MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR  §7%i
COMPUTER SCIENCE I

The Semantics of Update
in a

Functional Database Programming Language

Computation Structures Group Memo 276
December 7, 1987

Rishiyur S. Nikhil

To appear in: Proceedings of the 1987 ALTAIR/CRAI Workshop on Database
Programming Languages; September 1987, Roscoff, France; Francois Bancithon and
Peter Buneman (eds.)

This report describes research done at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-84-K-0099.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139






The Semantics of Update
in a i
Functional Database Programming Language
R.S.Nikhil

MIT Laboratory for Computer Science

545 Technology Square,
Cambridge MA 02139, USA

Arpanet: nikhil@xx lcs.mit.edu

Databases that can store complex, nested objects may suffer performance penalties
for their generality. Parallelism may be a solution. However, we need database
languages that can express parallelism, and implementations that can exploit it.
Functional languages and and their dataflow implementations are one approach,
at least for queries. However, it has not been easy to express database updates in
functional languages. In this paper we present a model for databases and updates
in a functional language, with an intended dataflow implementation. The update
language is declarative, parallel, and determinate, and can be extended to model
historical data.

1 Introduction

The dichotomy between databases and programming languages is one of expedience. Ide-
ally, it should be possible for arbitrary objects created and manipulated by programs to be
persistent. But today, we know how to implement persistence efficiently only by restricting
the structure of persistent objects and the operations that can be done on them.

For example, in current relational database systems, persistent objects must be flat,
rectangular tables containing scalar values, and they must be manipulated only by a given
set of relational operations. It is generally not easy to change the structure of the tables or
to write arbitrary programs to manipulate them. Because of these restrictions, the database
implementor can pre-plan disk layouts for the tables, can create indexes that use knowledge
of these layouts, and compile queries so that they exploit this information thoroughly.

The limitations on structure and operations in current database systems are a serious
hindrance in applications that must model complex data (e.g., in engineering design). In

0This research was done at the MIT Laboratory for Computer Science. Funding for this project was
provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-84-K-0099.



some applications, the limitations are so severe that implementors bypass database systems
entirely— they store data in ordinary files, flattening objects for writing and reconstructing
them on reading. Needless to say, the performance of persistent operations is not good. (Nor
does this approach address issues of concurency control and resilience.)

Sometimes, implementors encode complex objects within, say, an existing relational sys-
tem. For example, object containment in a programming language is normally implemented
by pointers; in a relational system, pointers can be mimicked by foreign keys. But this layer
of interpretation can again degrade performance, since the underlying relational system is
unaware of the encoding. (Nor does this approach support data abstraction.)

Tt is clear that persistence of complex objects must be supported directly (see also [1, 7,
8]). But how to get adequate performance? One possibility is through parallelism. For this
to become a reality, we need languages that do not obscure parallelism, and implementations
that exploit the available parallelism. Functional languages have long been touted as suitable
for this purpose.

Our approach is based on the Tagged-token Dataflow parallel execution model [5]. Here,
we begin with Id, a langnage designed for easy compilation into dataflow graphs, a parallel
machine language. The core of Id is a functional programming language, including higher-
_ order functions and non-strictness in procedure calls and data structure constructors.

But in purely functional languages, incremental updates to large data structures can
be difficult to express (see Section 5.4 for more on this topic), and are usually difficult to
implement efficiently (see [6] for more on this topic). “I-structures” in Id are an attempt to
address these issues. I-structures are array-like data structures that can be incrementally
defined (like updatable arrays), yet retain the determinacy and parallelism of functional
languages.

In this paper, we present some ideas on how to extend Id to make it into a database
programming language. First, we generalize the I-structure idea to a richer class of indexed
structures supporting incremental definition. Then, we introduce the notion of databases
and update transactions on databases. Along the way, we will find that the model can be
extended naturally to express the retention and manipulation of historical data.

2 Databases as Environments

Consider an interactive programming system for a functional language. At any given time,
there is a current environment of bindings associating names to values. The user engages in
two kinds of activities:

o When a user enters a definition, he' is specifying a new environment, usually in terms
of the old. He is adding a new binding, or redefining an existing one. Viewing the
environment as a database, this is an update transaction.

1'We use he instead of the more awkward he or she.



¢ When the user enters an ezpresston, it is evaluated in the current environment, and an
answer is printed. Viewing the environment as a database, this is a database guery.

We model a database on exactly this idea. A database is an environment of bindings; update
transactions specify new environments in terms of old; and queries are simply expressions
evaluated in the latest environment. Thus, the operation of a single-user database system
can be specified as a function from a list of transactions to a list of responses:?

Def dbsystem db (cons xact xacts) =
{ resp, new_db = eval db xact
In
cons resp (dbsystem new_db xacts) } ;

dbsystem empty_db xacts

The phrase (cons xact xacts) is a pattern that matches the input list, binding the name
xact to the first transaction and xacts to the rest of the list of transactions. Xact is evaluated
in the database environment to produce a response and a new database environment (of
course, for query transactions, the new database will be the same as the old). Finally, we
construct and return the list of responses, beginning with this response and followed by the
remaining list of responses obtained by running the remaining transactions against the new
database.

A database shared among multiple users needs a little more packaging: we need a manager
that non-deterministically receives transactions from individual users and merges them into
a single list of transactions as input to dbsystem. The responses from dbsystem must then
be despatched to the appropriate users. The details are outside the scope of this paper; the
interested reader is referred to [9] or [3] for suggested solutions.

Each binding in the database associates a name to a database lype or to a value of
arbitrary type. The type structure is:
e Primitive types: V (void), N (numbers), B (booleans), S (strings), SYM (symbols) ...

e Database types: Student, Course, Department, ...

These can be viewed as abstract types and are introduced by the user explicitly. For
each database type t, the system provides:

2We use Id notation here. As in most modern functinal languages, application of a function £ to argument
a is written by juxtaposition: £ a. Blocks (analogous to let or where expressions) are written

{ statement ;
statement
In

expression }

The left-hand sides of statements can be paiterns that match the structure of the values returned by the
right-hand-sides.



— a constructor function “make t” which, when applied to ():V, returns a new
object of type t.

— aset “all t” containing all objects of type t.
o Sets of objects of arbitrary, but uniform type: *t
o Finite tuples of objects of arbitrary type: (t1,...,tn)

e Function types: t1 -> t2

We will refer to such functions as ordinary functions, in contrast with indexed functions
below.

e Indexed types: For every primitive and database type t1 and t2, there are indexed

types:®
1) t1 = t2
2) t1  =>* t2
3) ti <=> 12
4) t1 <=>* t2
5) t1 *<=>* t2

The similarity to ordinary functions is deliberate— in queries, they are regarded as
functions on finite domains. Like functions, they can be applied to arguments to
produce results. For example, the object SStatus: Student => S can be applied to
a Student object to produce a string. The indexed types represent one-to-one, one-to-
many and many-to-many relationships, with or without inverses. We will see examples
below.

We will refer to objects with indexed types as indexed functions.

For example, here is (the type of} a segment of a typical database:

Student : TYPE
SName : Student <=> §
SStatus : Student => S

STotalUnits : Student -> N

Student is a database type. SName is an invertible indexed function that maps Students
to strings. There is a generic inverting funtion -, such that “~ SName” maps strings to
Students. SStatus is a (non-invertible) indexed function that maps Students to strings,
and STotalUnits is an ordinary function that maps Students to numbers.

Another segment of the database:

3In [10], we used the notation —->, —=>#, etc., but —-> was easily confused with -> in hand-written text.



Course + TYPE

CName : Course <=> S
CUnits : Course => N
CPrereq . Course #*<=>* Course

Course is another database type. CPrereq maps a Course into a set of Courses that are its
prerequisites. “* CPrereq” maps a Course into a set of Courses for which it is a prerequisite.

The (type of the) rest of the database:

Enrollment : TYPE

EGrade : Enrollment => S
S-Enroll : Student <=>* Enrollment
C-Enroll + Course <=>* Enrollment

S-Enroll maps a Student into the set of his Enrollments, while “~ S-Enroll” maps an
Enrollment into the corresponding Student.

The database type Enrollment (with associated functions) was introduced to model the
event of a student enrolling in a course, which allows associating various data with that event,
such as grade, date of enrollment, name of supervisor who approved it, etc. An alternative
strategy would be to define the following functions directly on Students and Courses:

Takes-Courses: Student *<=>*% Course
Grade : (Student,Course) -> S

In conventional database terminology, our database types correspond to distinct record
types. “=>" corresponds to an ordinary record field, whereas “<=>" corresponds to a record
field that is also a key. The other indexed types correspond to one-to-many and many-to-
many relationships, usually obtained by set owner/member links in CODASYL databases,
and by joins in relational databases.

2.1 Queries

Queries are arbitrary applicative expressions evaluated in the database environment. A very
powerful notation for expressions on collections is the “set comprehension” notation invented
by Turner [14, 13]. This notation can be regarded as a significant generalization of relational
calculus languages like SQL.

For example, here is a query to find the names of all special-status students taking 15-unit
courses:

{ SName s | s <- all Student ; SStatus s == "Special" ;
¢ <= all Course ; Clnits ¢ == 15 ;
e <- all Enrollment ; ~ S-Enrcll e == 8 ;
~ C-Enroll e == ¢ }



In words: For all students s such that his status is special, for all courses c such that its
units are 15, for all enrollments corresponding to s and c, return the name of s.

Of course, the above expression may not be the most efficient way to compute the result.
Here is a more efficient solution:

{ SName (- S-Enrcll e) | e <~ all Enrollment ;
CUnits (~ C-Enroll e) == 15 ;
SStatus (~ S-Enroll e) == "special” }

In words: For all enrollments corresponding to 15 unit courses and special-status students,
return the name of the corresponding student.

One of the strengths of a functional language is that its clean semantics makes programs
amenable to very powerful transforms, resulting in significant optimizations. It is possible
that such a transformer could automatically produce the second query from the first.

The user can use a more algebraic notation that exploits a significant feature of functional
languages: functions (both ordinary and indexed functions) are first-class values, i.e., they
can be arguments to and results from other functions, and components of data structures.
This allows the use of high-level bulk operators to express common computations concisely.
Examples of such operators are:

e “map f 1”7 returns a set containing the results of applying the function f to each
member of the set 1.

e “filter p 1” returns a set containing just those members of 1 that satisfy the predi-
cate function p.

o “compose f1 £2” is a function that takes an argument x and returns (f1 (£2 x)).

e “fold op v 1" returns an accumulated value over the set 1, obtained by applying the
binary function op pairwise to each element of 1, with initial value v. For example,
“fold (+) 0 1” sums up the set 1.

We use the standard curried notation of functional languages, so that “fold (+) 0” is a
function that takes a set of numbers as its argument and sums it up. The advantage of
treating indexed functions like ordinary functions is uniformity— one can then extend all
the power of these high-level operators to database structures.

Here is a more algebraic notation for the efficient version of the above query:

{ e_15_special e = (CUnits (~ C-Enroll e)
and (SStatus (- S-Enroll e)

15)
"special")

In
map (compose SName (~ S-Enroll))
(filter e_15_special
(all Enrollment)) }

6



e_15_special is a predicate that decides if the course related to enrollment e has 15 units
and the student related to e has special status. Using it, we filter all enrollments, and
map the composition of SName and ~ S-Enroll over the remaining enrollments to produce
the desired set. This operator-based view of functional query languages and methods to
implement them are explored at length in [12].

Because of our parallel model of computation, the enumeration of enroliments, the filter-
ing and the final mapping are all overlapped in a pipelined manner (see [11]).

The function STotalUnits whose type was shown in the database environment is an
ordinary function. Here is a possible definition for it:

Def STotalUnits s =
fold (+) O
{ CUnits (~ C-Enroll e) | e <- S-Enroll s }

i.e., when applied to a Student, it computes that student’s total units using other database
functions. This is sometimes called a “derived function” in the database literature.

Here is a recursive query that checks if the course "6.001" is directly or indirectly a
prerequisite for the course "'6.004":

{ qcl c2=if (c1 == c2) then true
else fold (or) false (map (q c1) (CPrereqs c2)) ;

In
q (- CName "g.001") (~ CName "6.004") }

Note that one mixes indexed and ordinary functions freely. Definitions for ordinary
functions may use recursion, conditionals, etc. In short, the query language is a complete,
high-level programming language.

3 Operations on Indexed Functions

Indexed functions differ from ordinary functions in that they are defined incrementally with
many statements, rather than in a single statement. An indexed function is first created
using the “empty” construct, at which point it has an empty domain (undefined everywhere).
It has zero information content, and is said to be “open”. As the transaction progresses,
incremental definitions monotonically (i.e., consistently) add more information to the object,
defining it over a larger and larger domain., When the transaction completes, i.e., the
program terminates, the value of the indexed function is frozen, and it is said to be “closed”.
Incremental definitions can only be given for open indexed functions, i.e., new indexed
functions introduced in the current transaction.

The operations described below are inspired by I-structure operations in the dataflow
language 1d [6).



3.1 Single-Valued Index Functions: => and <=>

The expression:
empty (t1 => t2)

returns a new, empty, indexed function of type t1 => t2, t.e., it initially maps all arguments
to 1. For convenience, one can also say “empty e” where e is any expression of type t1 =>
+2 (the value of e is irrelevant— the system only uses its type).

Given an indexed function £: t1 => t2, and expressions e1:t1 and e2:t2 that evaluate
to v and w, respectively, the statement:

f [el] = &2

extends the definition of £ so that it maps v to w. By executing many incremental definition
statements, an initially empty f is gradually “filled in”, defining it over a larger and larger
domain.

Contrast this with statements for ordinary function definitions. For example,
gx=a

defines g at once for all arguments x. Each incremental definition statement, on the other
hand, defines £ only for one specific argument.

In our parallel model of computation, the order in which the incremental definitions are
executed is unpredictable. Consequently, we allow a definition for £ at the each argument
v at most once, i.e., the value of (f v) can make at most one transition, from 1 to some
w. Any attempt to redefine £ at v so that it has some other value w’ is treated as an
inconsistent specification of £, and causes a runtime error. This rule is sometimes called the
“single-assignment” rule in dataflow literature.

If £ is applied to an argument v within the same program, that part of the computation
simply waits (if necessary) until f is defined at v by some other, concurrent part of the
computation. The requirement that £ can be given only a single definition at v ensures that
each function application returns a unique, determinate result.

As we shall see later, in update transactions a new f: t1 => t2 automatically inherits
mappings from an old version unless specified otherwise. To inhibit this, for an expression
el:t1 that evaluates to v, the statement:

f [el1] = undef

specifies that (£ v) is always undefined. Any other attempt to define £ at v is an error.

The treatment of <=> is similar. For an indexed function £: t1 <=> t2 and expressions
el:t1 and e2:t2 that evaluate to v and w respectively, the statement:

8



f [el] = 2

defines (f v) tobewand (* £ w) to be v. It will succeed only if £ was previously undefined
at v and if (- £) was previously undefined at w.

For an indexed function £: t1 <=> t2 and an expression e1:t1 that evaluate to v, the
statement:

f [el] = undef

specifies that (£ v) is always undefined. Any other attempt to define £ at v is an error.

3.2 Multiple-Valued Index Functions: =>%, <=>* and *<=>*
Multiple-valued indexed functions initially map all arguments to Ll,., the undefined set.
As incremental definitions at some argument v are executed, the mapping improves to

(insert wi 1,.), (insert wl (insert w2 L,e)), and so on. If, at the end of the trans-
action, (f v) is

(insert wi (... (insert wn L,:)))
then it becomes closed with those values, i.e., (f v) is
(insert wi (... (insert wn EmptySet)))

for subsequent transactions.

For an indexed function £: t1 =>* t2 and expressions el:t1 and e2:t2 that evaluate
to v and w respectively, the statement:

f [el] += e2

extends the definition of £ so that (f v) includes w.

Again, as we shall see later, in update transactions a new £: t1 =>* t2 automatically
inherits mappings from an old version unless specified otherwise. To inhibit this, for expres-
sions el:t1 and e2:t2 that evaluate to v and w respectively, the statement:

f [el] -= e2

specifies that (£ v) always excludes w. Any other attempt to include w in (f v) is an error.

For an indexed function £: t1 <=>* t2 and expressions el:t1 and e2:*t2 that evaluate
to v and w respectively, the statement:

f [el] += e2



extends the definition of £ so that (f v) includes w, and (* £ w) returns v. It will succeed
only if (- £) was previously undefined at v.

For an indexed function £: t1 <=>* t2 and expressions e1:t1 and e2:*t2 that evaluate
to v and w respectively, the statement:

f [el] -= e2

specifies that (£ v) always excludes w, and (= £ w) never returns v. Any other attempt to
define £ to include this mapping is an error.

For an indexed function £: t1 *<=>* t2 and expressions el:t1 and e2:t2 that evaluate
to v and w respectively, the statement:

f [el] += e2

extends the definition of £ so that (£ v) includes w, and (= £ w) includes v.

For an indexed function £: t1 *<=>* t2 and expressions el:t1 and e2:t2 that evaluate
to v and w respectively, the statement:

£ [el] -= e2

specifes that (£ v) always excludes w and that (* £ w) always excludes v. Any other
attempt to include this mapping in f is an error.

4 TUpdate Transactions

Executing an update transaction against an environment (database) produces a new environ-
ment. The transaction itself is a specification of the new environment, based on the old. In
principle, this involves specifying all the names in the new environment, together with their
new bindings. In practice, however, most update transactions express only small changes
to the environment. Thus, for convenience, we would like a notation by which we need to
specify only the difference between the new and old environments.

The entire database can be regarded as a graph. Each internal node in the graph is either
a set, a tuple, an ordinary function or an indexed function. The leaves of the graphs are
objects of the primitive types and database types. The root of the graph is the database
environment itself, which, for uniformity, can be regarded as an indexed function of type SYM
=> object. The special symbol “db” in the database environment evaluates to the database
environment object itself.

An update transaction is a program that specifies the new graph in terms of the old. At
the beginning of the transaction, every node in the graph has a new “shadow” version. Nodes
corresponding to indexed functions are open and empty, i.e., with 1o outgoing edges in the
graph. If e is an expression that refers to an object in the old grapt. then “new e” refers to

10



its new version (thus “new db” refers to the new database environment itself). The update
transaction contains incremental definitions for the new versions of objects. At the end of the
transaction, i.e., when the program has terminated, the new version of each object inherits
any old contents that were not incrementally redefined, after which it becomes closed.

The new extension of a type, e.g., (new (all Student)) is t,. until the end of the
transaction, when it becomes closed, containing all objects of that type that are present in
the new version of the database.

4.1 Examples

An update to increase the number of units for the course 6.006 by 3 units:
(new CUnits) [ (~ CName "6.006") ] = (CUnits c) + 3

The update consists of a single statement that specifies an incremental definition of the new
version of the indexed function bound to CUnits. The new version differs from the old in that
the course referred to by “* CName "6.006"” is now mapped to a number 3 units greater
than before.

An update to change the name of student John Xiao to John Zhao:
(new SName) [~ SName *John Xiao"] = "John Zhao"
An update to increase the units of all courses by 3:

{ £f c = { (new CUnits) [c] = (CUnits ¢c) + 3 } ;
mapdo f (all Course) }

The first statement defines a temporary function £ that increases the units of a course by
3. The second statement applies this to all courses (mapdo is like map in that it applies £
to each course, but is different in that there are no results to be returned). In our parallel
model of computation, all the applications of £ can be performed in parallel.

An update to remove a grade erroneously recorded for John Zhao in the course 6.001:

{ s = ~ SName "John Zhao" ;
e=hd { e | € <- S-Enroll s;
(~ C-Enroll e) == (* CName "6.00i") } ;
(new EGrade) [ e ] = undef } ;

The first two statements locate the enrollment for John Zhao in 6.001. The last statement
specifes that the new EGrade function will be undefined at that enrollment.

To drop an existing name (say SNationality: Student => §) {rom the top-level data-
base environment:

11



(new db) [?’SNationality] = undef
“New db” refers to the new database object. The binding indexed by the name SNationality
is made undefined.
To introduce a new name into the top-level database environment, or to rebind an existing

name to a completely new value, one simply supplies its definition. Examples:

{fs={cl ¢ < - C-Enroll (S-Enroll s)
CUnits ¢ > 12 } ;

(new db) [’SHeavyCourses] = f ;

(new db) [’CDescription] = empty (Course => S) }

This transaction defines two new database functions. SHeavyCourses is an ordinary func-
tion on Students that returns the set of courses he takes with greater than 12 units.
CDescription is an indexed function on Course objects that returns a string description.
CDescription is still undefined on every course— other parts of this update transaction, or
later update transactions can fill it in incrementally.

Here is an update that introduces a generally useful function called theEnrollmentFor.
Given a student name and a course name, it returns the enrollment corresponding to that
student and course:

{ theEnrollmentFor sn cn =
hd { e | e <~ S-Enroll (~ SName sn);
(CName (“C-Enroll e)) == cn } ;

(new db) [’theEnrollmentFor] = theEnrollmentFor }

Update programs can themselves be stored in the database. For example, here is an up-
date that introduces a function record_grades that can be used in subsequent transactions.

It takes a course name and a set of student names and grades, and records the grades for
that course.

{ record_grades Cn SnGs =
{ f (8n,G) = { e = theEnrollmentFor Sn Cn;

(new EGrade) [e] = G } ;
mapdo f SnGs } ;

(new db) [’record_grades] = record_grades } ;

The first statement defines the function value itself, and the second statement records it in
the new database.

Another update introducing a function that can be used in subsequent transactions: given
a student name and a course name, it adds that enrollment:

12



{ add sn cn = { & = -~ SName sn ;
c = ~ CName cn ;
e = make Enrollment () ;
(new S-Enroll) [s] += e;
(new C-Enroll) [c] +=¢e } ;

(new db) [’add] = add }

Again, the first statement defines the function value itself, and the second statement records
it in the new database.

An update introducing a function that, given a student name and a course name, deletes
that enrollment:

{ drop sncn = { s =" SName sn ;
¢ = ~ CName cn ;
e = theEnrollmentFor sn cn ;
(new S-Enroll) [s] -= e ;
(new C-Enroll) [¢] -= e ;
(new EGrade) [e] = undef } ;

(new db) [’drop] = drop }

Note that the way to remove an object from the database is to ensure that there is no
function defined on it. The object then disappears from the database.

5 Discussion

5.1 Parallelism
The major issues in designing a database programming language with parallelism are:

e how to specify what can be done in parallel, and

e determinacy, i.e., guaranteeing that the result of the transaction does not depend on
the runtime schedule for the parallel parts chosen by the system.

Inspired by the dataflow approach, especially I-structures in Id, our model addresses both is-
sues. Decomposition into parallel parts is implicit— programs can be compiled into dataflow
graphs, which constitute a parallel machine language (for an outline of how this is done in
Id, see [5] and [11]). The semantics of incremental definition, in which the information con-
tent of a function increases monotonically during an update transaction, ensures that the
transactions are determinate.

13



5.2 Historical Data

The model of update just described can be extended to deal with historical data. In Section
9 we modelled the database system as a function from a database and list of transactions to
a list of responses. Each transaction was evaluated in the current database environment to
produce a new database environment. The old database was discarded.

Instead, we could retain the old database environments, modelling the database system
as a function from a list of database environments and a list of transactions to the list, of
responses:

Def dbsystem dbs (cons xact xacts) =
{ resp, db’ = eval dbs xact
In
cons rest (dbsystem (cons db’ dbs) xacts) }

dbsystem (cons empty_db nil) xacts

Fach transaction thus has the entire history of databases available to it. To make use of this,
we need additional notation to specify that an expression (part of the transaction) must be
evaluated in an arbitrary previous environment.

First, we need “environment expressions” that specify an environment by indexing into
dbs, the history of database environments. There are various possibilities for specifying this
indexing:

e by absolute position, where the initial, empty database supplied to dbsystem has
position 0.

by relative position, with the most recent database environment having position 0.

e by time, assuming that dbsystenm records the creation time of each database environ-
ment.

by name of creator, assuming that dbsystem records the name of the creator of each
database environment.

by arbitrary property, i.e., the most recent database environment in which a given
boolean expression evaluates true.

...
Once we can specify particular environments, the phrase:

with environment-expression
erpression

can be used to evaluate an expression within that environment. Thus, we can write queries
and updates that depend on any or all previous states of the database.

14



5.3 Concurrency Between Transactions

The parallelism that we have focused on so far is all within a single transaction. Re-
ferring to the database system model of Section 2, the parallelism is within the phrase:
(eval db xact). Within dbsystem, the result database from one transaction is used as the
environment in which to evaluate the next transaction.

This is not to imply that there cannot be any parallelism befween transactions. First,
since a closed database environment is never subsequently modified, a read-only transaction
(query) can continue using an old database as long as necessary, without holding up subse-
quent update transactions. Second, even update transactions can be overlapped: the lenient
semantics of our language allows (eval db xact) to return a value (the response and the
new database) immediately, before the transaction has completed (this behavior is also ex-
hibited by languages with lazy evaluation). This permits dbsystem to begin evaluating the
next transaction immediately.

A problem arises due to aborted transactions, which can cascade through all subsequent
transactions that have already begun executing. To avoid this, one will have to employ the
usual solutions: either prevent multiple transactions from overlapping (pessimistic), or allow
them to overlap, keeping track of which parts of the database they actually see, so that an
abort does not cascade through non-interfering transactions (optimisitic).

5.4 Comparison With Other Approaches

The top-level definition of the database system (dbsystem) that we presented in Section 2 is
almost identical to other “functional” views ([9], [2]). The differences arise in the meaning
of the phrase (eval db xact)—— what is a database, what is a transaction, and what is the
eval function?

The approach in [9] can be regarded as a “transaction-as-command” approach. For
instance, the database is a bank balance— just a number. Transactions are commands
of the form deposit x and withdraw x. The eval function interprets a transaction by
examining whether it is a deposit of withdraw command, and constructs the response and
new database appropriately:

Def eval db xact =
{ command, val = xact ;
In
if command = ‘withdraw then
("Here is", val), (db - val)
else if command = ’deposit then
("Deposited", val), (db + val)
else error } ;

The problem with this approach is that even though the database system is implemented
as a functional program, the transaction language (deposit and withdraw commands) is a

15



purely imperative language. Though we have not seen any more complicated examples in the
literature, the natural generalization of such a language would be a conventional imperative
language, with all the attendant sequentiality and difficult semantics.

The approach in [2] may be regarded as a “transaction-as-function” approach. The
database is a data structure, and a transaction is directly a function from a database to
a response and new database. Thus, the eval function simply applies the transaction to
database.

Def eval db xact = (xact db) ;

The user has the full generality of a functional language in which to specify queries and
updates. Being functional, of course there is plenty of parallelism available.

While this approach is very elegant if the database is a tree-like data structure, it becomes
very awkward when the database is a general graph (with shared sub-structures). Consider
a database that is a list of ten Course objects, five of which contain the same Classroom
object, which in turn contains a number, its seating capacity. Now suppose the seating
capacity is to be changed. The update transaction must of course rebuild the Classroom
object with the new number. But unfortunately, we must also rebuild five Course objects
to contain the new Classroom object, and then we must rebuild the top-level list to contain
the five new Classroom objects in place of the old. In general, the transaction programmer
must explicitly identify and rebuild every path from the root of the database down to the
“updated” object.

In contrast, our approach can be viewed as an attempt to retain the expressive power,
parallelism and declarative nature of the transaction-as-function approach, while achieving
the economy of expression of a more imperative approach.

6 Future Directions

The work described here is a preliminary attempt to design a declarative update language
within the framework of a functional database system. There are many details to be com-
pleted, many issues still to be investigated. As a vehicle for this research, we are constructing
a prototype of the system. This is initially implemented in Lisp to take advantage of Lisp’s
rich programming environment; later we expect to incorporate it into Id and to run it on our
dataflow multiprocessor (emulated for now, a real one later). Until we have more experience
with writing applications in our prototype, we cannot make a convincing judgment as to
whether it is easy or difficult to express updates in this model.

Despite the title of this paper, what we have presented is by no means a formal semantics,
and until that event, we cannot possibly be precise in our claims about parallelism, deter-
minacy, efc. Once the language has reached a reasonably stable point, we expect to extend
the formal semantics of Id, expressed as rewrite rules [11] to cover this database model.

There is a disturbing lack of type-orthogonality in the indexed types— currently, the
domain and range of an index type can only be database or primitive types. We are taking

16



this position currently for pragmatic reasons— it is not clear what it means to index on
tuples, sets, nested structures, ete.

In our model, currently an object is deleted antomatically from the database when it no
longer participates in any mappings (no query can be asked of it). The reason for this choice,
rather than a command to delete an object directly, was that it is not clear what happens to
the mappings in which the object participates. However, removing it from all mappings can
be quite tedious to specify. This issue requires more investigation. A more difficult question:
when can a type be deleted from the database, i.e., what happens to existing objects of that
type, mappings on those objects, ete.?

The transaction language, like Id with I-structures, is not a purely functional language
any more, though it does retain the parallelism and determinacy (and, we claim, declarative
nature) of functional languages. The loss of referential transparency is not without cost:
it can inhibit certain optimizations that are possible in functional languages. In Id, we
have developed a programming methodology whereby we use I-structures only to define
new, efficient functional array abstractions, after which the bulk of the program is written
functionally [4]. Can such a methodology be extended to deal with our database extensions?

In a related project, we are looking at architectural and low-level programming issues
in implementing arbitrary object persistence in the Tagged-Token Dataflow architecture,
assuming explicit commands to store and retrieve objects. The gap between that implemen-
tation and the database model presented here is yet to be bridged.

References

{1] A. Albano, L.. Cardelli, and R. Orsini. Galileo: a Strongly Typed Interactive Conceptual
Language. Technical Report 83-11271-2, Bell Laboratories, 1983.

[2] G. Argo, J. Fairbairn, J. Hughes, J. Launchbury, and P. Trinder. Implementing func-
tional databases. In Proc. ALTAIR-CRAI Workshop on Database Programming Lan-
guages, Roscoff, France, September 1987, 1987.

[3] Arvind and J. D. Brock. Resource managers in functional programming. Journal of
Parallel and Distributed Computing, 1(1), June 1984.

{4] Arvind and K. Ekanadham. Future scientific programming on parallel machines. In
Proceedings of the International Conference on Supercomputing (ICS), Athens, Greece,
June 8-12 1987.

[5] Arvind and R. S. Nikhil. Executing a program on the mit tagged-token dataflow archi-
tecture. In Proceedings of the PARLE Conference, Eindhoven, The Netherlands. (LNCS
Volume 259), Springer-Verlag, June 15-19 1987.

17



[6] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Parallel
Computing. Technical Report Computation Structures Group Memo 269, MIT Labo-
ratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, February
1987. (Also to appear in Proceedings of the Graph Reduction Workshop, Santa Fe, NM.
October 1986.).

[7] M. P. Atkinson, K. Chisholm, and W. Cockshott. Ps-algol: an algol with a persistent
heap. ACM SIGPLAN Notices, 17(7):24-31, July 1981.

[8] G. Copeland and D. Maier. Making smalltalk a database system. In Proc. ACM
SIGMOD, page 325, 1984.

{9] P. Henderson. Purely Functional Operating Systems, pages 177-192. Cambridge Uni-
versity Press, Cambridge, England, 1982.

[10] R. S. Nikhil. Functional languages, functional databases. In Proc. Workshop on Per-
sistence and Data Types, Appin, Scotland, August 1985, April 1987,

[11] R. S. Nikhil. Id Nouveau Reference Manual: Syntazr and Semantics. Technical Re-
port, Computation Structures Group, MIT Lab. for Computer Science, 545 Technology
Square, Cambridge, MA 02139, April 1987. ‘

[12] R. S. Nikhil. An Incremental, Strongly-Typed Database Query Language. PhD thesis,
Moore School, University of Pennsylvania, Philadelphia, PA, August 1984. Available as
Technical Report MS-CIS-85-02.

[13] S. L. Peyton Jones. The Implementation of Functional Programming Languages. Pren-
tice Hall, 1987.

[14] D. A. Turner. The semantic elegance of applicative languages. In Proc. ACM Conference
on Functional Programming Languages and Computer Architecture, Portsmouth, New
Hampshire, pages 85-92, ACM, October 1981.

18



