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ABSTRACT:

A language for large scientific applications should facilitate encoding and debugging
of programs at the highest level possible. At the same time it should facilitate generation
of efficient code for parallel machines. Often these two requirements are conflicting, and
trade-offs must be made. Functional and other declarative languages offer relief on both
counts. The use of higher-order functions, especially in curried forms, can raise the level
of programming dramatically. In addition, such languages often have straightforward
operational semantics, thereby providing tremendous opportunities for parallel execution.
Programs written in declarative languages thus eliminate the problem of “detecting par-
allelism”. This paper illustrates programming in one such language, Id Nouveau, and
contrasts it with programming in Fortran. Using an excerpt from an application known
as Simple, it is shown how a program can be composed in Id Nouveau from small
Sunctions that directly relate to the mathematical and physical concepts of the problem.
The difficulty of expressing these concepts in Fortran is discussed. Finally, it is shown
that by performing simple transformations, such as in-line substitution of functions, the
resulting Id Nouveau code becomes as efficient as an equivalent Fortran program written
to run efficiently on a parallel machine.
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1. Introduction

The world’s fastest computers have traditionally been used first in scientific com-
puting. Yet, the level of programming, as represented in typical commercial scientific
packages or in the large codes written in national laboratories, is remarkably low, The
usual excuse for this situation is that high performance is the name of the game in
scientific computing, and the programmer must exercise fine-grain control over the
execution environment to tailor the program to a given machine. Because all important
programs need to be modified, a program during its lifetime (often spanning more than
a decade) gets so complicated that the original algorithm is obscured and the efficiency
of the program becomes more a question of faith than reason.

" These observations would be easy to ignore if the development of new codes employed
modern computer science techniques. In fact, the advent of parallel high-speed computing
seems to be causing a regression in programming. Further, the users are being told that
these new software problems are a natural consequence of the need to develop new
algorithms for parallel machines. There can be no argument that in due course more
suitable algorithms will emerge for parallel computers. However, this does not imply
that algorithms already in use are necessarily inappropriate for parallel machines. We
believe that the root of the problem is the use of Fortran to implement these algorithms.

Two interrelated techniques for the development of software for purported general-
purpose parallel machines are identifiable in the present commercial environment. Both
are geared to “dusty decks” of Fortran, though thcy can be applied to new Fortran
programs as well. One requires the programmer to annotate the program to indicate
the opportunities for parallel execution, and the other requires the compiler to detect
the program fragments that can be executed in parallel [17). A typical annotation is
“Do-all” to execute all iterations of a Do-loop in parallel. Similar annotations arc



usually available for concurrently executing the statements of a block. Parallel execution
requires synchronization which often has to be coded explicitly. Machine-specific con-
cerns often require classification of variables as local or global, cacheable or non-
cacheable, ultimately making the program more and more obscure. Since annotations
interact with the storage model of the language, the meaning of programs changes in
subtle ways. Annotations are rarely robust. For example, nested “Do-ail’s” may not
be permitted because Fortran does not have dynamic storage allocation. Worst of all,
wrong annotations (such as specifying a variable as global when it should have been
local or specifiying a loop to execute in parallel when there is some undetected depen-
dency etc.) invariably make the behavior of the program non-deterministic, that is,
time- and machine configuration-dependent, thereby creating a nightmare during de-

bugging.

Detcection of parallelism by a compiler is very desirable from a user’s point of view
[17). However, even the most sophisticated techniques to detect parallelism trip on
trivial impediments such as conditionals, function calls, input/output statements, etc.,
and fail to detect most of the parallelism present in a program. Some parallelizing
compilers provide feedback to the user regarding where the compiler had difficulty in
deciding about parallel execution (see discussion of the Fujitsu Fortran compiler in
[11]). Based on these suggestions, a programmer can often restructure the source code
to aid the detection of parallelism. In principle, there is no reason why such a compiler
cannot aiso accept annotations to improve the quality of generated code. Useful as this
methodology is for dealing with “dusty decks”, it only confirms the lack of expressivity
of the source language.

Perhaps one reason why languages like Fortran still dominate the scene is the control
placed in the hands of the programmer to extract the last ounce of efficiency from a
system. Despite the pain attached to its use, Fortran use is likely to continue until a
viable aiternative demonstrates comparable performance.

6



Functional and declarative languages are said to offer many advantages in this
context [5,20]. Their declarative nature eliminates the overspecification of the order of
cvaluation. Their operational semantics when expressed in terms of rewrite rules auto-
matically exposes the parallelism present in a program. Functional la'nguages with
higher-order functions elevate the level of programming so that abstractions can be
built closer to the concepts in the problem domain. Functional programs are easier to
reason about because their output is determinate, that is, independent of the order of
evaluation. However, functional languages traditionally have lacked good facilities for
manipulating arrays and matrices; simulating such structures using traditiona! functional
data structures often resuits in excessive storage demand or code which is unnecessarily
sequential [3]. A declarative language called /d Nouveau [15,4] has been proposed as a
solution to some of these problems. /d Nouveau (simply Id from now on) is a functional
language augmented with a novel array-like data structure called I-structures. This
language is being used to program the M.LT. Tagged-Token Datafiow machine. In
addition to the requirement of generating good code, Id also embodies the advantage
of declarative programming, that is, code which is clear, concise and easy to understand
and reason about. The objective of this paper is to show, by a realistic example, the
expressive power of this language, as well as its ability to expose the parallelism in a
specification in a natural manner, without requiring annotations.

In Section 2, we describe the example which has been excerpted from a hydrodynamics
simulation program known as the Simple code [6). In Sections 3.2 and 3.3, we describe
some matrix abstractions which are useful for writing the Simple code and, we believe,
many other codes. In order to make the paper self-contained for readers unfamiliar
with functional programming, basic notions of functions and I-structures are introduced
in Section 3.1 using the /d syntax. The reader is referred to [15,3] for a more detailed
treatment of /d and I-structures. Section 3.4 presents the /d solution to the main
example. A complete /d program for Simple has been developed by the authors and is
reported in [8]. In Section 4, we point out the difficulties in imitating the declarative
style of programming in Fortran. In Section 5, we show that, with “in-line substitution”



of functions, the performance of the /d program of Section 3.4 becomes comparable to
that of an equivalent Fortran program. Section 6 discusses some storage efficiency
issues. Finally, Section 7 presents our conclusions.



2. An Example: Problem Description

Our example problem is an excerpt from a hydrodynamics and heat conduction
simulation program known as the Simple code [6]. The document [6], along with the
associated Fortran program, was developed as a benchmark to evaluate various high
performance machines and compilers. The problem is to simulate the behavior of a
fluid in a sphere, using a Lagrangian formulation of equations. To simplify the problem,
only a semi-circular cross-sectional area (see Figure 1) is considered for simulation. The
area is divided into parcels by radial and axial lines as shown. Each parcel is delimited
by four corners as illustrated in Figure 1. The corners are called nodes. Each region
enclosed by 4 nodes is called a zone (illustrated by the shaded area in Figure 1). In
the Lagrangian formulation, the nodes are identified by mapping them onto a 2-dimen-
sional  logical grid, in which the grid points have  coordinates
(k,!) for some kmin <k < kmax, Imin<I!<Ilmax. The product, kmax » Imax, is often
referred to as the grid size of the problem. The following quantities are considered in
the simulation.

: velocity components, u,w, of node (k,!) in the R-Z plane.
: coordinates, r,z, of node (k,l) in the R-Z plane.

: Area of zone (k,]).

: Volume of revolution per radian of zone (k,)).

: Density of zone (k,)).

: Pressure of zone (k,]).

: Artificial Viscosity of zone (k,]).

: Energy within zone (k,]). ’

: Temperature of zone (k).

A - S B« N . T SO PO N

Each quantity is stored as a matrix of values, indexed by the indices of a node. For



Figure 1: Fluid parcels in a 2-dimensional cross-section

each time period of 4, a new matrix is computed for each quantity using appropriate
values from the preceding time step. Note that the first two quantities are associated
with nodes and the remaining are associated with zones.

In order to incorporate appropriate boundary conditions, a fictitious layer of zones,
called ghost zones, is added to the cross section, as depicted by the shaded area in
Figure 2. Rows kmin-/ and kmax+ ! and columns fmin-/ and Imax+ I contain the
boundary nodes. Changes in the quantities associated with ghost zones are governed
by the desired boundary conditions. Each quantity is associated permanently with a
criterion to determine its boundary value. At each time step new boundary values for
a quantity are computed according to the associated criterion.
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Figure 2: Ghost zones added for boundary conditions

For convenience, the following nomenclature is adopted to refer to the neighboring
nodes and zones of a node. The neighboring nodes are named north, south, east, west.
For example, in Figure 3 the north neighbor of node (k,!) is (k-1,!) and the west
neighbor is the node (k,/-7). The 4 zones around a node (k,{) are named A4, B, C. D
in a counterclockwise manner as shown in Figure 3. A zone is identified by specifying
its southeast corner node. Thus, for example, the B zone of node ( k() is referred by
indices (k+1.,{).

In this paper, we will discuss only the computation of the new velocity at each node.
The velocity is not defined at the boundary nodes and hence our example deals only
with interior nodes. The velocity at each node is determined by first computing the



Figure 3: Velocity computation at a node

acceleration at that node during the time step and incrementing the old velocity by the
product of time and acceleration. The acceleration is obtained from the equation for
conservation of momentum. After some simplifying algebra, the acceleration is given by

(A)

& [~§pdz-§qd2 33pdr+<j5qer

dt nodal_mass '  nodal_mass

In the numerator, the line integrals are to be taken over the boundary line of the
shaded region around the node (k,/) shown in Figure 3. The line has four segments,
one in cach of the neighboring zones. While integrating, it is assumed that each zone
quantity is constant along the line segment within that zone. Thus, for example, suppose
we are integrating p with respect to z, along the line in zone A in Figure 3. Its value
is given by the product of p in zone A and the difference of z between the two end
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points of line segment A, thatis p[ k,/] «(z[k,/—1] —z[k—1,17). The denomi-
nator, nodal_mass, is the mass of the shaded area around the node (k,/) in Figure 3.
This is approximated as one half of the total mass of the 4 zones meeting at node (k).
The mass of a zone is the product of its density and area.

13



3. Programming in a Declarative Language

In this section, we discuss how some basic abstractions to manipulate matrices are
programmed in /d. We build these abstractions gradually, by way of examples, while
introducing /d. The introduction to /d is informal and written with the purpose of
helping the reader to understand the main example to be presented later. However,
care is taken to explain how the operational semantics of the language automatically
allows concurrency in loop iterations and in data structure operations.

3.1. Functions, I-structures and Parallel Execution

Functions: A function to add two numbers may be written in /d as follows:
add (i,j) = i+j; (D

This function can be used to add, say 2 and 3, by writing add (2,3 ). In a declarative
language such as /d, the operational meaning of a program can be explained in terms
of rewrite rules because every definition can be read as a rewrite rule. A function
application is rewritten as or reduced to the right-hand side of its definition by substi-
tuting for the parameters. For example, add (2,3) is reduced to 2+ 3 by substituting
2 for i and 3 for j in the-right-hand side of the definition of add. This process of
reduction is repeated until we arrive at a form that cannot be reduced any more; this
is deemed the result of the computation. Assuming natural rewrite rules for primitive
functions, such as +, we can reduce 2+ 3 to 5. We could also have written the function
to add two numbers as follows:

14



cadd i j = i+j; (2)

and applied it by writing ¢_add 2 3. It is customary in functional languages to write a
function application as f a rather than f{a). Further, to reduce the number of paren-
theses in expressions, function application is considered to be “left associative” by
convention. Thus, the following expressions are equivalent:

fakb (f a) b ((f a) b) S (@ b

and none of them is equal to f (a,b). In Id, the use of parantheses is only to disambiguate
an expression,

The difference between add and c_add is subtle and important. The add function
takes one argument which must be a 2-tuple. (A tuple is a data structure, as will be
explained shortly.) The rewrite rule for ¢_add, on the other hand, can be applied only
when c_add is followed by two arguments. In functional language parlance, arity of
c_add is 2, while arity of add is 1. The significance of this difference becomes apparent
when we consider the following binding, that is, an association of a name with an
expression:

successor = c_add [; (3)

Successor or equivalently ¢_add I is a function that adds one to a number, that is,
successor n will behave like c_add / n. Expressions such as ¢_add I are called partial
applications because c_add is being applied to fewer arguments than are needed to
“fire” the corresponding rewrite rule. Thus, partial applications remain irreducible until
a sufficient number of arguments is supplied. Such expressions represent higher-order
functions, which are essential for writing abstract programs. Notice, it will make no
sense to write add / because add expects a tuple as an argument. In functional languages,
c_add is called the “curried” version of add after the famous logician Haskell B. Curry.
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Tuple structures: A tuple is a data structure. Commas are used as tuple constructors
in 1d. Thus, (/,n),(1,n) is a 2-tuple of two 2-tuples. We may represent the bounds of
an array as a 2-tuple of integers and the bounds of a matrix as a 2-tuple of 2-tuples.
Thus, grid in

grid n = (({,n),(1,n), (4

is a function that takes a number # as an argument and returns a value that may be
used to express the bounds for an n x n matrix.

A function in /d can return only one value. As illustrated below, a tuple can be
used to package results when a function needs to return multiple results:

north (i,j) = (i-1,)); (5)
west  {i,j} = (i.j-1);

Function north takes the indices of an element in a matrix and returns the indices of
its north neighbor. Similarly, the function west returns the neighbor on the west side.
As we shall see later, such abstractions are useful when calculations have to be performed
for each node of a grid using values at neighboring nodes. For example, using these
abstractions we can write (north node ) where node is (ij), instead of the subscript
expression (i-/,j). Such abstractions significantly reduce the likelihood of erroneous
subscripts in programming.

Blocks: A block expression in Id is a set of bindings followed by the key word in

and a return expression. It provides a convenient way to share the computation of
common subexpressions, as is shown in the following definition containing a block.
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acceleration node = (6)

{ d = nodal_mass node;
nl = —(line_integral p z node)— (line_integral q z node);
n2 = (line_integral p r node) + (line_integral q r node),

in nlfd n2|d}

For now, we will assume that line_integral and nodal_mass are known functions and p,
q, r, z are known constants. This block contains three bindings, one each for d, n/ and
n2, and returns a 2-tuple. The use of identifier 4 in the return expression allows the
computation of the subexpression (nodal_mass node) to be shared. Id uses “lexical
scoping” rules. Thus, a name that is bound in a block, e.g. n/, is invisible outside the
block. Similarly, a name used in a block, but not defined in that block, e.g. p, imports
the value from a binding to that name in the nearest enclosing block.

We explain the execution of block expressions in terms of rewrite rules. (A precise
operational semantics for /d, using dataflow graphs, is given in [19].) In the following,
we use the notation e => ¢’ [| form!/ [} form2.. to show that e’ is obtained
by rewriting some subexpressions in e, while the computations in forml, form2, ... are
started concurrently. In the following, let node denote some value such as (23). Then
the function application acceleration node can be reduced by substituting the node value
in the body of the function:

acceleration node

= | d = nodal_mass node;
nl = - (line_integral p z node) — (line_integral q z node);
n2 = (line_integral p r node) + (line_integral q r node),

in nljd n2|d}

17



A block is reduced to its return expression and the computations in all the bindings of
the block are initiated concurrently as shown below:

= nlld, n2ld

Il d = nodal_mass node
[ ni = —(line_integral p z node)— (line_integral q z node)
Il 72 =  (line_integral p r node)+ (line_integral q r node)

Note that the order in which bindings appear in the original expression is immaterial.

Assuming the arities of nodal_mass and line_integral are satisfied, we may rewrite all
the 5 function calls.

== nlld n2/d
0 4 = (.body of nodal_mass...)
0 ni = —(.body with p z etc....)— (...body with q z etc. ...
[ n2 = (.body with pr etc....)+ (...body with q r etc. ...)

In 14, substitution for an identifier is performed only when the right-hand side of the
corresponding binding reduces to a value, that is, a number, boolean, tuple or partial
application [4]. The binding may be ignored after it has been substituted everywhere.
Suppose we rewrite expressions in the body of nodal_mass until it reduces to a value
designated by v. Substituting v for d, we get

= nlfv, n2/v
0 nl = —(.body withp z etc...)~ (..body with q z etc. ...)
0 n2 = (.body with p r etc. ...)+ (...body with q r etc. ...)

18



Similarly, the four line_integrals may be reduced to values v/, v2, v3 and v4, respectively,

to produce
= nifv, n2/v = nlfv, n2fv. = vilv, v6]v = v7, +§
0 nl=—-vi—v2 I ni=vs
I n2= v3+v4 0 n2=v6

where vJ through v8 have obvious meanings.

At this stage, the expression cannot be reduced any further and we say that the
answer has been found. (We will rely on the reader’s intuition to figure out when a
tuple represents a value as opposed to an unevaluated tuple.) It is worth noting that
at several steps of this reduction sequence, we had a choice of subexpressions to reduce.
Such a choice represents an opportunity for parallel execution. The most wonderful
property of /d (and other functional languages) is that the order in which we reduce
reducible expressions has no effect on the final answer. This property, known as the
Church-Rosser property, guarantees the determinacy of computation. When Fortran
programs are parallelized by annotations, determinacy is not guaranteed by the language.
It is the responsibility of the programmer to make sure that the annotated synchroni-
zations preserve the determinacy of the computation. It is the indeterminacy due to
erroneous annotations that creates nightmares while getting a parallelized Fortran pro-
gram to work. The same criticism applies to other imperative languages such as Lisp,
C, Pascal ezc.

Very frequently, curried functions are defined implicitly. For example, suppose
definition (6) appears in a block where p, g, r, z are defined. The values of these
variables can be supplied for computing the acceleration, by including them as additional
arguments in the definition of acceleration. The use of such implicit arguments is
permitted in Id for programming convenience; the compiler automatically transforms
the programs (using a technique known as A-fifting [9]) into equivalent programs, where
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all arguments are explicit. For example, the compiler will transform definition (6) as
follows, where acceleration’ is a new function of arity 5 and acceleration is its curried
form.

acceleration’ p q r z node =

{ d = nodal_mass node;
nl = —(line_integral p z node) — (line_integral q z node);
n2 = (line_integral p r node)+ (line_integral q r node);

in nlld n2/d};
acceleration = acceleration’ p q r z;

I-structures: Now we introduce I-structures, a novel data structuring facility which
has been designed primarily to facilitate parallel programming. One can think of an
I-structure as a special kind of array which is allocated at run time and whose elements
can be written (that is, defined) no more than once. It is allocated by the expression
array (lu), which allocates and returns an “empty” array with index bounds / and u.
We will show the execution of this primitive by the following rewrite rule:

array ([,u) = <alal+1,.., au>

where each ai represents a memory location and <alal+ 1,...,au> represents an I-
structure value.! I-structure elements can contain anything, including other I-structures.
Thus, one can define a matrix as an array of arrays. However, for the sake of efficiency,
we also provide matrix as a primitive data structure which may be allocated using the
expression matrix ((1/,ul) (I2,u2)}. A component of an I-structure 4 may be assigned

1 We would like to point out that this rewrite rule takes us out of the scope of functional
languages, because variables appearing on the right-hand side are not taken from the vari-
ables on the left-hand side. However, such rules are common and necessary for defining the
operational semantics of logic languages.
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(written) no more than once using a “constraint statement”: 4 [i] =v.Itis a run-time
error to write into an I-structure location more than once - the entire program is
considered to be in error. The i-th component of an I-structure A is selected by writing
the expression A [ i ]. If A is the structure <al,...au >, then the selection A [ ¢] first
computes the index of the array. This is indicated by the reduction of A4 Li] to the
name ai. Then the location is read. The reading is indicated by the reduction of ai to
a value. Thus, the expression 4 [i] returns a value only after the location has been
assigned a value. It is important to realize that no test for the “emptiness” of an
element is provided for the programmer. This restriction is necessary to preserve the
determinacy of the language.

The operational view of I-structures given above can also be described in terms of
rewrite rules, as jllustrated by the following example. First, we reduce the block expres-

sion:

{ A=array (1,10); = A[S]
A[5]1=4[1]+4; l A=array (I, 10)
Al1] =3; D A[5])1=A4A[1]+¢

in A[5]} 0 A[71]=3

After the storage allocation for the array is done, 4 becomes a value of the form
<al,a2,...,al0>, and, hence, it can be substituted:

= <al,a2,..al0>[5]
0 <al,a2,..,al0>[5]) =<al,a2,..al0> (/] +4

l <al a2, .. al0> [/1] =3

= as
l aS=al+4
l al=3

21



At this stage only a/ can be substituted because a5 has not yet become a value.

= as = as = 7
l as=3+4 0 a5=7

The crucial point in understanding these rewrite rules is that one is allowed to substitute
for an identifier only after the right-hand side of the equation associated with the
identifier has been reduced to a value. If the right-hand side never becomes a value
(that is, is never defined), then no substitution for the identifier is ever done and the
“read” operation will take forever!

Loops: A for-loop expression in Id is a set of bindings to be executed repeatedly
for a specified number of times. All iterations execute concurrently. The following
example illustrates a for-loop.

{ A=array 1,10, )
{for i from | to 10 do
A[i]=i%i}
in A}

First, the block expression is reduced. Then the loop is reduced to a set of parallel
iterations, one for each value of the control variable. Each iteration is a copy of the
body of the loop in which the corresponding value is substituted for the control variable,
as shown below:

22



=> A => A

il A=array 1,10 Il A=array 1, 10
0 {for i from I to 10 do 0 A[1] =11
Afi] =ivi} (]

0 A[10] =10+ 10

Suppose the storage allocation for the array is completed first. The name A is then
replaced by its array descriptor, i.e. the value <a/,a2,...,al0 >. Since A is the result -
expression, the answer becomes available even though the values of the array elements
are still being computed. Each of the index selections is replaced by the corresponding
names, as discussed earlier. Finally, the individual values are stored into the corre-
sponding elements.

= <al, a2, .. al0> = <al,a2, .. al0>
0 <al,a2,..al0>[1] =1«/ l al =1
b .. 0 ..
0 <al,a2,..,ai0>[10] =10+10 0 al0=100

It should be noted that the iterations are executed concurrently regardless of the
nature of the computation. For example, in the following loop, although the multipli-
cations proceed concurrently, the additions and the store operations take place sequen-
tially as dictated by data dependencies.

{ A=array 0,10; = . = <a0,al,... al0>
A[0] =0; 0 a0 =0
{for i from | to 10 do 1 al =a0+1w1

A[i1=A[il] +iwi} 0 ..
in A} 0 al0=a9+ 1010
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As another variation, consider the following example in which the additions and store
operations take place in the reverse order. This shows that the loop specification is
declarative in the sense that for i from 1 to 10 specifies the set of indices and not the
order of their traversal. The order, if any, is governed by data dependencies.

{ A=array 1,11, = | = <al,a2,..,all >

A[11]=0: Nl all=0
{for i from I to 10 do 0 a/l =a2+1+1
A[i] =ALi+1] +iwi} n ..
in A} 0 al0=all+ 1010

Loops may also return a value. The set of bindings in such a loop is followed by
the keyword finally and a return expression. All the iterations and the return expression
are initiated concurrently. The following example illustrates the reduction of a set of
elements to their sum. The key word next indicates that the value computed in the i-th
iteration for the right-hand side of the binding is bound to the name s in the i+ 15
iteration. For clear exposition of this, the name s used in iteration / is renamed as s;
and the following rewrite rules show how the recurrence is computed sequentially. The
key word finally indicates that the value returned by the loop expression is the value
assigned to s in the last iteration.

{ s=0; = ... >

SIO
in {for i from [ to 10 do s=0
next s=gs5+iwij s, =5+1wl
finally s} } 5, =5+2%2

O,

So=35,+10% 10
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3.2. Abstractions to Manipulate Arrays and Matrices

The array A in definition (7) can be thought of as an efficient représentation for
the function square i = i * i over the finite domain (7,/0). Instead of computing
square i each time it is invoked, the values of square i for all i in the domain are
computed and stored in memory. Thus, A4 acts like a “cache” for the function square.2
The following abstractions emphasize this viewpoint.

make_array (I, u) generate = (8)
{ A = array (Lu),
{for i from [ to u do
A[i]l = generate i}
in A};

make_matrix (({1,ul), (12, u2)) generate = 9
{ A = matrix (({1,ul),(i2,u2)),
{for i from !I to ul do
{for j from 12 to u2 do

A[ij] = generate (i,j)}}

in A},
A = make_array (1, 50) successor (10)
B = make_matrix (grid 50) add (1)

In the two definitions (8) and (9), generate is the function that generates the elements

2 Tt would be nice if a language permitted the use of structures and functions interchangeably.
However, this might introduce implementation inefliciencies and /4 does not permit this for
now.
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of the corresponding structure and its finite domain is the set of all indices within the
dimensions of the structure. For example, definition (10) builds a 50-element array in
which the i-th element has value i+ /. Similarly, definition (11) builds a 50 x 50 matrix,
(using the grid function defined in (4)), in which the value of each element is the sum
of the corresponding indices (using the add function defined in (1)).

An abstraction should enable us to mode! the essence of a concept so that it can be
used in different circumstances. The robustness of an abstraction depends upon the
flexibility with which the abstraction lends itself to a variety of uses. We will illustrate
the robustness of the make_array and make_matrix abstractions defined above. We will
show that these abstractions do not depend upon the type of the generating function,
and that they expose all the parallelism present, irrespective of whether the computations
of different elements are independent of each other or not,

Arbitrary generating functions: In definition (8), make_array expects a generator
function whose type is

integer — anytype
where anytype represents the type of array elements. Similarly, a generator for make_ma-
trix must have the type

integer X integer — anytype

Thus, the make_matrix abstraction works equally well with generator add (see definition

(11)) which returns an intéger, and generator velocity (given below) which returns a
2-tuple.
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velocity node = (12)
{ au,aw = acceleration node; ‘
u, w = Old_V[node},

in u+auxtime, w+ aw«time };
V' = make_matrix (grid 50) velocity; (13)
As an aside, we point out that the function velocity computes the velocity components
in the two dimensions at a point specified by node. Acceleration is the function defined
in (6), which gives the component accelerations in the two dimensions at a given node.
Old_V is the old velocity matrix. The new velocity is obtained by incrementing the old

velocity by the product of time and acceleration.

Another dimension of flexibility is that the generator function can be computed at
run time. We can illustrate this using function c¢_add (definition (2)) whose type is:

integer — (integer — integer)
If c_add is applied to n then the result would be a function with type
integer — integer

Thus, it makes sense to use (c_add n) as a generator for the make-array abstraction
as shown below:

make_array (I, 50) (c_add 1)

This creates an array identical to that created in definition (10). We leave it to the
reader to figure out the elements (and their types) of the following array.
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make_array (I, 50) c_add

Pavrallelism is dictated by data dependencies: Note that for both the abstractions
(8) and (9), the structure, i.e. its storage descriptor, is returned as soon as the storage
is allocated; the binding of the elements takes place in parallel. The implementation
must guarantee that any premature accesses are synchronized.3 Furthermore, all the
iterations execute concurrently, unless constrained by data dependencies. For instance,
in definitions (10) and (11) all the iterations are independent and hence will execute in
parallel. On the other hand, consider the following example in which the velocity is
defined as constant 55.5 at the north and west boundaries of the matrix and it is
propagated along a wavefront - so that the velocity at a node is the sum of the velocities
of its north and west neighbors:

rec_velocity V (i,j) = (14)
if i==1] or j==1 then 55.5
else V[ north (i,j)] + V[ west (i,j)]

V. = make_matrix (grid 50) (rec_velocity V); (15)

where “= =" is the relational operator for equality, to avoid overloading of the symbol
“=". Definition (15) is recursive, as the name V is used in its own definition. However,
the abstraction still works because the matrix is returned as soon as the storage is
allocated. To illustrate this, we show a partial reduction sequence to compute V:

3 The I-structure implementation in the MIT Tagged-Token Dataflow Architecture uses
tagged storage and deferred read lists for this purpose. For details see [2].
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I V = make_matrix (grid 50) (rec_velocity ),

B V ={ 4 = matrix ((1,50),(/,50));
{for i from | to 50 do
{for j from I to 50 do
ALLj] = rec_velocity V (i,j}}}
in A}

Now replacing array 4 by its value <day,, ..4y5 > and substituting for the application

of the function rec_velocity we get

= <a,..a,, >

[ {for i from I to 50 do
{for j from [ to 50 do
<a,',,...a”'m>[i,j] =if i==1] or j==] then 55.5
else <a,,..a, > [north (i))] +<a,,..a,,> [west (i,)] }}

Now, one can see how the wavefront parallelism is unfolded as the velocities along each
diagonal will be computed in parallel. The fact that the make_matrix abstraction is
defined without regard to all these nuances of the function generate and that it auto-
matically unravels all the parallelism present, no matter how the function generate is
structured, shows that programming with such abstractions is highly desirable. Later,
we will show how Fortran programmers go through all sorts of contortions to bring out

this wavefront parallelism.
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3.3. Some More Matrix Abstractions

We would like to introduce some more matrix-related abstractions which lead not
only to clear programming style but also increased efficiency in execution.

Make_2_matrices: Given a generating function that produces a 2-tuple, the following
function defines a pair of matrices instead of a matrix of pairs:
make_2_matrices (({{,ul),(I2,u2)) generate = (16)
{ A = matrix ((I1,ul), (12, u2));
B = matrix ((I1,ul), (12, u2));
{for i from lI to ul do
{for j from 12 to u2 do
ALiLj],B[ij] = generate (i,j)}}
in A, B},

For example, velocity of definition (12) is a function that returns a pair of values and
(13) creates a matrix of pairs. The following creates a pair of matrices:

U W = make_2_matrices (grid 50) velocity;
Sometimes it is convenient to maintain two matrices because there may be separate
computations dealing with each velocity component. If a matrix of pairs were used, the
components would have to be selected each time, thus causing some structure-accessing

overheads. The pair of matrices could also be created using the make_matrix abstraction
two times. For example, we could have defined:
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velocity u node = (17)
{ au,aw = acceleration node; '
u, w = Old_V[node];
in u+auwtime };
U = make_matrix (grid 50) velocity_u;

velocity_ w node = (18)
{ au,aw =acceleration node;
u, w = Old_V{node],
in w+aw»time };
W = make_matrix (grid 50) velocity_w;

However, unlike make_2_matrices, the above definitions will unnecessarily compute the
acceleration twice. In general, the behavior of make_2_matrices cannot be imitated by
make_matrix without loss of efficiency.

In the hydrodynamics application, velocity is indeed represented as a pair of matrices,
U and W, one for each component. However, since the velocity is recomputed in each
iteration, both old and new velocities should be pairs of matrices. If Old_U and Old_W
represent the component matrices for the old velocity, then we can define the new
velocity matrices as shown below, computing the acceleration only once for each com-
ponent:
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velocity_uw node = (19)

{ au,aw = acceleration node,
u = Old_U[ node ] ;
w = Old_W/[ node] ;

in u+auxtime, w+awwtime };

U W = make_2_matrices (grid 50) velocity_uw; (20)

Make_matrix_k_ranges: The generator rec_velocity (definition (15)) which is asso-
ciated with matrix V of definition (14) can be viewed as a composite of the following
two generators:

boundary_velocity node = 55.5;
interior_velocity V node = add (V[ north node], V [ west node ),

On the north and west boundaries of the matrix, the generator is boundary_velocity,
and for the remaining matrix the generator is interior_velocity. Since the two generating
functions are to be applied for “well-defined” patterns of indices (ij), the evaluation
of the conditional for the selection of the appropriate generator function seems to be
wasteful. One way to eliminate the condition evaluation is to partition the set of indices
into disjoint sets, so that a separate loop with appropriate generator can be used for
each set. For example, we can define the following grids:

north_boundary = ((I,1),{l, 50));
west_boundary = ((2,50), (1, I));
interior_nodes = ((2,50), (2, 50));

which taken together cover the whole matrix. Now, ail we need to do is to “fill” the
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matrix using the appropriate generator for each section. For this purpose define a filf
abstraction as follows:
SiUl_matrix A (1, ul), (12, u2)) f = 2D
{for i from !l to ul do |
{for j from 2 to u2 do

ALij] = f @GN},

Definition (21) does not return any vaiue and thus is non-functional. However, the
single assignment restriction on the structures guarantees the determinacy of the final
resuit. An I-structure behaves like a variable in logic programming in that its value is
initially undefined but keeps getting more and more defined as the computation pro-
gresses. However, any values “read” from an I-structure always correspond to the final
value of the structure. Alternatively, we can think of 4 as in 4 = matrix  bounds,
as denoting a value which is the set of all matrices with those bounds. Each invocation
of fill_matrix on matrix A is a constraint on the values the variable 4 can assume.
Any attempt to fill an element more than once amounts to imposing inconsistent
constraints, and hence would result in an error.

Now we can define the matrix abstraction which uses 3 generating functions for 3
ranges of indices:

make_matrix_3_ranges dimensions ( (rl, fI), (r2, f2), (r3./3}) = (22)
{ A = matrix dimensions ;
call fill_ matrix A rl fI;
call fill_matrix A r2 f2;
call fill_matrix 4 3 f3;
in A};
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V' = make_matrix_3_ranges (grid 50) (23)
((north_boundary, boundary_velocity),
(west_boundary, boundary_velocity),
(interior_nodes, (interior_velocity ),

Thﬁs, definition (23) creates the same matrix as definition (15), but avoids the
evaluation of the conditional for each element. Once again, all elements will be assigned
concurrently. One can generalize the make_2 matrices and make_matrix_3_ranges and
define more general abstractions, such as make_n_matrices_k_ranges, for various values
of n and k. We leave this as an exercise for the reader.
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3.4. Program for Velocity Computation

We will now illustrate how the velocity computation problem of Section 2 can be
coded in Jd. The velocity is stored in two matrices, U and W, one for each velocity
component. Since the velocity is computed only for interior nodes, their dimensions
should correspond to the interior nodes. The dimensions and the matrix abstraction

can be defined as:
interior_nodes = {(kmin, kmax), (Imin, Imax)) (24)
new_U, new_W = make_2_matrices interior_nodes velocity, (25)
The velocity is obtained by incrementing the old velocity, (U,W), by the product of

time and acceleration. Note that the constant 8¢ and the old velocity components U
and W will be taken from the context (J-lifted as discussed earlier).

velocity node = (26)
{ u_dot,w_dot = acceleration node;

in Ul node] +6t » u_dot, W{node] + 5t » w_dot};

Equation (A) (in Section 2) gives the acceleration at a node. Hence, we define:

acceleration node = (27
{ d = nodal_mass node;
nl = —(line_integral p z node)~ (line_integral q z node);
n2 = (line_integral p r node)+ (line_integral q r node);

in (nlfd n2/d};

In order to define the line integrals and nodal mass, we need to have the notion of
neighbor nodes and zones. Hence we define the following functions that reflect nomen-
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clature used in the problem description to refer to the neighboring nodes and zones.

(28)
north (ij) = (i-1j); zone_a (k1) = (k)
south (ij) = (i+1j); zone b (k!) = (k+11);
east (ij) = (ij+1); zone_c (ki) = (k+1,i+1);
west (ij) = (ij-1); zone_d (kl} = (ki+1);

The line integrals described in Section 2 take two quantities, for example, p and .
Given a node, they integrate the first quantity with respect to the second along a line
around the node. This is expressed by the following line integral function:

line_integral f g node= (29)
Sl zone_a node] «(g[ west node] —g[ north node 1)+
Sl zone b nodel w(g[ south node] —g[ west node 1)+
Sl zone_c node] »{g[ east node] —g[ south node 1)+
Sl zone_d node] «(g[ north node] —g[ east node 1)

Nodal_mass is the average of the masses of the four zones around a node. This is
approximated as one half of the total mass of the 4 zones meeting at node (k,/). The
mass of a zone is the product of its density and area: plnode] »a[node]. We can
define the following function for mass around a node:

nodal_mass node = (30)

0.5%(p[zone_a node] »a[ zone_a node] +
plzone b node] »a[ zone_b node] +
p [ zone_c node] o[ zone_c node] +
p [ zone_d node] »a [ zone_d node?);
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We believe that definitions (24) through (30) that define the velocity reflect the
notions in the probiem description of Section 2 very closely. They map the notions of
line_integral, acceleration, neighborhood notions of nodes and zones, etc., directly into
the program. Thus, if changes are to be made to the algorithm, it should be easy to
relate to the problem description and change the abstractions as desired.
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4. Matrix Abstractions in Fortran

The preceding section illustrates how the /d style of programming not only helps in
building higher-level abstractions, but also automatically unravels the paralielism to the
maximum possible extent. Looking at the examples in the preceding section, a casual
reader might get the impression that the style is purely syntactic in nature and that
such abstractions could be easily built in an imperative language as well. In this section,
we will show first, that Fortran lacks certain basic features, such as dynamic storage
allocation, which are essential for writing robust abstractions. We will then show that
annotations for parallelism in Fortran cannot easily capture the inherent parallelism in
the problem specification. Finally, we will comment on the complexity of the annotated
programs.

Basic Abstractions: The make_matrix abstraction may be expressed as follows in

Fortran:
subroutine make_matrix (A,rl,r2,cl, c2, ¥i)
~integer rl,r2,cl,c2
dimension A (r2,c2)
do 10 i=rlr2
do 10 j=cli, c2
10 AGH = fi.)
return
end

We would like to show why this program does not capture the subtleties of the
make_matrix abstraction of (9). First, notice that without the dynamic allocation of
storage, we cannot create a new matrix in this subroutine; we can only “fill” a matrix
that has been supplied as an argument. Thus, it makes this subroutine the fill abstrac-
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tion of definition (21) rather than the matrix abstraction of (9). Second, in Fortran,
functions are restricted to return one value which must be a scalar. Hence, the above
abstraction cannot be used to define a matrix of 2-tuples, such as the velocity matrix
of definition (13). In fact, since the type of 2 matrix in Fortran has to be declared in
advance, separate abstractions have to be defined for making integer and floating-point
matrices. Restrictions on array bounds further reduces the generality of the abstraction.
Note, we have passed f, a function, as an argument to this subroutine. The facility to
pass function and subroutine names as arguments to other subroutines is not supported
in all Fortrans.

The lack of higher-order functions and currying creates a further problem that shows
up as an argument-passing problem in Fortran. Suppose we call make_matrix with
function g as the last argument and that g, in turn, needs x as an argument. In the Jd
version, we would have passed (g x), the curried form of g, as an argument to make_rna-
trix. However, in Fortran, we will essentially have to write a new version of make_matrix,
which will take x as an additional argument and pass it as an extra argument to f.
Given all the restrictions on argument passing, it should be easy for the reader to see
that there is no way of using the Fortran version of make_matrix to define a matrix
recursively, as in (14) and (15). Problems only get worse when we try to define
make_2_matrices in Fortran. One possible candidate for make_2_matrices is the follow-
ing program.

subroutine make_2_matrices (A, B, rl,r2,cl, c2, ¥i)
dimension A (r2,c2), B(r2,c2)
do 10 i=rl,r2
do 10 j=cl, ¢c2
10 call fG, j, AL}, B(@ )
return

end
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Notice, the argument f must be a subroutine with 4 parameters. The first two
arguments are the indices i and j. The last two arguments are values returned and,
hence, are bound to the respective eiements of the matrix. Such distinction of arguments
and return values in a parameter list is inevitable when functions are ohly allowed to
return one scalar value. Given all these problems, the style of programming we have
shown in this paper is difficult to copy in the Fortran world. Most of the weaknesses
we have pointed out in Fortran so far are not present in sequential languages that
support dynamic allocation of storage. A good example of such a language is Common
Lisp [18] or its semantically clcaner dialect Scheme {1]). Both of these languages will
have some difficulty with the examples involving currying because of “applicative order

evaluation”.

Parallelization: Now we will examine the parallel execution of Fortran programs.
There are many systems that parallelize Fortran. For a recent survey on this subject
see [10]. This is usually done by annotating the Fortran program to indicate parallel
segments and synchronizations. Different systems use different notations for
parallelization of sequential codes. For example, in the subroutine make_matrix, the
two loops will be executed in parallel by an annotation of the form doall replacing the
“do” in the program. The doall annotation is specified (by the programmer or by the
compiler) after performing subscript analysis of expressions in the loop body.4 To the
best of our knowledge, no parallelization scheme will be able to parallelize the make_ma-
trix subroutine because the body invokes some arbitrary function /. which can potentially
have side-effects that can render the iterations to be dependent and, hence, must be
executed sequentially. Complex inter-procedural analysis can sometimes detect that the
loops in make_matrix may be paralielized when it is invoked with a particular generating

4 Although subscript analysis might determine that both of the loops in the nesting can be
parallelized, many of the present systems do not have the necessary support for dynamic
instantiations and hence restrict that at most one loop can be parallelized within a nesting.
Of course, this situation may change in the future.
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function f. For example, if f is the add function as in (11) then the loops can be
parallelized. But if f is the interior_velocity function of (23) to create a wavefront
matrix, then the iterations cannot be parallelized. Thus, we need different versions of
make_matrix for different generating functions, which implies that make_matrix cannot
be a general abstraction for building matrices in Fortran.

In general, it is very hard to extract any parallelism from programs that have some
form of recurrence. For example, the wavefront matrix of (23) does have some paral-
lelism along the wavefronts. But in order to make this explicit in Fortran, the program-
mer must restructure the control substantially. To illustrate this point, consider the
following sequential version of an equivalent program. First, the top row and left
column are initialized with the constant. Then, the recurrence relation is computed
scanning from left to right and top to bottom.

subroutine sequential_wavefront (A, n)
dimension A (n,n)
do 10 j=1,n
A, p=3555
10 A(G,1)=55.5
do 40 i=2,n
do 40 j=2,n
490 AGH)=AG—1L)+AGj-1)

One way to write a parallel version of wavefront is to traverse diagonally from the top
left corner to the bottom right corner. Suppose the diagonals are numbered such that
node (ij) is on diagonal i+j. Notice that after elements on diagonal m have been
computed, all elements of diagonal m+ / can be computed in parallel. Since elements
of the top row and left column are initialized to 55.5, we need not traverse diagonals
2 and 3. A complication in coding arises from the fact that the number of elements on
a diagonal increases as we traverse from diagonal 4 to diagonal n+ / and decreases as
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we traverse from diagonal n+2 to diagonal n+n. Thus, the loop bounds can be set
using conditional statements. The inefficiency of conditional statements can be avojded
by splitting the computation into two loops, “DO 45" and “DO 557, (one for each set
of diagonals) as shown in the following program. The doall annotation is used to
indicate that all the iterations of a loop should be executed in parallel. The barrier
annotation is used to indicate that all processors must synchronize here before proceeding
further. It is worth noting that while barrier is essential for this program to be correct,
it does not permit computations of elements from two diagonals to overlap. This
overlapping is possible in the /d version shown in definitions (14) and (15).

subroutine wavefront_matrix (A, n)
dimension A {(n,n)
doall 10 j=1,n
10 A(1,))=1555
doall 20 i=2,n
20 A, 1)=1555
barrier
do 45 m=4,n+1
doall 40 i=2,m—2
Jj=m—i
40 A(L)=AG(-1L)+AGj-1
45  barrier
do 55 m=n+2,n+n
doall 50 i=m—n,n
J=m—i
50 AGN=AG—-L)+AGj—-1)
55 barrier
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Complexity due to annotations: In the above example, the restructuring and anno-
tations for parallelism obscure the original wavefront algorithm, consequently making
it harder to verify its correctness. Any error such as annotating the “DO 45” loop as
doall instead of the “DO 40” loop, or moving the barrier one line down below the
statement 45 will cause non-deterministic results. The error introduced will show up
only when iterations are executed in an order that causes old array values to be read
instead of the newly updated ones.

As another example to show the advantages of /d over Fortran, we develop a paraliel
version of a program to sum up all the elements of an array. This program is discussed
in some detail in [10). The idea is that given some p, we want to divide the array into
p bins and compute the partial sums in parallel. Finally, all the partial sums are added
up. The following Id program accomplishes this (In /d, the text between a percentage
sign (%) and the end of line is treated as a comment.):
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cume_segment A (l,u) =
{ cume = 0;
in {for i from [ to u do
next cume = cume+ A[i];
Sfinally cume} };

% n is the size of the array and p is the number of processors
p_way_accurnulate_array A n p =
{  bin_size = fix (n+p—1)[p). % fix gives the ceiling of n/p

% define a function to the compute index bounds for bin j
bin_bounds j = (j— 1)»bin_size+ 1, (min n (j«bin_size)),

% define a function to accumulate elements of bin j
J

cume_bin j = cume_segment A (bin_bounds j),

B =make_array (I/,p) cume_bin;
in ~cume_segment B (/,p)};

We invite the reader to compare this program with the annotated Fortran version in
[10] for clarity, parallelism and efficiency. It should be noted that in the cume_segment
function shown above, although the array elements may be accessed concurrently, the
summation is done sequentially as dictated by the recurrence relation cume. It is possible
to incorporate abstractions that make use of the commutative and associative properties
of a function to permit its applications in arbitrary order. In fact, an experimental
version of such an abstraction is available in /d.
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5. Optimizing the Velocity Program

Programming at a high level involves defining many functions, sometimes very
simple functions such as north, south, etc.  as seen in the velocity example. In any
implementation, each function call introduces computational and other resource over-
heads. Programs targeted for maximum efficiency tend to eliminate such overheads by
encoding the program at such a low level that the program often does not reflect the
problem at ail. This point is illustrated by the following equivalent Fortran program
taken from a running version of Simple.

C  COMPUTE ACCELERATION AND NEW VELOCITIES
DO 100 L=LMN, LMX
DO 110 K=KMN, KMX
AU= (P(K,L)+Q(K,L)}  *(Z(K,L-1)-Z(K-1,L)) +

1 (P(K+1,L)+Q(K+1,L))  *(Z(K+1,L)-Z(K,L-1)) +
2 (P(K,L+1)+Q(K,L+1)) *(Z(K-1,L)-Z(K,L+1)) +
3 (P(K#1,L+1)+Q(K+1,L+1))*(Z(K,L+1)-Z(K+1,L))

Aw= (P(K,L)+Q(K,L)) * (R(K,L-1)-R(K-1,L)) +
(P(K+1,L)+Q(K+1,L)) * (R(K+1,L)-R(K,L-1)) +
(P(K,L+1)+Q(K,L+1)) * (R(K-1,L)-R(K,L+1)) +

3 (P(K+1,L+1)+Q(K+1,L+1))* (R(K,L+1)=R(K+1,L))
AUW = RHO(K,L)*AJ(K,L) +RHO(K+1,L)*AJ(K+1,L)+

1 RHOCK, L+1)*AJ(K, L+1)+RHO(K+1, L+1)*AJ(K+1, L+1)

N

AUW = 2. /AUW
AU = ~AU*AUW
AW = AW*AUW

U(K,L) = U(K, L)+DTN*AU
W(K,L) = W(K, L)+DTN*AW
110 CONTINUE
100 CONTINUE
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A good Fortran compiler can analyze all the expressions in the above program and
deduce that all the iterations in the two nested loops can be executed concurrently. The
analysis has to be fairly sophisticated, as it must deduce that P, @, R, Z,,RHO, AJ are
all constant matrices (as far as the loop is concerned) and that the elements of U and
W are computed pointwise from their old values without forming any recurrences. In
general, this may require checking that any side-effects caused by functions invoked
within these subcomputations are non-interfering, so that they could be performed in
arbitrary order. Any slight change to the program affecting the above decisions could
make the compiler decision much harder. Alternatively, the programmer (who figures
out all these facts) can annotate the program by specifying doall in place of do in the
two loops. To a large extent, the programmer had already done a number of optimi-
zations, such as the use of actual indices (as opposed to functions like. north), and
grouping and factoring of expressions in order to minimize the number of operatjons,
memory references, etc. In addition, Fortran compilers usually produce very efficient
code for programs like this because the programs are highly “expression-oriented” and,
therefore, are amenable to optimizations such as common subexpression elimination,
strength reduction, moving out constant expressions from loop bodies, etc. It is extremely
hard to decipher the algorithm used in the above program. Consequently, it is also
hard to modify it for minor changes in the algorithm. One can imagine the added
complexity if this task is to be done with multiple processors in mind.

We have already shown that we can code this algorithm in /d without obscuring
its structure. The reader can verify, by applying the rewrite rules given in Section 3.1,
that the inherent parallelism of the algorithm will be exposed during execution. Finally,
we show that the efficiency of the Id program matches that of the Fortran program,
when in-line substitutions for functions are made. Starting from (25) we performed
in-line substitutions for all the functions (24) through (30), and then performed a simple
automatic renaming transformation to eliminate nested block definitions. Finally, stan-
dard common subexpression elimination transformations were performed to get the
following program:
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new_U, new_W = (31)
{A = matrix ((kmin, kmax), (Imin, Imax));
B =matrix ((kmin, kmax), (Imin, imax));
{for i from kmin to kmax do
{for j from Imin to Imax do
d=05%([ij]»alij] +
pli+ljY»ali+1j]+
pli+Lj+1) *ali+/lj+1] +
pLij+1]walij+1])
zl=z[i,j—1]—-z[i—-1,j];
2=z[i+1,j) —z[ij—1];
23=z[ij+1] —z[i+ 1],
2d=z[i-1j] —z[ij+1],
rl=rij—1]1—-r[i=-01j]:
r=rli+1,j)l—rlij-—1];
R=riij+1]—rli+1j];
rd=r[i—Lj]l ~r[ij+1]:
pel=plijl+qlij];
pe2=pli+1jl+qli+1j];
pg3=pli+1,j+1] +qli+1j+1];
pgd=plij+1] +qlij+1];
ni=—(pqlwzl+pq2wz2+pq3wz3+ pgd»z4);
n2=pqlsri+pg2wr2+pg3+r3+pgd«r4;
u_dot,w_dot=nl|d, n2|d;
ALij], BLijl=ULij]) +8t % u_dot, W[ij] +6t+ w. dot
in A, B}

The reader can verify that the above program does the same number of arithmetic
operations, loads and stores as the Fortran version given earlier.
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6. Storage Requirements

A common criticism of purely functional programs is that they require too much
storage. Indeed, this was the main reason for the introduction of operators to update
a storage cell in McCarthy’s functional Lisp [12] soon after it was invented. F unctional
languages, traditionally, have either paid no attention to arrays or have simulated them
using lists. When scientific programs are written in such languages, excessive copying
of data structures and poor utilization of storage should not surprise anybody. Fur-
thermore, random accessing of array elements can also cause great inefficiencies. The
situation in /d is different because of I-structures. First of all, the storage for a matrix
can be allocated contiguously whenever matrix ((1lul),(12,u2)) is executed. Thus,
any element of the matrix can be selected in constant time. Second, there is no unnec-
essary copying of data structure elements when a/l elements for a data structure are
defined anew, as in relaxation algorithms. This point is rather subtle and is often not
understood by novice /d programmers who may be experienced Fortran programmers.
Id provides even greater flexibility than other functional languages like Val and Sisal
which do support arrays. In Val and Sisal [13,14] arrays are “strict”, that is, no element
of an array may be read until the whole array has been defined. Consequently, programs
like wavefront (see equations (14) and (15)) cannot be expressed efficiently.

It should be emphasized that the use of additional storage in functional model is
caused mostly to facilitate parallel operations. In the Fortran environment, often a
programmer designs the memory structures and program control in such a manner that
the same memory area can be reused by many subcomputations. But, invariably, this
is based on restricting the evaluation order to be sequential. When subcomputations
can potentially execute concurrently, such memory sharing is neither desirable nor
possible. When Fortran programs are parallelized, additional storage in terms of private
copies of variables is indeed provided to run subcomputations in parallel. We will
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illustrate this more concretely through the following example of LU decomposition,
whose parallelization is discussed extensively in [10].

forst
fAnal

ORIGINAL
MATRIX

Figure 4: Computation of successive bands of the fina) matrix yielding LU decompesition

The goal of LU decomposition is to decompose an # x n matrix into lower and upper
triangular matrices by Gaussian elimination method. In the Fortran program discussed
in [10], the decomposed matrix is produced by successively modifying it, as shown in
Figure 4. In each iteration, a band of the final matrix is produced and the remaining
submatrix is completely modified. Thus, iteration k modifies only the right submatrix
bounded by the k-th row and k-t4 column. The steps executed in each iteration are
shown in Figure 5. First, the pivot is determined by finding the maximum element in
the first column of the submatrix. Then, the pivot row and top row are interchanged.
Next, the elements of the first column (other than the pivot) are muitiplied by a
multiplier. The top row and left column of the submatrix created in this manner forms
the next band of the final matrix. Finally, the new submatrix is computed by incre-
menting each element with the product of the corresponding elements in the band
created above.
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Figure 5: Steps in pivoting each diagonal element

Since functional languages do not permit modification of the matrix, we must pro-
duce the LU decomposition in a separate matrix. However, in this example, it is not
necessary to copy the portions of the matrix each time. Initially, we allocate the matrix
D which will contain the final LU decomposition. In each iteration, we fill in a band
of D. Instead of modifying the submatrix in each iteration, we create a new submatrix
each time. The submatrices in successive iterations have smaller and smaller dimensions.
Similarly, instead of interchanging the rows of a submatrix, we will select the elements
of the appropriate row. The array P gives the indices which keep track of the order of
interchangessneeded for pivoting. The following /d program performs these operations.

% finds the largest element in first column and returns that row number

find_pivot 4 = 2
{ ((11, H]), ([2, UZ)) = bouuds A :
nm = 11’

in {for i from lI+1] to ul do
next m = if A[i,12]>A[m, 2] then i else m;
finally m}};
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decompose A n = (33)
{D = matrix ((/,n),{l,n),
P = array (/,n);
B = {for k from I to n—1 do
r = find_pivot A; % get number of pivot row
P[k] = r; % record the row interchange

% fill the row of the new band with elements from pivot-row
call fill_ matrix D ((k, k), (k,n)) row_fill:
row _fill (i,j) = A[rj];

% multiply pivot-col elements with multiplier ¢
call fill_matrix D ((k+1,n),(k k) col_fill;
col fill (i,j) = A[ik] «¢t;

t = =10[A[r,k]; % compute multiplier

% compute elements of new submatrix
% new-element = old-element + product of corresponding band elements
% Because of interchange, pivot-row should be interpreted as the top row
e zourmber x| if i= =r then k else i
new_element (i,j) = D[i,k] +D[k,j] + A [ sosgttoizar, ;] ;
next A = make_matrix ((k+ 1,n),(k+ 1,n)} new_element };
finally A};
D[{nnr] = B[nn];
in D, P},

In the parallel Fortran versions of this program [10], the elements of the submatrix
are computed in parallel and are stored back in the same storage area of the matrix A.
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However, in order to guarantee determinacy, barrier synchronization must be used to
prevent the next iteration to commence before all the elements of the submatrix are
computed. In (33) the submatrices are created in separate memory areas, but the
iterations can overlap. For instance, finding the pivot for iteration k+ 7 can commence
as soon as the first column of the submatrix next 4 is computed in iteration k. Thus,
the /d program uses additional storage to expose all possible parallelism. It is possible
to constrain the execution of the loop in (33) so that the iterations execute sequentially.
Then, the storage for the matrix 4 can be reclaimed as soon as the iteration is completed.
Thus, in functional programs also, it is possible to save storage at the expense of
constraining some parallelism. Similarly, when subcomputations are known to run
sequentially, one can use clever memory management schemes which can take directives
so that copying can be avoided in certain cases. The Id World environment [16],
provides facilities to experiment with such trade-offs between use of additional memory
and exploiting parallelism. In general, management of memory and processor resources
in a parallel environment is an open problem and a subject for further study [7).

In spite of all the flexibility offered by I-structures, there are well known graph
aigorithms that cannot be expressed efficiently in /d. Warshall’s algorithm for computing
the transitive closure causes unnecessary copying of matrix elements. We are keen to
investigate if this points to a lack of expressive power in /d or if it is a strong indicator
that such algorithms do not have parallelism.
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7. Conclusion

Ideally, a high-level language should provide a way of writing abstractions which
are as close to the probiem domain as possible. It should also facilitate efficient imple-
mentations of these abstractions lest a user try to “get underneath” the abstractions.
With the advent of parallel machines, a language such as Fortran fails on both counts. -
It was never very good for expressing high-level abstractions and, because it forces the
user to specify a sequential order of evaluation, it also makes it very difficult to compile
good code for a parallel machine. In the latter deficiency, Fortran is not alone; all
high-level languages in widespread use today force the user to over-specify the algorithm.
Functional and other declarative languages offer relief on both counts. In this paper,
using the make_array and make_matrix abstractions, we have shown that the use of
higher-order functions in /d raises the level of programming without loss of parallelism
or efficiency.

We have also discussed our attempts to write the make_matrix and other abstractions
in Fortran. The primary difficulty in expressing these abstractions in Fortran has to
do with the lack of dynamic storage allocation. In Fortran, one cannot allocate an
array in a function or subroutine and return it as a result. This restriction allows a
user (with the help of the Fortran compiler) to make very efficient use of storage but
often results in quite inelegant programs. The other major shortcoming of Fortran and
most other imperative languages is the lack of support for curried higher-order functions.
Without currying, there is no elegant way of dealing with functions with a variable
number of arguments.

We would like to caution against hasty reactions like: “Since there are only two
deficiencies, - dynamic storage allocation and currying - let us add them to Fortran.”
Or “Since this other imperative language has all these SJeatures, why not use it™ It is of



course necessary to have these features for specifying high-level abstractions. But it is
also important to design the language such that its operational semantics does not
impose unnecessary sequentiality. Parallelism in the operational semantics is ensured
by the functional nature of a language. Although freewheeling use of I-structures can
take us beyond Functional programs, /d has been designed to retain the Church-Rosser
property and all the inherent parallelism of functional programs. Unregulated mixing
of imperative and functional features in a language essentially makes the language
imperative, because it is extremely difficult to determine if a construct is functional or
not. Again Lisp offers a good example to illustrate this point; pure Lisp did not specify
the order in which arguments of a function should be evaluated. However, introduction
of just two imperative features to destroy the contents of a cons-cell mandate sequential
order of evaluation. We think, without changing an imperative language in a fundamental
way, it is impossible to make it suitable for abstract programming and parallel execution.

Annotations in Fortran for parallel execution make a bad situation much worse.
Incorporation of parallel-loop constructs and synchronization primitives permits the
user to write programs whose behavior may inadvertently be time-dependent or
configuration-dependent. This adds a new and treacherous dimension to debugging
programs. In contrast, programs in declarative languages are determinate. Such lan-
guages eliminate the problem of “detecting parallelism”; however, the problem of man-
aging resources for parallel execution remains. In our opinion it is still not fully appre-
ciated that parallel execution of Fortran programs requires at least a limited notion of
dynamic storage allocation, and invariably takes more storage than sequential execution.
It may be best to adopt new and progressive ways at this stage rather than beat a
three-legged horse!
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