing locality a great deal. These are the types of gross conclusions we hope to reach from this

study.

4 Results of the Study

The study can be divided into three basic investigations: "Hotness” of structures, Significance of
"Hotness", and "Popularity” of structures. Each of these studies are described below. Each study
consisted of a set of runs on various problem sizes for the Simple Code (a synthetic program for
hydrodynamic simulations). The results are presented below. They were taken on GITA and pretty
fairly represent the behavior of the Simple code, and our current architecture with the major
exception of procedure call and return mechanism. Our new procedure call and return mechanism
does not make use of |-structures, and would not result in any I-structure traffic. The procedure call
mechanism modelied uses I-structures for both arguments and results. Some attempt was made to

note the distortions due to this difference, however, the reader may draw his own conclusions.

4.1 Hotness of Data Structures

The "Hotness" study was undertaken in response to widespread speculation that l-structures
encouraged a programming style which accessed data vaiues only a few times before creating a new
copy of the structure. We define the "hotness” of a data structure as the ratio of the number of
references to it (memory reads) to the size of the structure. This measure will tell us whether or not
the speculation was correct. Further, the distribution of the hotness of data structures will likely give

15 some insight as to what kinds of allocation schemes will be effective.

Simple, 1 iteration, 5by 5

Hetness # ofStructures
>75 2
70-75 0
60-69 0
50-59 0
40-49 2
30-39 2
25-29 0
20-24 0
15-19 5
10-14 10
5-9 19
0-4 1069

Detailed breakdown

Hotness #ofStructures
5 7
4 10
3 15
2 23
1 987
0{<1) 34

Average Reads per structure:
Variance:
Standard Deviation:

Number of each Size % of tot. traffic
2.5 7.47
2.7 9.33
2-7 2.30
4-6,7,1-2 4.74
9.7,1-40 12.72
19-5,6,7 8.55

474 invokes = > 948 A-R Structs

54.89

75% of the non-AR structures are "read-once”

Number of each Size % of tot. traffic

2.36
2.69
3.13
3.13
44,40
1.54

9.07

29.7

8829

Simple, 1 iteration, 10 by 10

Hotness # ofStructures Number of each Size 9% of tot. tralfic
>500 2 25 10.58
400-499 0
300-399 0
200-299 0
150-199 1 112 3.83
100-149 3 312 10.01
50-99 3 2-11,1-40 8.90
25-49 14 8-10,11,12,6-5 8.16
20-24 2 2-11 1.09
15-19 30 30-11,12 11.90
10-14 10 10-11,12 2.83
5-9 31 31-11,12 4.41
0-4 3264 1520 invokes = >3040 AR Structs 38.28

70% of non-AR structures are "read-once”

Detailed breakdown

Hoiness # ofStructures Numbet of each Size % of tot. traffic
5 9 1.14
4 22 2.33
3 37 2.85
2 29 1.71
1 3113 30.29
0(<1) 63 1.10
Average Reads per structure: 14.5
Variance: 11296

Standard Deviation: 106.3

Simple, 1 iteration, 20 by 20

Hotness # ofStructures

>2000
1000-1999
500-999
400-499
300-399
200-299
150-169
100-149
50-99
25-49
20-24
15-19
10-14
5-9

0-4

Detailed breakdown

015&(0‘4!\)0-5—‘001’0

Hotness # ofStructures

O~ NWhH

Average Heads per structure:
Vanance:
Standard Deviation:

26

36
102
24
11573
318

Number of each Size

5

22
3-22,1-40

1-22,1-5
3-21,4-5
9-21,22
4.21,22
18-22
59-21,22
8.22
62-21,22

% of tot. traffic

11.79

419
17.85

0.88
4.82
6.37
1.39
413
10.56
0.998
4.76

5709 Invokes => 11418 AR Structs 32.56
72.6% of non-AR structures are "read-once”

Number of each Size

17.98
74393
272

% of tot. traffic
1.33
1.55
3.47
0.595
25.84
1.09

Simple, 1 iteration, 40 by 40

Hotness # ofStructures
>10,000 2
1000-1999 1
500-999 10
400-499 0
300-399 0
200-299 3
150-199 4
100-149 3
50-99 3
25-49 44
20-24 41
15-19 71
10-14 a8
5-9 151
0-4 45908

Detailed breakdown

Hotness # ofStructures
4 76
3 222
2 44
1 45293
0(<1) 273

Average Reads per structure:
Variance:
Standard Deviation:

Analysis of Hotness Study

Number of each Size

2-5
1-40
442,65

3-41
4-41,42
3-41
3-41,42
44-41,42
41-41,42
70-42,1-2
8-42
151-41,42

% of tot. traffic
12.29
753
16.92

3.74
3.8
2.96
0.95

5.49
4.96
6.06
0.48
4.78

22489 Invokes =>44978 AR Structs 31.03
72.5% of non-AR structures are "read once"

Number of each Size

This is 98% of all structs!

21.62
201600
449

% of tot. traffic
1.58
3.66
0.535
24.15
1.10

Several interesting observations car be made about the experimental results presented above. For

instance, it is clear that for the Simple code, the number of argument result structure is vastly larger

than the number of user defined structures. This ratio is well over 10 : 1 in the Simple 40x40 run.

When the new procedure call schema is implemented in the compiler, we will expect to see a dramatic

improvement in the number of I-structures allocated. Excluding AR structures, it seems to be true

that the majority of I-structures are in fact "read once". Discounting the argument result structures,

we still find that across these four runs, more than 70% of the I-structures allocated have a hotness of

less than 2. However, these "read once" structures only account for a very small percentage of the

overall traffic (probably less than 10%). Thus it is very important to examine the behavior of "hot"

structures.

Another important point is the fact that the hotness of structures varies greatly. We found
structures with hotness ratings of 0 all the way up over 10,000. Now, it is true that some of this
contention was due to the way the code was written. The hottest structures were constant tables
which could have been duplicated if the code were written differently or the compiler could detect
them. This could reduce the contention. However, we observed hotness ratings of over 400 on some
parts of the 2-D finite element arrays. This means that some structures are very likely sources of
contention. The range of hotness ratings we encountered (as well as its mean and variance as we
increased the problem size) gives us clear indication that certain kinds of allocation policies will not
work well. For example, any scheme which works solely on the basis of structure storage available
and the size of the structure allocated is not going to do a very good job of distributing the load to the
l-structure controllers. The large variance of the amount of traffic headed for a given structure make
it difficult for any such scheme to do well. Furthermore, the large variance makes it unlikely that any

purely random scheme will do well.

4.2 Significance of Hotness

The primary statistic we're interested in is how much traffic is each structure going to experience.
This was in order to determine if the hotness of structures will be an issue in our dataflow machine.
For example, if an individual structure never represented more than .1% of the overall traffic, then we
might conclude that increased contention and hence "hotness” is not an issue. This can be a crucial
factor in how sophisticated the compilation and dynamic allocation needs to or can be. For example,
if all structures had only a small amount of traffic destined for them, then perhaps simple load
balancing techniques at run time would be sufficient. Conversely, if each structure could correspond
to a very large or small amount of traffic, we might require some sophisticated compiler analysis in

order to do a decent allocation. The object here is to determine where we lie in that problem space.

Structure Histogram

Percentage of total traffic

Simple 0 1 2 3 4 5 6 7 8
Size
5x5 1101 2 2 4 1

153 (excluding AR structures)

10x10 3350 3 0 4 0 2 1
310 (excluding AR structures)

20x20 12050 3 0 3 1 2 0 1
632

40x40 46250 3 0 3 1 0 2 i

1272 (excluding AR structures)
Analysis of Hotness Significance Study

The resuits this study are quite interesting. There are about 10 structures that account for a very
significant amount of the overall traffic. After a closer examination, one discovers that the three
structures accounting for the largest amount of traffic are all constant tables. Some provision in the
language or the machine to allow duplication of such structures could have major benefits. That
would relieve any contention due to these structures. However, those three structures aside, there
are still six or seven structures accounting for over 1% of the traffic each. And in fact, the numbers
for the temporal mix will probably be worse than what is shown in the above tables (due to statistical
fluctuations and the fact that the data structure lifetime is less than the program execution time).
These structures are easily "hot" enough to cause the "hot spot” degradation that Pfister and Norton
reported. This leads us to believe that contention for single structures may still be a problem in a
dataflow context, even though we don’t have the synchronization locks of RP3 or the NYU

Ultracomputer.

4.3 Popularity of Data Structures

We define the "popularity" of a structure as the number of contexts {they may be different
invocations of the same code block) that make use of it. This measure addresses a different side of
the localization issue and should begin to give us some indication of how much we can gain by
localizing structures. That is to say, "How often are we going to able to cleverly piace a structure in

the same place as most of the people who use it?" Clearly if a structure is very popuiar, trying to do

10

so would strongly constrain a resource manager's work distribution decisions. Conversely, if most
structures aren't very popular, then we may be able to keep most of their contexts close by. Here are
the statistics on structure popularity for several different sizes of Simple. The structures are
categorized according to how many contexts referred to them -- the right column represents the
number of structures that fell into each category. No Simple 5x5 stats are inciuded because of the

smali number of contexts produced by execution of that problem size.

1

Simple 10 by 10

Number of Contexts Number of structures

0 0

1 5

2 3112 (74 without AR structures)

3 69

4 24

5 8

6 6

7 16

8

9 20

10 27

1 12

12 4 Size10,11,12

13 5

14 1

16 1

17 0 Size11,12

18 18

22 2

23 14

24 1 Size 11,12 probably upper

68 2 level structure of 2-D

91 2 arrays.

130 2

131 2 5elt. const. structs

194 2

323 2

516 1 40-element environment
Total structures: 3360

Total without AR strﬁctures: 322

12

55 Hottest Structures

These structures represented (26532/48700) = 54.5% of the overall
traffic. A larger percentage if you exclude AR structures.

Number of Contexts

Number of structures

1
7
9
10
11
12
14
16
18

o

GO =0 = N = N fa ek

mameees The most popular 30 structures were all present

in this group of the 55 hottest.

22
23
24
€3
91
130
131
194
323
516

2
14
1

NN MNNN NN

13

Simple 20 by 20

Number of Contexts Number of structures

0 0
1 5
2 11572 (154 without AR structures)
3 149
4 54
5 18
6 16
7 36
8 2
9 4
10 0
19 36
20 47
22 22
23 25
24 1
26 1
38 33
42 2
43 34
44 1
328 2
381 2
650 2
651 2
974 2
1623 2
2596 2
Total structures: 12060

Total without AR structures: 642

14

47 Hotlest Structures

These structures represented (112569/220160) = 51.1% of the overall
traffic. A larger percentage if you exclude AR structures.

Number of Contexts Number of structures

20
21
22
23
24
26
38
42
43 17

-------- The most popular 14 structures were all present

in this group of the 47 hottest.

44
328
650
651
974
1623
2596

- DN -

Simple 40 by 40

Number of Contexts

agﬁa%gggmmwmm&wmao

8%

84
1448
1561
2890
2891
4334
7223
11556

Total structures:

15

Number of structur

0

5

45292 {314 without AR structures)
309

114

38
36
76
2
4

78
87
42
4
5
1
1
78
2

-
N

== N NP R -

46260

Total without AR structures: 1282

16

37 Hottest Structures

These structures represented (465129/939880) = 49.5% of the overall
traffic. A larger percentage if you exclude AR structures,

Number of Contexts Number of structures

39
40
4

>5EHD
N o= == R =

a2
-------- The most popular 14 structures were all present
in this group of the 37 hottest.
84
1448
1561
2890
2891
4334
7223
11556

- RN MNNNRNDND -

Analysis of Popularity of Structures Study

There are several interesting facts to note in the above study. We found that many of the structures
are referenced by multiple contexts. If we remove the Argument Resuit structures from the count (as
they will be removed when the new procedure call schema is implemented), this characteristic is even
more pronounced. This would lead us to believe that unless the way the structure is shared by
contexts is very simple, trying to keep the structure close to ali of the contexts that use it ié going to

be very difficult.

We also found that a small number of structures are accounting for most of the traffic (around 50%)
and those structures are used by a lot of contexts. If we wanted to reduce the network traffic by
localizing data structures, these very "hot” ones would be prime candidates. However, since they are
used by many contexts, it appears that getting much benefit from localizing the very "hot" contexts

will be quite difficult.

The most popular structures were the global constant structures in the program. As we discussed

17

in the "hotness” study, these structures could be copied and distributed. Thus, we're not terribly
interested in how many contexts use them. However, in this study we see that certain other structures
are often used by more than 10 contexts. Localization of such structures could lead to memory

contention.

5 Summary and Conclusions

This study has only begun to scratch the surface of the structure reference characterization
problem. Despite that fact, the study has made several things quite clear. Supporting procedure
invocation via |-structure interfaces is prohibitively expensive in terms of the number of I-structures
used. With large problem sizes of Simple, the AR structures accounted for 97% of the structures.
This confirms the general feelings which led to the development of a new procedure invocation

schema that does not use I-structures.

tn the course of the study we encountered a wide range of hotness ratings. This tells us that the
amount of traffic a structure will incur may not be very strongly related to the size of the structure.
Hence allocation schemes which only take free storage and structure size iirto account are not likely

to do significantly better than random schemes.

The average number of reads per structure was quite low. We presume that this was largety due to
huge number of AR structures. When the new procedure call schema is implemented, this number
should increase dramatically. The variance of the number of reads per structure (which increased
rapidly as we increased the problem size) should also increase. If that is the case, the large variance
makes it unlikely that purely random "vertical" schemes are going to do very well. To balance the
toad on each memory unit, these schemes depend on the statistical effect of averaging a large
number of random variables to reduce the overall variance. This only is successful if the number of
random variables is very large, or the initial variance is small. Of course, these two things are
characteristics of the program, so they are difficult to control them. However, the numbers collected

in this study would lead us to believe that such random schemes will not do well.

There are several structures in each run of Simple that each account for a substantial percentage of
the overall l-structure traffic. This is only considering cumulative references. These percentages
seem large enough ta cause hot spots in any medium scale (20-100 processors) multiprocessor. In
fact, because most structures are considerably shorter lived than the execution of the overall
program, one would expect many more structures to cause hot spots than the ones we found. One
result clear from this study, unless we reduce the contention for structures (by distributing them, or

some other means) we will not be able to fully utilize our machine.

18

The results of the Popularity study allow us to make the following argument. [t seems that the
number of contexts referencing the "hot" structures is relatively large. Ideally, the "hot" structures
are the ones that you would like to localize in order to reduce latency and network traffic. However,’
the results of this study tell us that this may be very difficult. The structures accounting for the
majority of the references are referenced by many contexts. Unless very few of these contexts are in
existence at any time, or the relationship between them is very simple, it is uniikely we will be able to
gain much locality by clever allocation. Furthermore, such allocation is likely to strongly constrain the

resource manager's work distribution policy.

6 Implications for a Structure Mapping Policy

The results of the various parts of this study seemed to all point to one conclusion: doing anything
clever in terms of structure mapping is going to be very difficult. The concrete evidence to back up
this fact is as follows: First, the variance in the amount of traffic each structure accounts for is large,
so we need some information about the traffic a given structure will draw. Second, the hottest
structures tend to be accessed by many contexts. This means that any attempt to enhance locality
will interact strongly with the work distribution policy. Finally, there seems to be little room for error, a
‘ew structures draw such a large percentage of the overall traffic that unless the hot spot problem is

solved, localizing them could be disastrous.

The large percentage of traffic attracted by some structures coupied with the large variance in the
zmount of traffic to each structure seems to rule out any random vertical schemes. We would expect
at some memories would be overloaded, and others greatly underutilized. The small margin for

error {(due to "Hot Spot” degradation) also leads us to discount these schemes.

Diagonal allocation schemes seem to offer a reasonable compromise between localization and
contention. They offer perhaps the most promising approach in the long run. However, the
interconnection of the network is likely to be very dense. Hence the most we could hope to gain here
is a small logarithmic factor in latency. Because of the TTDA's ability to tolerate memory latency, this

is not likely to be a crucial performance factor in our machine.

Horizontal allocation seems to be the safest scheme. It distributes the load of the "hot” structures
over many memory modules, and thus increases the potential memory bandwidth each structure can
have. These two characteristics go a long way towards addressing the concerns raised above.
However, it seems unsatisfying as a solution because it relegates the memory latency seen by a
processor to mediocrity. On the other hand, the strong point of the TTDA is that it can live with this

19

mediocrity and still provide high performance. Thus this scheme seems to be taking advantage to the

TTDA's greatest strength.

