LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

MASSACHUSETTS

= ENCE 5 U reom

The Price of Parallelism?

Computation Structures Group Memo 278

December 15, 1987

Kattarmuri Ekanadham
IBM T.J.Watson Research Center
Hawthorne, New York

Arvind
David E. Culiler
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts

'Paper one in a sequence of four, including CSG Memos 279, 280, 281

~

Abstract

Dataflow models of computation have been proposed as an elegant approach to parallel compu-
tation, but have been criticised as inefficient compared to conventional approaches. In this paper
we examine the additional computing resources demanded in dataflow models of computation. In
our view, a program specifies essential arithmetic and logical operations and additional operations
to affect control, addressability, synchronization, etc. By isolating this latter group of overhead op-
erations we can identify what fraction of it is inherent to parallel computing and what is an artifact
of the dataflow approach. In this paper we present measurements on sample programs written in
a declarative language (Id) and executed on dataflow machine (MIT Tagged-token Dataflow Archi-
tecture) and programs written in an imperative language (Fortran) and executed on a sequential
machine IBM 370. This means that two factors, language and architecture, come into play and the
combined effects must be examined. The metric used for comparisons is the number of instructions
executed. While we recognize this is an imperfect measure, it is good to first order and can be
measured precisely. Biases it introduces are discussed. To articulate the nature of the overhead we
develop a structural model of program execution and verify intruction counts it predicts with those
observed on benchmark programs. Finally, we present preliminary data on the overhead introduced
in parallelized Fortran programs.

The Price of Parallelism

1 Introduction

Dataflow models of computation have been proposed for faster execution of programs using many
processors, but they have also been viewed by critics as inefficient compared to conventional ap-
proaches. Although it is hard to make concrete comparisons of such diverse approaches, often
the inefficiency is attributed to large quantities of memory and processing resources demanded by
dataflow models. Indeed, parallel computation requires additional memory in order for processors
to access private copies of values concurrently and execution of additional instructions for data
communication and synchronization among concurrent computations. Since dataflow models at-
tempt to execute all possible subcomputations (down to a single instruction) in parallel, the amount
of synchronization, communication and memory requirements may conceivably be large, Further-
more, it is generally believed that an unrealistically large amount of parallelism is needed to keep a
significant number of processors busy. However, our experiments demonstrate the contrary — the
amount of parallelism found in test programs is so large that provisions must be made to constrain
the parallelism to match finite resources. This subject is dealt with in [1]. A detailed study of
the memory requirements is presented in [8]. In this paper we examine the additional computing
resources demanded in dataflow models of computation.

In our view, a program specifies essential arithmetic and logical operations and additional op-
erations to affect control, addressability, synchronization, etc. By isolating this latter group of
overhead operations we can begin to understand what fraction of it is inherent to parallel com-
puting and what is an artifact of the dataflow approach. Currently, we can perform high-quality
measurements on programs written in a declarative language (Id) and executed on a dataflow ma-
chine (MIT Tagged-token Dataflow Architecture), and programs written in an imperative language
(Fortran) and executed on a sequential machine (IBM 370). As performance is the issue, we insist
that sophisticated optimizing be employed and non-trivial programs be considered. Unfortunately,
this means that two factors, language and architecture, come into play and the combined effects
must be examined. We comment on some of the effects introduced by differences in declarative
and imperative languages and confine our investigation to programs expressed easily in either and
with similar control structures. Preliminary measurements of “parallelized” Fortran programs on
a collection of sequential machines is offered as well.

The metric used for comparisons is the number of instructions executed. While we recognize
this is an imperfect measure, it is good to first order and can be measured precisely. In some
cases redundant computation can be introduced to avoid synchronization and communication or
to reduce the critical path in a parallel computation, blurring the distinction between essential
operations and overhead. We do not consider such cases here. Certainly instruction set complexity
cannot be ignored. We argue that TTDA instructions are roughly comparable to those of load/store
architectures and that comparisons with IBM 370 instruction counts should be viewed in light of the
ratio of instruction counts on a RISC and CISC. Although TTDA instructions may be less powerful
than IBM 370 instructions, the cost in terms of hardware complexity may be greater because of
dynamic instruction scheduling. On the other hand, this manner of instruction scheduling provides
tolerance to memory latency by interleaving arbitrary threads of computation, and thereby may
mask the execution of a portion of the overhead instructions. Further, we ignore the overheads
due to dynamic resource management, which is essential in the TTDA environment; the interface

to the routines that make such decisions is accounted for, but not for their algorithms. While
proper treatment of the myriad of lesser factors may bias the outcome slightly, articulating the
overhead in terms of the number of additional instructions executed is a valuable starting point in
understanding the price of parallelism.

In order to identify the sources of the overhead operations, we develop a structural model of
the cost of program execution. In both dataflow and sequential machines there is a certain cost
associated with iteration, procedure calls, conditionals, structure accesses, and so on. We assign a
weight to each class and measure the number of times each occurs in the execution of a program.
Taking the weighted sum, together with the essential operations, we should arrive at the total
number of instructions executed, if we have properly accounted for the cost of the events in the
various classes. We stress that the comparison is made between similar programs in the two settings,
not arbitrary programs solving a given problem.

We assume that the reader is generally familiar with dataflow model of computation and in
particular with the Tagged Token dataflow Architecture (TTDA) which is described in 6] and its
execution of programs written in the declarative language, Id which is described in {15, 4]. The lan-
guage is functional, except for the introduction of I-structures, which is a facility for asynchronous
access to structures [5]. I-structures have built-in synchronization on an element by element basis.
A read from an element is delayed until a value is written into it. Multiple writes to the same ele-
ment result in run time error. The language supports higher order functions and currying. The Id
compiler [19] translates Id programs into machine code for TTDA. The machine code is one partic-
ular implementation of abstract dataflow graphs described in [3} and is executed by an interpreter
called, GITA [15]. GITA also produces execution statistics such as the frequency of instructions ex-
ecuted, time profiles of instructions and various queues, etc. The execution of a dataflow graph in
TTDA is data driven. An operator is fired when all its operands are ready. Loops and functions are
instantiated as soon as they are invoked and they can start execution even before their operands
are ready. Multiple executions of the same operators are distinguished by distinctly coloring each
set of corresponding data values.

The rest of the paper is organized as follows: In Section 2 we present the raw data of instruction
counts collected from a sample of six programs on both TTDA and IBM 370. This data is interpreted
and explained further in the rest of the paper. In Section 3, we give an overview of the instruction
set and instruction processing in a dataflow machine and contrast it with a conventional machine.
We argue that the instruction-set of TTDA is roughly comparable to load/store architecture; hence,
we can view the number of instructions executed as a reasonable measure of work. Section 4
highlights the effects due to differences in the two languages and the optimizations performed
by their compilers. We argue that, with certain precautions the two are fairly even on these
issues. Section 5 presents a classification of the structural features of a program execution and
illustrates how instruction overheads can be related to the classes. These are illustrated through
the example of matrix multiplication. Section 6 presents measurements of dynamic instruction
counts on our benchmark program, called Simple, in Fortran and Id, where reasonably sophisticated
compiler optimizations have been applied in both cases, to show how the approaches compare in
real terms. In Section 7 we examine similar overheads incurred by a conventional machine in a
parallel environment. We exemplify this using the EPEX simulation of the RP3 multi-processor
system. Finally, Section 8 gives some concluding remarks.

2 Dynamic Instruction Counts: The raw data

We begin by presenting the dynamic instruction counts observed for six programs on TTDA and on
IBM 370. Fortran programs are coded in Fortran-77 and are compiled using the IBM VS FORTRAN
compiler version 1.4.1, with optimization level 3 (highest available) and are run on an IBM 370/3081
processor. Instructions are traced using the PER execution trace facility available on the IBM 370
machines and are classified based on opcode and instruction characteristics. Equivalent programs
are coded in Id and are compiled using Id Compiler version 2.1, producing code for TTDA. The
programs are run under GITA version 2.1, on the lisp machine, TI Explorer I, version 2.1. GITA
execution assumes infinite resources — that is, all instructions that are enabled are executed in each
step. Actually this has no implication on this study, as the number of operations is not affected by
the number of processors. First we give a brief description of thr programs and then present their
instruction counts.

2.1 Program descriptions

Figure 1 shows 5 of the Id programs used in this study. They are self-explanatory. Program ip
computes the inner product of two vectors of size n. Program vsum returns the vector sum of
two vectors of size n. The program ip_sum illustrates the invocations of these two functions. It
doubles each given vector by invoking vsum and returns the inner product of the result vectors. The
program matmult multiplies two matrices using the standard 3 nested loops. We use this program
with [= m = n and in all cases, n is referred to as the problem size.

The program decompose is used in solving simultaneous linear equations. It decomposes a
given matrix A by Gaussian elimination with partial pivoting, so that A = LU, where L is a
lower triangular matrix and U is an upper triangular matrix. It uses other functions find_pivot,
make_matriz, filLmatriz which are not shown in Figure 1. They do the obvious things suggested
by their names and further details on this may be found in {2]. The parallelization of a Fortran
version of this program is discussed in [12]. This program is chosen to illustrate the problem of
structure copying. The Fortran version of the program obtains the L and U matrices by updating
A in place. In the Id version shown in Figure 1, the final matrix D is allocated at the beginning
and it is filled in n iterations. The i-th iteration fills portions of the i-th column and i-th row. Each
time a new right sub-matrix is created to remember the new values. Thus, the solution avoids
structure copying. We use this Id program, after substituting for the functions it invokes. We use
an n© X n matrix in this problem and n is the size of the problem.

Finally we present instruction counts on a large benchmark program called Simple. This pro-
gram computes numerical approximations to the physical properties of a fluid under compression
[7]. The program simulates a cross section of the fluid, which is treated as a rectangular grid, so
that the four corners of each fluid parcel are four neighboring grid points. A program parameter,
n, can be set to choose the size n X n of the grid and hence the total number of fluid parcels
being simulated. The program consists of an initialization phase followed by a loop. Each iteration
of the loop advances the time by some computed value and computes the properties for all the
fluid parcels in the grid for that time step. The solution adopted a Lagrangian Formulation and
the motion of the fluid parcels in the grid is tracked by computing the coordinates of each parcel
as time progressed. In each iteration, new values of position, volume, velocity, pressure, energy,
artificial viscosity and temperature of each fluid parcel are computed. To enforce proper boundary
conditions, the computations for the n —1x n— 1 interior fluid parcels is done differently from those

Defip A Bn= Def decompose A n =
{s=0 { D = matrix {(1,n),(1,n));
In {For i From 1 To n Do B = {For k From 1 To n-1 Do
Next s = s + A[i] * Bfi}; r = find_pivot A;
Finally s }}; Call fill_matrix D {(k.k),(k,n)) rowfill;
Def vsum A Bn = rowfill (i) = Alr,j);
{ C = array (1,n); Call fill_matrix D ((k+1,n),(k,k)) col_fill;
{For i From 1 To n Do colfill (i,j) = -AlLk] / A[rk];
C[i] = A[i] + B[i] }; Next A = make.matrix
In C}; ((k+1,n),(k+1,n)) new_elem;
new_elem (i,J) = D[i,k] * Dlk,j] +
Def ip.vsum A Bn = A[(If i==r Then k Else i), j};
ip (vsum A A n) (vsum B B n) Finally A};
D[n,n] = B[n,n};
In D};

Def matmult ABlmn =
{ € = matrix ((1,1),(1,n));
{Fori From 1 To 1l Do
{For j From 1 To n Do
s =0
C[i,j] = {For k From 1 To m Do
Next s = s + A[i,k] * B[k,j];
Finally s}}};

In C};

Figure 1: Programs in Id

around the boundary. Computations of successive iterations have very little overlap, as the value of
the new time step computed at the end of an iteration must be used throughout the next iteration.
The counts reported in Table 1 are for an n x n grid and for one iteration. In this experiment we
used a version of the Simple program obtained from Los Alamos National Laboratoryl. Using this
program and the documentation [7], an equivalent program is written in Id. The latter program is
encoded using higher level abstractions as explained in [13]. The Fortran version has roughly 1200
lines and the Id version has 680 lines.

2.2 Data Collected

Table 1 gives the instruction counts for the programs described above. Instruction counts shown
do not include initialization, input-output etc. For each program and size, the Instruction counts
for Fortran program are given with the corresponding Id program counts shown in italics on the
side. Instruction counts are grouped into 6 major categories. Float and fized are the arithmetic
and logical operations performed in the floating and fixed point units respectively. The Load and
Store categories for IBM 370 report all move operations involving memory, but do not perform any
arithmetic or logic. Thus, an integer-add operation with a memory operand is counted under the
Fized category. (An equivalent operation in a load/store architecture would take two operations - a

!There are many versions of the Simple program and they vary substantially in their computational properties.
The exact version used in this experiment may be obtained from the authors.

load and an add.) For TTDA, the Load and Store are respectively the I-fetch and I-store operations
used to access the I-structure memory. The Switch category gives the number of branch instructions
for the IBM 370 and the number of switch instructions in TTDA. The Other category gives the count
of all remaining operations. For IBM 370, this category consists of only operations that move data
between registers. For TTDA, this includes operations for the manipulation of tags, contexts and
resources. The Total category gives the sum of all the above mentioned categories. Finally, Ratio
shows the ratio of the total operations for Id to that of the corresponding Fortran program. We
recognize that the problem sizes depicted in Table 1 are not representative of realistic programs.
Large sizes may affect the relative importance of the overheads compared to the work being done,
but they do not affect the characterization that we will present in Section 5.

2.3 Observations

In Table 1, the floating point operations for Fortran and Id versions are about the same, allowing
for minor variations in the Simple program, which are explained in detail later in Section 6. Since
most of the primary calculations involve floating point numbers, this confirms that the programs are
doing roughly the same work. In the remaining categories, the differences are significant. Notably
the total number of operations for the Id version is 1.4 to 3 times that of the corresponding
Fortran version. There could be many reasons for this: differences in program characteristics due
to different coding styles in the two languages, differences in the compiled code due to different
levels of optimizations of the two compilers, differences due to architectural considerations - one is
a von Neumann machine with complex instruction set and the other is a dataflow machine with a
much simpler instruction set, and finally differences due to the fact that one is executed sequentially
and the other is executed on a parallel machine. In the sequel we analyze these differences.

3 Architectural Issues

Comparison of instruction counts is meaningful when we understand the relative complexity of
the instruction sets used, in relation to each other. Dataflow instructions, in general, have the
complexity of the instructions for load/store architectures like CRAY-1 (also see [11]). In this
section, we briefly describe the nature of the instruction set of TTDA and comment on some of the
issues of complexity.

3.1 Instruction processing

The principal components of a TTDA processor are: wait-match unit, program/constant memory,
I-structure unit and an ALU consisting of a tag-manipulation unit, a fixed point unit and a floating
point unit. These are organized as a circular pipeline around which data tokens flow. The processing
of an instruction roughly corresponds to the flow of a token through this pipe once. Tokens may
leave the pipe to go to other processors and tokens from other processors may enter this pipe.
Instructions and constants are stored in the program/constant memory. An instruction can have
at most two operands (besides a constant in the constant memory) and it specifies an opcode and
destination addresses. An instruction execution is triggered when all its operands are available.
The instruction processing cycle of a dataflow machine is different than a conventional machine
as follows. A data item presented to the wait-match stage is accompanied by a tag that identifies the
instruction for which it is an operand. The wait-match unit uses this tag to locate the other operand

inner product vector sum sum of products
size=10 size=64 size=10 size=64 size=10 size=64
Fort Id | Fort Id | Fort Id | Fort Id | Fort Id | Fort Id

float 20 20| 128 128 10 10 64 64 40 40 256 256
fixed 7 21 7 129 8 21 8 129 30 63 30 387

load 32 20 86 128 35 201 89 128 124 601 286 384
store 28 o 82 0 30 10 84 64| 111 20| 273 128

switch 16 139 70 130 16 23 70 130 56 66| 218 390

other 1 340 1 340 1 74 1 345 4 261 4 1071
total 104 153 374 855 100 158 316 860 365 510 1067 2614
ratio 1.47 2.29 1.58 2.72 1.40 2.45
matrix multiply LU decomposition
size=10 size=16 size=10 size=16

Fort Id| Fort Id | Fort Id | Fort Id
float 2000 2000 8192 8192 669 669 2735 2735
fixed 1708 2352 5794 9042 901 1094 | 2618 3802
load 1813 3027 6055 123271273 1149] 3506 3983
store 474 116 | 1122 278 | 827 445 2445 1592
switch | 226 2464 | 4646 9316 615 1 3741 2056 4493
other 171 10215 363 33189 | 230 7089 516 18947
total 7392 20174 | 26172 72344 | 4515 11820 | 13876 35552

ratio 2,73 2.7¢ 2.62 2,56
simple
size=10 size=16
Fort Id Fort Id

float 28650 30297 82848 87241
fixed 14787 10972 | 41803 29560
load 31523 20054 | 84860 55226
store 18795 3692 | 49443 9056
switch | 11687 169921 32301 47244
other 2675 114841 6747 297253
total 108117 196848 | 298502 525600
ratio 1.82 ' 1.76

Table 1: Summary counts for various examples

for the specified instruction. If present, the instruction can be processed, otherwise the operand is
placed in the wait-match store to await its partner. The tag provides the address for instruction
fetch. Then, just as in a conventjonal pipelined machine, the operands and the operation code can
be delivered to the ALU pipeline for processing. The result is combined with successor instruction
addresses specified in the instruction to yield <tag, data> pairs for the wait-match stage. Thus, if
the wait-match store is viewed as a large register set, the instruction processing cycle is similar to
current pipelined machines except the operands specify the address of the instruction, rather than
the reverse, The wait-match stage of TTDA performs roughly the role of result store, instruction
counter update, and operand load in a conventional machine. It is clear that this stage of instruction
processing is fairly complex?, but also that a complete dataflow instruction accomplishes about the
same amount as an instruction on a load/store architecture. The distinction gets blurred when we
look at the complex pipelines in some of the very high performance machines.

Data structures are stored in the I-structure store. Data is moved between the I-structures
and the processor pipeline by explicit I-fetch and I-store instructions, similar to the load and
store instructions in a load/store architecture. Thus, the register set in a conventional machine
corresponds to the set of tokens that circulate around the processor pipeline including the tokens
stored in the wait-match unit and the set of constant values stored in the constant area set up for
each context. All ALU operations must have their operands ready in the processor (tokens in TTDA
and registers in load/store architectures) and no operands can be in memory.

3.2 Instruction set

The following classes of instructions are included in TTDA.

1.Arithmetic and Logical instructions: TTDA has the usual repertoire of arithmetic and
logical instructions such as +,-,%,/,~,<,<=,>,>=,=,¢>,and, or, not. Each of these instructjons
is as complex as a corresponding register-to-register operation in a conventional machine. The two
operands are available in the input tokens and the result goes directly into the output token. The
data tokens carry types with them and hence there is some logic to examine the type of operands
and direct the data to the appropriate functional unit (eg. fixed or floating point). At the present
time, type conversion is done on the fly. However, in future, we expect the compiler to deduce the
types and insert explicit code for type conversions.

2.5tructure-handling instructions: An array is contiguous storage in the I-structure store
and tokens carry a descriptor for it, specifying its beginning address and size. Address computation
for elements is done by a separate instruction, Ifetch, which takes a descriptor and an index,
computes the address of an element by adding the offset and sends the result to the I-structure
store. The token sent to the I-structure also contains the return address. Actual reading of the
element takes place asynchronously in the I-structure memory, and the result is sent to the return
address. The ALU proceeds unblocked, while the read is in progress. For writing into an element,
its address must be computed first using a form-address instruction. An Lstore instruction takes a
computed address and data and sends it to the I-structure memory. At the present time, multiple
dimensioned structures are implemented as arrays of arrays. Thus, for example a matrix is an
array of rows. To read the matrix element [i, j], the machine executes two I- fetch operations as in
I-fetch(I-fetch(A,i), j) .

?It is complex on a conventional pipelined machine as well when register reservations and pipeline scheduling are
accounted for.

3.Resource-related instructions: Instructions get-context, release-context, make-L.structure,
etc., take a data value and a manager address and simply send the data to the specified manager.
The structure manager allocates I-structure memory and returns the address. The context manager
allocates a context on a processor, initializes it and returns the new context address.

4.Tag manipulation instructions: A tag-manipulation instruction takes a token and pro-
duces a token with an altered tag. The complexity of any of these instructions is comparable to a
register-to-register arithmetic/logical operation. Instructions D-N, D-1, D-N+-1 and D-N+-2 are used
to manipulate the tag so that the data values can be passed between iterations of a loop. Instruc-
tions form-iag, change-tag and adjust-offset are used to pass arguments and return results across
function boundaries.

5.Context-related instructions: These are instructions that perform miscellaneous opera-
tions related to the context of a function. Instruction load-constant is used for setting up con-
stants as explained later in Section 3.3. Instructions closure-ready, closure-arity, closure-chbname,
closure-chain and closure-ncdr are used for implementing Currying as illustrated later in Section
4.1. Instructions loop-req and loop-rel are some artifacts instituted for bounding the number of
iterations simultaneously active in a loop. Details of these instructions are not important for the
purposes of this paper. Each of them is no more complex than a register-to-register add operation.

6.Switch instruction: Switch is used for conditional expressions. It takes two inputs, a data
item and a boolean value, has two destination lists, and sends the data item to one or the other
of the destination lists, based upon the boolean value. If the chosen destination list is empty, the
data item is simply discarded and a signal is produced for termination detection as explained later
in 5.5.

7.The identity instruction: This distinguished No-op instruction is like a gate that takes
two inputs, one of which is a trigger to let the other input proceed. All synchronization operations
are encoded explicitly using this instruction.

3.3 Instruction complexity

In the repertoire of instructions discussed above, almost all of them fit the category of a one
cycle register-to-register style instruction of a conventional load/store architecture. There are three
exceptions to this, which we list below.

1.Multiple destinations: When an instruction has more than two destination nodes, we
consider that instruction as complex because many more cycles are needed to implement it. Strictly
speaking for each pair of additional destinations an extra identity instruction ought to be used to
perform the forking. However, in this study we ignore this and permit an instruction to have an
arbitrary number of destinations. It should however be noted that the number of destinations is
a compile time constant and hence we do not permit complex instructions, such as the Proliferate
instruction in the Machester machine [10], that receives a value n at run time and produces that
many copies of the token.

2.Bounds checking: In TTDA both address addition and bounds checking are performed in
one instruction (see instructions Form-address and I-fetch in Section 3.2). We consider this complex,
and feel that there must be explicit instructions for bounds checking, just as load/store architectures
will have. We ignore it here. The Fortran implementation on IBM 370 we are studying does not
implement bounds checking and hence this is inconsequential as far as this study is concerned.

3.Loading Constants: As part of the instantiation of a function or a loop, constant values
for that program must be stored in the program/constant memory. This is done using the load-

constant instruction which takes the data value and an offset into the constant store. Often an
instantiation may span many processors. For instance, when iterations of a loop is distributed over
many processors, loop constants must be stored in all the processors. At the present time, this is
treated as one instruction. In reality, we must treat loading of a constant in each processor as a

separate instruction.

3.4 Termination Detection

One of the quintessential characteristics of parallel execution is the need to determine when a
computation or subcomputation has completed its execution. The importance of this issue may
not come across naturally when one reads about a parallel architecture and we would like to
emphasize this by explaining a little bit of detail about it here.

Termination is not the same as result being produced. For example, consider the function in Id:
f A x={Alx] = sqrt x; In x+1}. When we invoke f, the result value x+1 may be returned
very quickly, whereas the square root computation and storing into the array may take some time.
Thus, the resources used for the instantiation of £ , stch as the program and constant memory, the
unique tags used for the tokens in its computation etc., cannot be reused until £ terminates. The
need for detection of termination separately arises when we have all the following three features:
(1)programs have side-effects, (2)programs are executed in parallel and (3)resources are finite and
must be reused. Pure functional languages do not have this problem as they do not have the first
feature. Sequential computations do not have this problem as they do not have the second feature.
Id as well as other conventional parallel Processing systems possess all three features and must
worry about termination detection. The effort involved for this is proportional to the size of the
granularity for parallelism. Since TTDA makes use of parallelism even at single instruction level,
termination detection is a concern down to an instructjon level,

A computation terminates when it returns all the results and when all its side-effects take
place. In TTDA a loop terminates when all jts iterations terminate; an iteration terminates when
all its instructions terminate. Since the body of an iteration or a function is an acyclic graph,
and the termination of a node implies the termination of all its predecessor nodes, it is sufficient
to detect the termination of sink nodes in the graph. That is why each sink node, such as I-
store is required to send a signal back after its completion. All these signals are combined using
an inverted tree of identity instructions. It turns out that the number of identity instructions is
significant in TTDA execution. Although identity instructions are used for other purposes as well
(such as distributing arguments to a function), the synchronization trees described above dominate
their use. For example, in Table 1, the Simple program for 16 x 16 executes a total of 133,619
identity operations which is about 25% of the total number of operations. Therefore, throughout
the rest of the paper we account for these identity instructions separately, wherever the need for
termination detection arises.

3.5 Architecture Summary

In summary, the instructions for arithmetic and logic operations specified by a program will be
comparable for executions of equivalent programs on TTDA and on a load/store architecture. A
load/store architecture will have additional arithmetic/logical operations for computation of indices
of multi-dimensional structures and for local memory address computations, These will appear as
additional memory accesses in TTDA execution. Movement instructions for finite register manage-

ment in a conventional machine have no counterpart in TTDA, as the equivalent of Tegister set
(i.e., wait-match unit and buffers in the pipeline} is virtually infinite. Operations corresponding to
structure accesses specified in the program (subject to similar optimizations) should correspond to
each other in TTDA and load/store architectures. The picture will of course be distorted for IBM 370,
as many accesses may be coupled with arithmetic using memory operands. Operations to load and
save registers for setting and restoring contexts on procedure boundaries bears partial resemblance
to setting up constants in TTDA before a function is invoked and detecting the termination of a
function. However, the correspondence is fuzzy in this regard. Finally in the category of branches,
subroutine jumps/returns correspond to change-tag instructions in TTDA and conditional jumps
correspond to switch instructions. However, as explained later in Section 5, there is a change-tag
instruction for every argument/result value in TTDA as opposed to a single subroutine jump in
von Neumann machine. Similarly, there is a switch for each value passed to/from a conditional
as opposed to a single branch per condition in a von Neumann machine. Thus, for comparable
executions, TTDA is likely to have more of these instructions.

4 Language and Compiler Issues

In this section we examine the implications of using the declarative style of programming. We
elaborate certain effects of this style and argue that we have taken great care to minimize the effect
of language differences in our study. Declarative languages, in general, are known to face three
principal problems: (1)inefficient code because of higher levels of programming abstractions are
advocated, (2)excessive copying of structures in certain situations, because of their single assignment
testriction (which is vital for the resulting syntactic as well as semantic cleanliness of the language)
and (3)the need for special optimizations in view of the above two. Below, we address each of these
issues separately.

4.1 Coding style

A commonly held view is that programming in a functional language with parallel semantics com-
plicates the programming task, because a programmer must think of a parallel model in mind.
In addition, the single assignment restriction constrains the view taken by a programmer familiar
with imperative style. However, we believe that for the class of problems we are studying the
coding style is natural. Use of function definitions that reflect higher levels of abstractions that are
closer to the problem domain greatly enhances programmer productivity. Further details on the
abstractions used and their advantage over Fortran style of coding may be found in {2, 13]. There
are some problems for which it is inherently difficult to encode them in a declarative language. But
we confine our discussion to only the class of problems for which it is natural to express them in
Id.

While this style of coding is elegant and provides great ease for a programmer, it introduces a
large number of function calls and consequently precludes certain optimizations because of function
boundaries. However, our compiler optimizations, elaborated later in Section 4.3, eliminate most of
these inefficiencies, Here we illustrate one crucial aspect that manifests extensively in our programs.
The instruction counts for Simple shown in Table 1 are obtained from a program that uses a fair
amount of higher order functions and Currying {13]. Implementation of higher order functions and
currying is quite tricky and involves considerable overheads. For instance, currying is the operation

10

of composing new functions by supplying only a subset of arguments required by another function,
Suppose we have the following bindings in Id:

multiply x y = x*y; double = multiply 2; w = double 7;

Multiply is a function of arity 2. Instantiation of the function takes place when the arity is satisfied.
When we compute multiply 2, the body of the multiply function is not activated, Instead, a
structure is formed to remember the name multiply and the argument value 2. The value of double
is this structure, which actually represents a function of arity 1 and can be invoked with different
arguments many times. Evaluation of double 7will result in the instantiation of the function multiply
with the two arguments 2 and 7. Thus, function invocation requires checking the arities and forming
these intermediate structures. In our implementation, all this overhead is accounted by counting
the closure instructions listed in Section 3.2. Compile time substitution for the functions eliminates
these overhead operations. In the above example, the current Id compiler can substitute w =>
double 7 => multiply 2 7 and eliminate all the intermediate structures and closure operations.
In all of the Simple code, we ensured that no closure operations are executed despite the heavy use
of currying in the program. Hence, this does not effect the results presented here,

4.2 Structure handling

It is often viewed that dynamic creation of structures is very expensive and that functional lan-
guages with parallel semantics necessarily require this, We believe that for any model of parallel
computation, dynamic allocation of structures is an inherent requirement; otherwise parallelism
may have to be compromised, In TTDA new structures are created by invoking the memory man-
ager. Qur instruction counts reflect the additional instructions executed for dynamically allocating
the memory, but not for any policy determination.

Another concern related to functional languages is the requirement for constructing structures
in a strict manner - that is, the computation for all the elements of a structure must be specified
before the structure can be used. This diminishes programming convenience significantly in certain
computations. Introduction of I-structures is an important step in overcoming this problem [5].
Use of I-structures removes this constraint and permits non-strict construction of structures, at the
same time preserving the determinacy of computation.

A well-known problem with functional languages is structure copying. When a program has
to modify only a few elements of a structure, the declarative style requires the creation of a new
structure with some new elements and copying all the unmodified elements into it from the old
structure. Sometimes it is possible to overcome this problem, if the modified elements form a well-
defined structure. An example of this is the LU decomposition algorithm discussed in Section 2.1.
Similarly if more information is known about the algorithm, one can be more clever and reduce
the number of new matrices created. There is still a class of problems for which the structure
copying problem cannot be solved elegantly. Examples of this are transitive closure using Warshall’s
algorithm {17] and collection of a histogram of frequencies of certain events [5). Unless some
language extensions are made, it is extremely inefficient to do them in Id. We exclude them from
our study at the present time.

4.3 Code optimizations

In general, compiler optimizations are more crucial for functional languages than for imperative
programs. The essential optimizations used here are not complex. Most of them are present

11

in many compilers for imperative languages. We feel that performing these optimizations for
functional languages is much easier compared to imperative languages, as the former provides a
cleaner structure for representing programs and therefore requires much less global analysis than the
latter. To reinforce these views, below we comment on the optimizations used in the Id compiler.

1.Inline substitutions: Substituting for functions at call site is an important optimization,
specially when higher level abstractions are used by defining functions that correspond to them. The
absence of the concept of global variables in Id can make function calls expensive, because all values
used in a function must be explicitly passed as arguments. Besides the saving of call overhead,
substitution opens up opportunities for other optimizations in the inline code. For example, the LU
decomposition example in Section 2.1 repeatedly invokes the function fill_matriz, which is defined
as a separate abstraction (for programming convenience) to fill in portions of rows and columns.
However if these are not substituted inline, the LU decomposition of a 16 x 16 matrix executes
109,106 operations as compared to the 35,552 operations reported in Table 1 which used inline
substitutions. Thus, inline substitutions have a dramatic effect on the performance. It should be
noted that function call substitution in Id is fairly complex as the compiler has to perform arity
analysis (as illustrated in Section 4.1. Fortran programs generally avoid subroutine calls as they
tend to be very expensive because of context switching. However, inline substitution is difficult
in Fortran because of side effects involving common statements. Great care is needed to map the
common areas to preserve the semantics.

2.Fetch elimination: This is to eliminate unnecessary fetches from memory, when the value is
available in the processor (as a token in TTDA and as a register content in conventional machines).
In Fortran programs this is fairly common as great care is taken to keep values in registers and
eliminate memory accesses. In fact Fortran compilers do sophisticated index analysis to take
maximum advantage of this optimization. In Id, besides the saving of one fetch, this opens up
further optimizations. For example, when the element to be fetched is a function name, the compiler
can detect this and perform the arity analysis for possible inline substitution. In Id, a special case
of this occurs very frequently, which is discussed next.

3.Tuple Ellision: Tuples are implemented using I-structures. Often values are passed and
returned as tuples and unfolded by the recipient. A tuple is created and elements are stored into
it by the sender and read by the recipient. (In Id muitiple-valued functions are required to return
a single tuple of the values for providing consistent meaning for multiple bindings. For details see
[14].) Inline substitution can get rid off the tuple entirely. For example, the simple program, whose
high level encoding is discussed in [13], extensively uses set abstractions represented by a tuple of
a generating function and a range. When this program was run for a 10 x 10 grid, without any
substitutions, tuple ellision could not be done because of function boundaries. As a result it took
1.9 millions operations. When inline substitutions are performed, the same program took only
196,648 instructions as shown in Table 1.

4.Dead code elimination: Both Fortran and Id compilers easily eliminate code that is un-
reachable. However, a more substantial benefit of thjs optimization is achieved when dead code can
be detected from data dependence analysis. For example, index analysis and constant propagation
can lead to the detection of conditional values at compile time and eliminate the condition testing
all together. The Id compiler does not do sophisticated analysis at the present time.

5.Common subexpression elimination and code hoisting: Both these are fairly common
in Fortran compilers and the Id compiler also implements them. They move invariant expressions
outside loops and eliminate multiple evaluations of the same expression in a context. Again, the
Id compiler does not use any index analysis for this purpose; but performs these optimizations in

12

all other situations.

6.0ther optimizations: Id compiler performs limited constant propagation. It does not
attempt any loop jamming or interchange etc. Loop jamming significantly effects the parallel costs,
as can be seen later.

5 Overheads of parallel execution

In this section we classify the instructions executed by a program and identify the instructions
executed as part of the overhead for parallel execution. First we separate the instructions that
correspond to the basic work to be done - this is the set of all fixed and floating point operations
that are specified in the program, after all the optimizations are done, We are tacitly assuming
that these instructions can be identified in an execution trace. In practice, this is not so easy and
we will take approximations as we go along. The rest of the instructions executed are for a variety
of purposes including loop control, function calls, movement of data, termination detection ete. We
lump the latter as control overhead. This dichotomy gives us

total count in von neumann execution = basic work + sequential control overhead
total count in dataflow execution = basic work + parallel control overhead

If we are considering equivalent programs in Fortran and Id and if they do not have any redun-
dant computations, then the basic work must be the same for both. If the control structures of the
programs are same, that is, they both have same number of loops, iterations, function calls etc.,
then the difference between the two overheads must be contributed by the declarative and dataflow
characteristics of the programming and execution models we adopt. In the sequel we will further
subdivide the control overheads and arrive at a cost structure.

We use the 10 x 10 matrix multiply example of Section 2.1 throughout to illustrate the analysis.
Table 2 lists the parameters, which we define as we go along. The values shown against each
parameter in Table 2 are the actual counts of events observed for that parameter in the executions
of the 10 x 10 matrix multiply example in Fortran and Id respectively. Table 3 lists categories of
overheads and it gives an expression for each in terms of the parameter names listed in Table 2.
Expressions given for both Fortran and Id are derived as we go along. Table 3 also shows the values
of these expressions when the values of the corresponding parameters are substituted. The sum
of all these costs should be the total number of instructions executed. This estimate is compared
with the actual number of instructions executed at the end.

3.1 Basic work

The parameters float and fired in Table 2 are respectively the total number of floating point and
fixed point operations executed by the matrix multiply program. The data structure references
specified in the program are also basic, but we treat them separately for many reasons explained in
Section 5.2. Tn any machine, floating point operations are rarely used for purposes other than what
is directly specified by the program. That is why we see 2000 floating point operations in both
Fortran and Id versions. However, we see 1708 and 2352 fixed point operations for Fortran and
Id. There are no problem-related fixed point operations in the matrix multiply program. In the Id
version incrementing and comparison of the loop indices for the three loops take 2331 aperations.
The Fortran version eliminates 2000 of these by using the BXCE instruction in the inner-most

13

Parameter name | Fortran Id
float 2000 | 2000
fized 1708 | 2352
allocations 0 100
loads 1000 | 3027
stores 100] 116
loops 111 | 111
constants o962 | 456
tlerations 1110 | 1110
feedbackvalues 222
Jeedbackfrequency 2220 | 120
calls 0 0
arguments 0 0
conditionals 111]

Table 2: Parameter Counts for 10 X 10 matrix multiply

Category name | Expression for Fortran | cost | Expression for 1d cost
Float float 2000 | float 2000
Fixed fized 1708 | fized 2352
Dynamic alloc 0 0 1 2.7+ allocations 270
5tr reads loads 1000 | loads 3027
Str writes stores 100 | 2 x stores 232
Loop iteration cost | sterations+ 3 * iterations+
2 % feedback frequency | 1350 | 3« feedback frequency | 9990
Loop setup cost constants 562 | 5 « loops+
2 * constants+
3 * feedbackvalues 1911
Fn call setup 23 * calls 0| 2%calls 0
Argument Passing | 2 # arguments 0 | 2 xarguments 0
Condition Cost conditionals 111 { conditionals 0
Total estimated 6831 19782
Total measured 7392 20174
Identities measured 2358

Table 3: Expressions and QOverhead costs for 10 X 10 matrix multiply

14

loop. However, it executes roughly 1360 instructions for computing array indices. All the fixed
point operations are for loop index and array index calculations and should really be considered as
overhead. Unfortunately, using the IBM 370 execution trace for an arbitrary program, it is hard to
separate these overhead fixed point operations from those required in solving the problem. Here
we take an approximation and assume all the counted fixed point operations are essential in both
Fortran and Id executions.

5.2 Structure accesses

Here we are interested in isolating the overhead in implementing the data structures used by the
program, including any work done for creating structures or selecting components, etc. To read an
element of a structure, TTDA executes one I-feich operation. Multi-dimensioned structure access is
also accounted here, as a separate I-fetch is executed for each dimension. For writing a value into
the store, TTDA executes 2 instructions on average - an I-store and an identity. Recall that the
latter is for detecting the termination. Each Istore generates a signal after its completion and all
these signals are collected using an inverted binary tree of identity operations. Although some of
the identity operations can be optimized away, in general we estimate one identity for each I-store
operation. Structure allocation in TTDA is done by two library routines matriz and array. The
number of instructions executed in them depends upon the size of the structure being created.
In our measurements the actual cost of structure creation is measured accurately for the whale
program and added as a lumpsum overhead to the total. On average about 2.7 instructions are
executed for each element allocated. Thus, we collect 3 parameter counts: number of structure
elements allocated, read and written. Then the structure overhead is given by the expression

loads + 2 * stores + 2.7 « allocations

5.3 Loops

In IBM 370, the most efficient form of a loop is implemented using the BXLE instruction. Initially
3 registers are set up with the starting value, limit value and the step size for the loop index. At
the end of each iteration, the single instruction BXLE performs the increment, test and conditional
branch. Since we classify BXLE as a branch instruction, we do not count the two fixed point
operations of incrementing and comparing. At other times, the loop index is kept either in a
register or memory and explicit instructions are used to increment and test it. In our estimate
we will treat all loops as if they were implemented most efficiently using the BXLE instruction and
specify an overhead of one branch instruction per iteration. However, whenever incrementing and
counting are explicitly done, we account for them as essential fixed point operations.

In TTDA, all loops are implemented using the while schema. For example, consider the innerloop
of the matrix multiply example shown in Section 2.1. It is implemented as the following equivalent
while loop:

{While k<=m Do Next k = k+1; Next s = s + A[i k] * B[k,j] Finally s}

Here 4,B,1,j,m are loop constants and k,s are feedback values that circulate from one iteration to
the next. The following sequence of events take place in executing a loop in TTDA.

A context manager is invoked using the get-contert instruction. The manager assigns a processor
to the program body and initializes its state. Loop constants, such as A, B,i,j,m in the above
example are stored in the constant memory using load-constant instructions. Execution of the loop

15

is not allowed to proceed until all the loop constants are in place. This is accomplished by building
an inverted tree of identity instructions to detect the termination of all load-constant instructions
used. This signal is used to gate all the inputs to the loop body.

There is a switch instruction for each circulating value, such as k,s in the above example.
The switches pass the circulating values either to the loop body or to the loop result expression,
based on the value of the loop predicate. Each time a circulating value is passed to the next
iteration of the loop body, it is associated with a new tag, using D-N instruction, so that successive
iterations execute concurrently without interference. For example, the successive values of k,s
trigger computations in successive iterations, even while previous iterations may still be computing.
Unfolding of iterations is automatic as subcomputations that depend upon previous iterations are
delayed until the corresponding values are ready, and other subcomputations that have their inputs
can proceed.

At the end of the loop, the circulating values from the last iteration are diverted to the loop
result expression. Their tag is reset to that used at loop initiation time using D-1 instruction, so
that the loop body with individual tags for iterations remains oblivious to the global flow of values
through the loop.

Loop termination is determined by circulating a signal indicating the termination of each iter-
ation. The termination of each iteration is detected by an inverted tree formed from not only the
sink nodes in the loop body, but also the D-N instructions that feed values to the next iteration.
Finally, in order to limit the unfolding of iterations, (to some value that can be set by a manager),
each iteration executes a loop-req, a loop-rel and a D-N4-2 instruction.

5.3.1 Per iteration costs

From the above description of the loop operation in TTDA, we can see that there are 3 overhead
instructions (D-N+-2, loop-req, loop-rel) for each iteration and 3 overhead instructions (D-N, switch,
identity) each time a value is circulated. Let feedbackfrequency denote the total number of times
values are circulated. For instance, in the 10 x 10 matrix multiply program the value k is circulated
1,000 times and j is circulated 100 times, etc.For the whole program we observed iterations =
1,110, feedback frequency = 2,220. Thus we get the expression for loop iteration overhead as

dataflow loop iteration costs = 3 + (iterations + feedback f requency).

In a conventional machine, circulating values are usually kept in registers and the arithmetic
operations produce the values directly into the registers. Their circulation is achjeved by a transfer-
ring control back to the beginning of the loop body. Thus ideally, the cost per iteration is just one
(branch) instruction. However, for lack of sufficient number of registers, some circulating values
may have to be maintained in memory. Then each iteration executes a store and a load for each
such value, If feedbackfrequency denotes the counts for only those circulating values that are kept
in memory, we get the following cost expression for loops:

von neumann loop iteration costs = iterations + 2 « feedback frequency

In IBM 370 it is tricky to isolate the circulating values kept in memory, from an execution trace. In
our measurements we used a heuristic based on the registers used, to determine the feedbacks. For
the matrix multiply program our measurements showed feedback frequency = 120, iterations =
1,110.

16

5.3.2 Loop setup costs

We now give an estimate for the overhead instructions executed once for each loop (independent
of the number of iterations) for loop setup and cleanup at the end.

In TTDA as mentioned earlier, two instructions (get-context, rel-contezt) are executed to set up
and release a new context for the loop instance. For each loop constant TTDA executes two instruc-
tions (store-constant, identity). It should be noted that constants could also be implemented as
circulating values. But the, the overhead would be much more, as can be seen from the expressions
for loop iteration costs.

When the loop terminates, 3 instructions (D-N+-1, loop-req, loop-rel) are executed in connection
with the bounded loop schema. Also, for each circulating value 3 instructions (D-1, switch, identity)
are executed for final diversion and tagging of the result values. This count for the number of
circulating values, which we denote by feedbackvalues differs from feedback frequency defined
earlier in the following sense. Consider the circulating value s in the inner loop of the matrix
multiply example. The inner loop is invoked 100 times and each time it performs 10 iterations.
There will be 100 loop terminations, for each of which the final diversion costs are incurred for s,
hence the circulating value s has feedbackvalues = 100 and feedback frequency = 1000. For the
whole program we observed feedbackvalues = 222. Thus, we get the cost expression

dataflow loop setup costs = 5 » loops + 2 x constants. + 3 * feedbackvalues

A conventional machine has no additional overhead to instantiate a loop. In a conventional
machine, a loop constant is usually loaded into a register at the beginning of the loop. We consider
this as an overhead of one load instruction. However, in IBM 370 sometimes a loop constant may
be kept in memory and accessed as a memory operand. We do not count this as overhead in our
results reported. If constants denotes only the constants stored in registers,

von neumann loop setup costs = constants

In our measurements for 10 X 10 matrix multiply example, we found constants = 562,

5.4 Functions

In sequential machines, this involves saving and restoring the contents of processor registers and
address space parameters and the overhead for this varies substantially depending upon calling
conventions and the type of a call. So we use an average estimate. In TTDA, a function is invoked by
executing a get-contezt instruction, which sends a request to a manager. The manager in response,
allocates processor and memory to the function and returns the new context address. The caller
executes a change-context instruction for each argument. This instruction takes a context and
a value and sends a token with that value to the specified context. One of the arguments is the
address of an instruction in the calling program, that must receive the result. The called function is
a graph with one root node for argument and the subcomputations for each argument can proceed
asynchronously as and when the corresponding value is received. A function returns its result also
using the change-contezt instruction.

5.4.1 Call setup costs

For Fortran programs on IBM 370, we observed that on average, a caller executes 3 instructions to
load the address of a subroutine into appropriate registers and jump to it. A callee executes about

17

20 instructions to set up a new context and restore it at the end. This varies from subroutine to
subroutine; for instance, the calls to library routines are very fast. So we charge an overhead of
23 instructions for each call to a user-defined function or subroutine. In TTDA, two instructions
get-contezt,rel-contert are executed for setting and releasing the context. If calls the total number
of function calls made, we have

von neumann function call setup cost = 23 * calls
dataflow function call setup cost = 2% calls

5.4.2 Argument costs

In conventional machines, explicit passing of arguments is often avoided by making use of the
shared storage, e.g.,common in Fortran. Even when arguments are explicitly passed, there are
many conventions and the cost varies substantially. We estimate that, on average, for each value
exchanged requires the execution of two instructions — a store by the sender and a load by the re-
ceiver. In TTDA, each argument/result is passed asynchronously using a change-tag instruction and
most often the receiving instruction is an identity. Hence we estimate an overhead of 2 instructions
per exchanged value. If erguments denotes the total number of arguments and results passed, we
have

von neumann argument cost = 2 x arguments
dataflow argument cost = 2% arguments

5.4.3 Function call summary

To illustrate the overheads in function calls, suppose that the innermost loop in the 10 x 10 matrix
multiply program is made a separate function which performs the inner product of the row and
column of a matrix.

The function is called 100 times, with altogether seven argument/result values. Hence the total
function call overhead is 2 100 + 2 % 700 = 1600. An equivalent Fortran program would incur
23+100+24700 = 3700. Some of the optimizations that were done earlier can no longer be done and
hence the total number of operations goes up even higher. Actual runs of the above program took
a total of 14,880 operations on IBM 370 and 21,600 operations on TTDA. Hence inline substitutions
of functions are of tremendous importance for functional programs; they are even more important
if Fortran programs are written in the same style.

5.5 Conditionals

Each condition in a Fortran program corresponds to a conditional branch instruction. In Id,
evaluation of either arm of a conditional expression must be triggered only when the predicate
evaluation completes. This is accomplished by passing each argument to an arm of a conditional
through a switch operator. The switch operator is triggered by the result of the predicate. Thus
there will be a switch for each value in the set of all input values to both arms of the conditional.
Furthermore, the switch that discards a value is like a node with no outcome. A signal from it
must feed into the termination tree. Hence conditional evaluations are in general more expensive
in TTDA. In our measurements we counted the conditional overhead as the number of branch
instructions in IBM 370, other than the branches that are used for controlling the loop iterations. In
the 10 x 10 matrix multiply examples, the zero-trip tests made for each of the 111 loops show up as

18

condition tests. In TTDA we counted the number of all switch instructions, other than those used
for feedback values in loops. We ignored the corresponding identity instructions, as this entails the
knowledge of the proportion of the above switches for the true and false arms of the conditionals.

5.6 Cost summary

In summary, we have defined the parameters shown in Table 2. The corresponding counts can be
obtained from the execution traces. Table 3 gives the expressions for the overheads in terms of
the above parameters.] In the case of Fortran programs, the disparity between the estimate and
actual instruction counts should correspond to the movement of local data between registers and
memory. In Id programs, the disparity is due to the approximations made in counting the identity
operations.

6 Analysis of Simple

We have done detailed analysis on all the subcomputations in the Simple program and tabulated
comparisons similar to the matrix multiply example illustrated in Section 5. The comparisons show
nearly identical parameter values for Fortran an Id routines which are very similar in structure and
show diversity wherever differences in the routines are significant. For lack of space we show only
the summary comparison in Tables 4 and 5, for a 16 x 16 Simple executing one iteration. Below
we comment on these tables and explain some of the differences.

8.1 Detailed comments

Basic work: The difference of about 5000 floating point operations is due to, what we perceive
as, algorithmic differences, which we did not attempt to correct as it would distort the structure
of the Id program. In the Fortran version of the velocity computation, the programmer performed
grouping of operations using the distributive law. In the Id version, an abstraction for line integral
is used. Thus, {(p + ¢) is computed as fp+ J q. This happens about 8 times for each node in the
grid. Similarly there are other situations where minor optimizations are done by the programmer.
The subdivision of fixed point operations as done in Section 5.1, is very tedious to do for this big
program. We simply lumped all the fixed point operations into one category and these include the
fixed point operations specified by the program as well as those used for loop control ete.Hence the
two counts differ substantially.

Structures: The overhead to allocate the structures dynamically reflects only the calls made
to the resource manager and not for executing any algorithms. In TTDA only the program specified
stores are done and hence the number of stores will be much less than for Fortran, as the latter
includes all other book keeping operations on memory, Nevertheless, the total structure related
costs balance out, 76116 in Fortran compared to 88993 in Id; the only cost that stands out is 18112
identity operations associated with the stores.

Loops: The Fortran version shows fewer loops, but more iterations than the Id version.
When we examined these tables for individual routines, we could spot which routines caused this
difference. There is a difference in the representation of polynomial coefficients in the two versions.
To evaluate a polynomial, two table lookups are performed to determine the ranges of given values of
temperature and density. Each pair of ranges is associated with a matrix of polynomial coefficients.
In the Fortran program, each time the ranges are determined and the corresponding coefficients

19

Parameter name | Fortran Id
float 82848 | R7985
fized 41331 | 31744
allocations 0] 5393
loads 43465 | 56318
stores 32651 | 9056
loops 2020 | 4130
constants 11754 | 16452
iterations 21544 | 12207
feedbackvalues 11845
feedbackfrequency 3998 | 29489
calls 247 0
arguments 1433 | 45402
conditionals 8446 | 10642

Table 4: Parameter Counts for Simple 16 x 16 one iteration

Category name Expression for Fortran cost | Expression for Id cost
Float float 82848 | float 87985
Fixed fized 41331 | fized 31744
Dynamic alloc 0 01 2.7 * allocations 14563
Str reads loads 43465 | loads 56318
Str writes stores 32651 | 2 » stores 18112
Loop iteration cost | ilerations+ 3 + iterations+
2 + feedback frequency | 29540 | 3 « feedback frequency | 125088
Loop setup cost constants 11754 | 5 «loops+
2 * constants+
3 * feedbackvalues 89089
Fn call setup 23 * calls 5681 | 2% calls 0
Argument Passing | 2 *x arguments 2866 | 2 ¥ arguments 90804
Condition Cost conditionals 8446 | conditionals 10642
Total estimated 258582 524345
Total measured 208502 554254
Identities measured 133619

Table 5: Overheads for Simple 16 x 16 one iteration

20

are copied into a temporary array using an extra loop, whereas in the Id program, the coefficient
matrix is simply selected from a matrix of matrices. Since this happens in the innermost loop,
the Fortran version shows up many more iterations all of which involve copying elements into
temporary matrices. The higher number of loop initiations in the Id versions are for a different
reason altogether. In the test data that was used for the program, the search for the temperature
and density ranges seldom takes more than one iteration. Thus most of the time, in the Fortran
version we do not even see a loop back, as the range is found in the first pass itself. Hence no loop
initiations corresponding to them are recorded. Whereas in the Id version, loop initiation takes
place explicitly, whether any jterations are executed or not. Thus, every initiation is counted and
hence the disparity. There is also a minor difference in computing the inverse of a polynomial. The
Id version sets up a loop for Newton’s approximation method, whereas the Fortran version uses a
different approximation avoiding a loop.

For loop control, the Fortran version incurs a total of 41294 operations, whereas the Id version
incurs 214177. This 5-fold increase is the dominating factor for the increased overhead in Id
programs. About two-thirds of this is due to the need (required by the language) to pass every
argument explicitly since there is no notion of environment. The remaining one-third is due to the
identity operations required for termination detection and regulation of iterations.

Functions: In the Id version, virtually all functions are substituted inline. The function calls
reported in Fortran are for the subroutines that are not substitutable easily. Manual substitution
for them can be done, but is tedious. These include the PROJCT function and the polynomial
evaluation functions, which constitute the bulk of the calls. There are about 900 calls to library
functions such sin, cos and sqrt made in both versions. Since Fortran uses a fast call mechanism
for them, we ignored the overheads for their calls.

Conditionals: Simple is not a good example for the study of conditionals as there are very few
conditions in it. Finding maximum, minimum, absolute value account for most of the conditionals
reported.

In summary, differences in optimizations, algorithmic and representational variations do cause
some differences in the instruction counts; but these are negligible. Some of them can be avoided by
restructuring the code to mimic the control and data structuring used by the Fortran version. This
will of course destroy the abstract nature of the code and will tremendously increase the difficulty in
debugging, in general. We have tested this approach by encoding the Simple program from scratch,
without paying attention to high level abstractions and adopting most of the control structuring and
optimization strategies of the equivalent Fortran program. This program for 16X16 grid and one
iteration took 311,117 instructions, reducing the instruction count for the more abstract program
we reported here, by more than a third. One should weigh the resulting improvement from a less
abstract program against the ease of coding and debugging the higher level program, as it is closer
to the mathematical description of the problem.

If we ignore the above mentioned minor differences, the major contribution to the higher counts
observed for the Id version stems from the overheads we identified for each class. A bulk of this
excess is due to the fact that loops are explicitly initiated like functions and all arguments and results
are not only passed back and forth from them, but also are circulated within the loops. Thus, the
cost is proportional to the number of quantities moved in this fashion. The substantial saving for
a von Neumann style machine is due to the fact that most of these values are kept in memory
and instructions often combine their access with arithmetic. For load/store architectures, since the
latter facility is not present, they still end up moving these values back and forth from memory and
hence incur overheads to the same tune as a dataflow machine. To the extent parallelism is given

21

up by not running all loop iterations in parallel, the above mentioned overheads can be eliminated
by less expensive loop controls.

It should be noted that identity operations constitute a fourth of the total number of operations.
This is a rough measure of the cost of synchronization for parallel execution of this program. If
we go by the rule of thumb that the ratio of instructions executed for equivalent programs on RISC
machines to that on CISC machines is about 1.5, we can see that parallel execution is contributing
another 40% more in this program, bringing the ratio of dataflow instructions to CISC machines to
1.9.

7 Conventional multi-processors

A major portion of the costs enumerated in Section 5 is becanse of the parallelization of loops and
and function calls in TTDA. Any other system that executes the program in parallel must incur
similar costs. The cost structure may be different based on the nature of parallelization and the
architecture. To illustrate this, we consider the paralle]l execution of some of the examples on a
system that resembles the IBM RP3 multi-processor system [16].

7.1 EPEX - a parallel processing facility

EPEX is a facility on the IBM 370 machines for parallel execution of a Fortran program on maultiple
virtual machines {18]. Each virtual machine can be thought of as an IBM 370 machine. The shared
segment feature of the system provides a means for all the virtua! machines to communicate, as
if they were independent processors connected by a shared memory. Most of the synchronization
features are implemented by software routines. It is envisioned that this system provides a testbed
for studying some of the behavior of the RP3 multi-processor system under construction.

In EPEX, a Fortran program is parallelized by user defined annotations. The annotated program
is translated into a legal Fortran program with appropriate calls to some library subroutines, which
perform the synchronization functions. The user specifies the number of processors on which the
parallel execntion of the program is envisioned and the system creates that many virtual machines
with a shared segment, which behave as independent virtual processors. All the virtual processors
execute the same program concurrently. The annotations designate portions of the program into
one of the following 3 possible categories:

Serial sections, such as initialization of shared memory, are designated for serial execution by
enclosing them within a pair of special annotations. The annotations are translated into calls to
synchronization routines that ensure that only the first virtual processor that attempts to execute
it will do so; all others will be forced to skip over that portion. All virtual processors will normally
synchronize at the end of a serial section and proceed further when the serial execution is completed,

A parallel section is unannotated and all the virtual processors execute the same code. Typically
these are portions of code that performs some initialization of the state of each virtual Processor.

Finally a loop may be designated for parallel execution. In a parallel loop, the virtual Processors
compete and select distinct iteration numbers and execute the corresponding iteration. When an
iteration is completed, the virtual processor selects another iteration number in the same manner
until all iteration numbers for the loop are exhausted. All the virtual processors normally synchro-
nize at the end of a loop and proceed further only after all the iterations are completed. When
loops are nested, at most one loop within each nest is permitted to be parallelized (in the current
implementation).

22

Fixed Cost 42 * processors

Loop setup Cost 130 * parallel-loops + 80 * processors

Loop iteration Cost | 87 * (parallel iterations + processors * parallel-loops)
Serialization Cost 156 * serial-sections

Table 6: Parallelization Costs in EPEX system

The system aiso provides special primitives for parallel manipulation of locations in shared
segment. These are associative operations such as add, multiply, logical conjunctions ete.The virtual
processors can perform these operations on a location concurrently without losing determinacy of
the computation.

7.2 Costs in EPEX

Since only some loops are parallelized, we count the number of loops parallelized and the total
number of iterations in the parallel loops. Thus, we use the following 4 parameter counts: proces-
sors, parellel-loops, parallel-iterations and serial-sections. We can then express the parallel costs
as shown in Table 6.

The constants coefficients in the expressions on the right hand column of Table 6 are obtained by
counting the average number of instructions executed eachtime the corresponding synchronization
routine is executed in EPEX. The fixed costs correspond to getting a unique number for each
virtual processor. For setting up a loop, one processor executes a routine to initialize the state
representing the loop and all the other processors must skip over this (like a serial section). For
each loop iteration, a processor must check and obtain an iteration number. For each loop, each
processor will perform this test once more than the number of iterations, to get out of the loop. The
cost expressions do not include the counts of instructions executed in waiting for other processors,
as this is tricky to account for in EPEX implementation, but we recognize this could amount to
significant overhead with a large number of processors.

As an example consider the matrix multiply example of Section 2.1. The following program
annotates the outer loop for parallelization. The pair of annotations @do and @endo denote a
paralle] loop. The annotation @shared indicates that the corresponding data structures must be
placed in shared memory.

subroutine matmult(A,B,C,n)
@shared/public/ A(n,n},B(n,n),C(n,n)
@do 50 i=1,n
do 10 j=1,n
C(i,j)=0.0
do 10k=1n

10 C(ij) = C(i.j) + A(i k) * B(k,j)
@endo 50
return
end

For n = 10, the program executes the 10 outer loops in parallel. Thus we have parallel-loops
= 1, parallel-iterations = 10, serial-sections = 0. This is a paralle] cost of 1167 when run on one

23

processor and a 3090 when run on 10 processors. The cost with 100 processors (assuming we can
parallelize all loops) is prohibitively high for this example. This overhead marks a sizable increase
to the instruction counts in Table 1.

7.3 Comments

In a real multi-processor system, the coefficients of expressions in Table 6 are likely to be smaller,
as the hardware features might implement some of the bookkeeping. But if a load/store style of
processor architecture is used, it is unclear how much reduction can be obtained. In any case it
is clear that for small number of processors, the overhead is smaller; and the parallelism exploited
is also smaller. As number of processors increases, the cost is prohibitive. These trade-offs need
further investigation, especially taking into consideration the timing characteristics of a real multi-
processor system.

8 Concluding remarks

It is very clear that parallel execution of a computation calls for expending additional resources. The
ultimate question of interest is how these additional resources can be traded in return for the benefits
offered by parallel execution. The scene is fogged by the multitude of factors both on the cost side
as well as on the side of benefits. Furthermore the factors are often ill-defined and have a very high
degree of variance. The benefits of parallel execution include the reduction in total time of execution
compared to a sequential machine, the ease with which additional resources can be employed to
execute a program faster and the ease with which a program can be encoded and debugged on a
parallel processing system. Similarly on the cost side one may examine the additional memory used,
the additional processor time used in terms of instructions and the dynamic distribution of these
memory and processing resources during execution, which influences the peak memory requirement
and the critical path length for execution. Examining any one of these factors, disregarding the
others has the danger of grossly distorting the picture. Nevertheless, one must have a coherent
means of examining each of them in detail and finally assess the overall trade-off combining them.

In this paper we examined the additional processing in terms of the total number of instructions
executed by a parallel processor over and above that of a single sequential processor. Since the
instruction counts are affected by a variety of factors including the language, compiler, optimiza-
tions and instruction set architectures, one has to be careful in isolating these effects. In this paper
we have closely examined the differences between the executions of a reasonably large program on
a dataflow machine as well as on IBM 370. We have taken care to see that the differences intro-
duced by differences in algorithms, compilers and optimizations are minimized so that the effects
of architecture and parallel execution dominate. We have argued that architectural differences
diminish if the von Neumann architecture is a load/store type. Although we have not presented
the comparison with counts on a real load/store architecture, we have presented sufficient analysis
of instruction set to convince that this is indeed the case. Isolating this, finally leaves the effects
of parallel execution. We have identified the principal features of a program execution that are
significantly effected by parallel execution, namely loops, values passed and circulated. By exam-
ining the patterns in which the two machines execute these control structures, we have quantified
the overhead instruction counts for these features. On the large example we presented, we showed
that the estimates of additional instructions due to parallel execution come very close to the actual
execution counts,

24

We believe that these overheads must be incurred by any parallel machine. The extent of
overhead might vary with the degree of parallelism that is being exploited. Dataflow machine is
perhaps an extreme case in this arena, as it tries to exploit all the parallelism that can ever be
extracted from a given specification. One might argue, then, that trying to utilize only a limited
amount of parallelism in a program reduces the overheads substantially, thereby giving a better
payoff. Our experience suggests the contrary - that the overheads due to parallel execution in
a dataflow machine are not orders of magnitude higher than in a conventional parallel processor
exploiting limited parallelism. Examples presented in this paper show increases of up to 3 times
the number of instructions taken by IBM 370 on corresponding programs. When compared to
execution on a load/store architecture, this ratio will come down to 2 or less. In contrast, we took
the Simple program that was parallelized for EPEX execution by the authors of [9]. The program
parallelized only the outer loops in each subcomputation. For a grid size of 16X16 and for one
iteration, the program took approximately 40% more instructions than a uni-processor version,
whereas a dataflow machine took roughly 100% more. If we apply the 50% rule for the load/store
architectures, one can see that the excess number of instructions executed by a dataflow machine is
not far from that of a conventional multi-processor using processors with load/store architecture.
In addition, the dataflow machine exploits a lot more parallelism than just the outer loops.

We would like to comment on some subtle details that are often ignored in this comparison.
The dataflow machine has the ability to interleave arbitrary set of ready instructions. As a result,
it is possible many of these additional instructions can be hidden when one examines the critical
path of the problem. Whereas, this is not the case for a conventional parallel processor. Often
the synchronization involve participation by many processors and the processors usually execute
busy waits during this time. In the above counts on the EPEX simulation, we have completely
ignored the instructions executed by a processor during busy waits. Conventional architectures
have been studied for a long time and evolved with novel instructions that efficiently implement
more frequently occurring operations. In the dataflow machine, there is plenty of scope for such fine
tuning of instruction set. For instance, it is not difficult to introduce new instructions that combine
switch and tag manipulation instructions so that the overhead instructions for loop feedbacks is
reduced to half. In the analysis we presented here, we used a crude method for termination detection
by using inverted trees of identity instructions which constitute about 40-50% of the overhead
instructions. Again there can be many strategies for implementing the termination detection with
lesser number of additional instructions. Above all, the dataflow machine exploits a lot more
parallelism than a typical conventional multi-processor system and programs do not need special
strategies or recompilations for running on different number of processors.

Examination of effects of finite resources and strategies for their management are subjects of
further study. It is possible to conceive of changes to the dataflow architectures, so that when
automatic parallelization of all loops and function calls is undesirable, the parallel costs are not
incurred. This is also a subject for future study.

25

References

(1] Arvind, David E. Culler, and Gino K. Maa. Parallelism in Dataflow Programs. Technical
Report Computation Structures Group Memo 279, MIT Laboratory for Computer Science,
945 Technology Square, Cambridge, MA 02139, December 1987, (Submitted to the Fifteenth
Annual International Symposium on Computer Architecture, Honolulu, Hawaii, May 1988.

(2] Arvind and Kattamuri Ekanadham. Future Scientific Programming on Parallel Machines. In
Proceedings of the International Conference on Supercomputing (ICS), Athens, Greece, June
8-12 1987.

(3] Arvind and K. P. Gostelow. The U-Interpreter. COMPU TER, 15(2), Feburary 1982.

(4] Arvind, R. S. Nikhil, and K. K. Pingali. Jd Nouveau Reference Manual, Part II: Seman-
tics. Technical Report, Computation Structures Group, MIT Lab. for Computer Science, 545
Technology Square, Cambridge, MA 02139, April 1987.

[5] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Parallel Computing.
Technical Report Computation Structures Group Memo 269, MIT Laboeratory for Computer
Science, 545 Technology Square, Cambridge, MA 02139, February 1987. (Also to appear in
Proceedings of the Graph Reduction Worksho , Santa Fe, NM. October 1986.).

[6] Arvind and Rishiyur S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow
Architecture. In Proceedings of the PARLE Conference, Eindhoven, The Netherlands. (LNCS
Volume 259), Springer-Verlag, June 15-19 1987.

[7] W.P.Crowley, C.P. Hendrickson, and T. E. Rudy. The SIMPLE Code. Technical Report UCID
17715, Lawrence Livermore Laboratory, February 1978.

[8] David E. Culler and Arvind. Resource Requirements of Dataflow Programs. Technical Re-
port Computation Structures Group Memo 278, MIT Laboratory for Computer Science, 545
Technology Square, Cambridge, MA 02139, December 1987. (Submitted to the Fifteenth
Annual International Symposium on Computer Architecture, Honolulu, Hawaii, May 1988.

[9] F. Darema-Rogers, Karp A., and Teller P. Applications Survey Reports - I Technical Re-
port RC 12743, IBM T.J.Watson Research Center, Hawthorne, New York, May 1987,

[10] John R. Gurd, C.C. Kirkham, and I. Watson. The Manchester Prototype Dataflow Computer.
Communications of the Association for Computing Machinery, 28(1):34-52, J anuary 1985.

[11] K. Hiraki. Instruction set reference manual for Sigma-1. Technical Report Tech report, Electro
Technical Laboratory, Japan, 1983. :

(12] Alan H. Karp. Programming for Parallelism. JEEE Computer, 43-57, May 1987.

(13] Ekanadham Kattamuri and Arvind. Simple: Part I- An ezercise in future scientific program-
ming. Technical Report RC 12686, IBM T.J.Watson Research Center, Hawthorne, New York,
June 1987,

26

(14] Rishiyur Sivaswami Nikhil. Id Nouveau Reference Manual, Part I' Syntar. Technical Report,
Computation Structures Group, MIT Lab. for Computer Science, 545 Technology Square,
Cambridge, MA 02139, April 1987.

[15] Rishiyur Sivaswami Nikhil. Id World Reference Manual, Technical Report, Computation
Structures Group, MIT Lab. for Computer Science, 545 Technology Square, Cambridge, MA
02139, April 1987.

(16] G. F. Pfister and et al. The IBM Research Parallel Processor Prototype (RP3). In Proceedings
of the 1985 ICPP, August 1985.

[17] Sedjwick Robert. Warshall’s all-pairs shortest path algorithm. Addison-Wesley, 1983.

[18] J.M. Stone, F. Darema-Rogers, V.A. Norton, and G.F. Pfister. The VM/EPEX FORTRAN
Preprocessor Reference. Technical Report RC 11408, IBM T.J.Watson Research Center,
Hawthorne, New York, September 1985.

[19] Kenneth R. Traub. A Compiler for the MIT Tagged-Token Dataflow Architecture. Tech-
nical Report LCS TR-370, MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139, August 1986. (Master’s Thesis, Dept. of Electrical Engineering and
Computer Science, MIT).

27

