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Abstract

This paper develops a method for studying the inherent parallelism in “real” programs using
a sequence of progressively more realistic dataflow execution models. The goal is to understand
factors limiting speedup on parallel machines. It defines an ideal execution model and introduces
parallelism profiles as a characterization of the inherent parallelism in programs, Although dataflow
graphs provide a precise representation of parallel execution, our ability to generate graphs from
a high-level language Id introduces a certain bias, which is examined. Prodles for several dataflow
programs are presented, and one large program is examined in detail. Two approaches to deriving
potential speedup are developed, one defines a more realistic finite-processor model which accounts
for communication latency, the other predicts speedup through analysis of the parallelism profile.
Finally, the effects of grouping portions of dataflow programs, such as function invocations or loop
iterations, and requiring that the instructions in a group execute on a single processor are examined.






Parallelism in Dataflow Programs

1 Introduction

Scalability, the promise of faster execution as more processors and memories are added to the
system, is an important aspect of parallel machines. However, when the observed speedup is less
than optimal, one might conclude that the program does not have enough parallelism for machines
beyond a certain size. What does this really mean? One possibility is that the algorithm does
not offer sufficient parallelism. The algorithm may have parallelism, but it may be obscured by
the language or the coding style. Perhaps a more sophisticated compiler could have found the
parallelism. The program may have parallelism, but it may be of a form which the machine cannot
exploit. Finally, the program may have parallelism of a useful form, but poor resource management
or contention for physical resources may compromise it. A better understanding of how these various
factors contribute to a lack of speedup is essential to developing large-scale parallel machines for
general purpose computing. This paper illustrates a method for studying this question developed
in the context of dataflow machines and presents preliminary data on the parallelism present in
dataflow programs employing traditional algorithms.

The first step is characterizing the inkerent parallelism in the program. This notion proves
to be rather subtle, and in explaining it we must also explain what it is not. Formal techniques
have been developed to show that exploiting parallelism in certain problems is difficult regardless
of what algorithm is used. Notably, the AT? results found in VLSI theory demonstrate that if
a problem is solved in parallel then a large amount of communication is required. While this
work has clear merit, we do not yet see how to apply it to realistic applications. Highly parallel
algorithms have been developed recently under a variety of parallel models of computation, such
as PRAM, but in achieving such short critical paths the total amount of work tends to be large.
As we are working with constant factor speedups, the total amount of work is critical, Certain
architectures achieve tremendous parallelism, but only when algorithms are developed specifically
for the particular architecture{13]. We do not assume that such novel algorithms be used, as
many conventional algorithms have tremendous parallelism, but we require that the algorithm
be expressed precisely. Real-world applications generally involve a number of algorithmic phases,
Interactions between phases, end conditions, error analysis, and synchronization primitives often
determine the parallelism in the program as a whole, so studying applications in full detail js
essential. This raises certain difficulties because applications must be coded in some language
and executed in some manner. For complete programs specified in full detail, we want to capture
precisely what operations can be performed in parallel without introducing any constraints beyond
the essential dependencies in the program.

Dataflow program graphs provide a precise description of parallel computation(9]. Arcs indi-
cate data dependence between operations, and nodes not connected by arcs in the graph represent
opportunities for parallel execution. We define an ideal execution model for dataflow graphs which
executes all operators in parallel except as constrained by data dependencies. Based on this model,
programs can be characterized by their parallelism profile, from which critical-path, average paral-
lelism, and potential speedup can be deduced.!

'In a companion paper [10] we have presented a detailed account of the fraction of operators that represent the
overhead or the cost of parallel execution. These two papers together provide a much more useful characterization
of “useful” parallelism in dataflow programs.



Next, we try to characterize how this potential parallelism is compromised by various aspects
of the implementation. The graphs considered are compiler generated from the language Id, so we
examine the bias this introduces and restrict our focus to problems which are comfortably expressed
in the language. By considering the behavior of the program under the constraint that only a certain
number of operations can be performed simultaneously, we focus on potential speed-up, rather
than potential parallelism, and show that the parallelism profile is an excellent tool for estimating
potential speedup. We then consider the impact of communication latency, showing that as the
latency increases more parallelism is required to achieve a given speed-up. Finally, we consider the
effects of allocating fixed amounts of computing resources to portions of the computation.

Section 2 presents a graphical representation of programs, our idealized execution model, and
parallelism profiles. Section 3 examines capabilities and limitations in generating graphs from a
high-level language and explains certain subtleties in the model. Section 4 considers how much
parallelism can be exploited effectively on a finite number of Processors incurring memory and
communication latency. Finally, Section 5 introduces program partitioning at various levels of
granularity into the execution model and examines its effects on potential speedup. Throughout
this paper we assume the reader has some familiarity with dataflow; a good introduction to the

2 Parallelism Profiles under Ideal Execution

Dataflow graphs have a well-defined meaning without any timing assumptions, and we generally
view dataflow execution as asynchronous. Nonetheless, in order to characterize the parallelism in
dataflow programs we consider a synchronous unit execution model with unit time per operation.
We are not, however, exploiting aspects of synchronous execution.

following characteristics:

o All operators take unit time,
® Unbounded number of operations per step,

® Zero communication delay,

Unbounded memory and communication resources,

Eager scheduling of enabled operators,

We illustrate the method for generating parallelism profiles through an example. Figure 1 shows
a program graph which computes the inner products of two vectors, 4 and B, of size n. Initially a
token corresponding to sum with value zero is input to the left switch and a token corresponding
to 1 with value one is presented to the right switch and the < predicate. The value n as well as
descriptors for the two vectors are loop invariants [10] and thus can be considered to be embedded
in the graph. Assume that the value of n is 3. In step 1, instruction 1 (i.e.,the operator < ,) fires
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for the other input to instruction 8. Firing of instruction 6 provides input to the predicate and the
right switch. In step 4, the value of sum that has been waiting is added to the result of instruction
7 while the new value of i passes through the switch. Note in step 5 of the parallelism profile in
Figure 1 that the second iteration has begun while the first is still active. Execution continues in
this manner until step 14 when it produces a token on the False side of the Switch in instruction 2.
The pattern in steps 4 to 6 covers all 8 instructions and repeats for every iteration. Note, a node
is fired at the step corresponding to the maximum of the times of its input tokens.

The step beyond which pp(t) is uniformly zero is called the critical path length, that is, the length
of the longest chain of data-dependencies in the program. The area under the curve pp(t) gives the
total number of operations executed. The ratio of these is the average parallelism. It can be seen
from the parallelism profile of the inner-product n = 3 shown in Figure 1 that the critical path
length is 12 and the total number of operations is 27. Note, this describes the parallelism for this
particular method of computing the inner-product and does not imply that this is the maximum
achievable parallelism. However, other methods with more parallelism would be described by
different graphs.

3 Generating Dataflow Graphs

Although dataflow graphs provide a precise representation of parallel execution, the utility of the
model is limited by our ability to generate the graphs themselves. We will consider only graphs
generated by a reasonably sophisticated compiler for the language Id. Id is a functional language
extended with I-structures to provide efficient array manipulation. A broad class of algorithms
are easily expressed in Id, although we recognize that it is difficult, perhaps impossible, to express
certain types of algorithms in Id efficiently. This section explores the implications of the language
and the compiler on parallelism profiles.

3.1 Compiler generated graphs

Inner-product may be expressed in Id as follows.

Def ip A B = {(1,h) = bounds(A) ;
s =0
In
{For j From 1 To h Do
Next s = 3 + A[j] * B[j]
Finally s }} ;

The dataflow graphs produced by the Id compiler are based on a fixed set of schema and rules
for composition [19] which ensure deterministic behavior under all execution orders. Arithmetic
expressions and let-blocks are described by acyclic graphs. Conditional expressions are constructed
using switch operators to steer values to the appropriate arm, based on a predicate, allowing
portions of the conditional to execute before all the inputs of the expression are present. Iteration
is captured by a loop schema, which permits arbitrary overlap of iterations, unless constrained by
data dependencies. Values which are arguments to an invocation of a loop but are constant over
all iterations are not circulated, but are explicitly stored in a constant area (see [6] or [2]) in the
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loop pre-amble. User defined functions and loops are compiled into code-blocks, which are invoked
by an application schema, permitting arbitrary recursion. The class of graphs generated in this
manner are deterministic and self-cleaning.[5] Furthermore, graphs are embellished so each code
block receives a trigger to enable nodes with constant input and produces a signal indicating that
all nodes with no outputs have fired [19].

The graph generated by the Id compiler for ip, the inrer product program, contains 31 in-
structions. Most are for setting up and cleaning up the loop and are thus executed only once. The
graph for ip shown in Figure 2 though stylized captures the essential features of the compilation for
drawing the parallelism profile. The output of the Id compiler can be executed on GITA [16), the
Graph Interpreter for the Tagged-Token Architecture, which generates parallelism profile graphs as
a part of its runtime statistics reports. As can be seen in the profile in Figure 2, compiler generated
graph executes 5 more instructions per iteration than the graph in Figure 1. These additional
instructions are generated for tag manipulation and control of loop unfolding, which is discussed
further in a companion paper.[8] Graphs generated by the current Id compiler incur roughly 150%
overhead in terms of the number of instructions executed beyond the essential computation in or-
der to allow maximal parallelism[10] while preserving determinacy. We should note that although
the ideal machine we consider here is synchronous, dataflow graphs specifically do not rely on any
assumptions about the time required to perform operations or transmit tokens.

3.2 Associativity and Commutativity

The language does not assume associativity, commutativity, etc. of arithmetic operators, and there-
fore the compiler can not make use of these properties in generating graphs. The inner-product
example forms a linear sum of product, so the graph is a simple loop. Forming a binary summation
tree would offer more parallelism, and if this is the programmer’s intent, a recursive formulation
should be used.

Note that in the inner product example, the multiplications could complete in any arbitrary
order, and the sum would still be formed in sequence. It is possible to describe graphs which would
combine arbitrary partial products, in whatever order they happened to be produced, but again
this is outside the language. Id intentionally has no means for expressing non-determinism; assuring
determinacy under parallel execution is critical in developing correct applications. Still there are
important application areas where non-determinism is essential and extensions to the language are
being considered.

3.3 Non-strict Data structures

The language does not compromise parallelism in manipulating data structures. I-structures in
Id are a form of non-strict array which is explicitly allocated and filled, with synchronization on
an element by element basis. An attempt to read an element which is not present is deferred
until the element is written and processed immediately thereafter. To ensure determinacy, an
element can only be written once. By way of contrast, strict data structures[9] can be treated as
a single value, but operations which access particular elements of the structure must wait until
the entire array is defined. This prevents asynchronous production and consumption of structures
much as does barrier synchronization. Approaches which detect parallelism in sequential programs
are severely restricted by the difficulty of compile time analysis of subscript expressions; with I-
structures no such analysis is required, as dependencies are resolved dynamically. With the help of
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following example, we show concurrent production and consumption of an array which is produced
by summing two vectors and then “consumed” by the inner product program.

Def ip_vsum A B = ip (vsum A A) (vsum B B) ;

Def vsum A B = {C = array (1,n) ;
{For j From 1 To n Do
cljl = aljl + B(jl}
In

o

The vsum program implies no restrictions on the order in which the elements of array C are
filled. Furthermore, the iterations of the loop are independent and can proceed in parallel. In most
conventional languages, the best one could hope for is that the critical path length for ip_vsum
would be the sum of the critical path lengths of ip and vsum. In Id, however, vsum can return
the descriptor of C, its result vector, as soon as it is allocated, even before its loop has completed
filling tt. ip gets these descriptors, and can begin work immediately. Because arrays in Id have
“I-structure” semantics, vsum and ip are automatically pipelined, working in tandem as producer
and consumer respectively.?

Figure 3 shows the parallelism profiles for vsum, ip and ip_vsum respectively (n = 10). The
critical paths and total operations for vsum are 63 and 158 respectively; for ip, they are 59 and
153, respectively. In ip_vsum, the individual profiles of vaum and ip are superimposed, rather than
strung out in sequence. The critical path, instead of being 63 + 59, is only 76, even though the
instruction count is 500. The last number is greater than 469 (= 153 + 2 x 158) because of the
three procedure calls. Ideal profiles are indicated as in Figure 3 and having unbounded operations
per step, p = o0, and zero latency, I = 0 discussed below.

3.4 Parallelism in Nested Loops

Composition of control structures does not inhibit parallelism. Some approaches allow only outer
loop parallelism or only inner loop parallelism, or similar restrictions. Id allows loops to unfold,
functions to be spawned in parallel, etc., constrained only be data dependencies, irrespective of
nesting of control structures.

Figure 4 gives the parallelism profile for matrix multiplication of two 16 x 16 matrices using the
traditional algorithm, showing unfolding of nested loops. The upper profile counts all operations,
and the lower profile counts only the floating point operations. The outer loop spawns 16 concurrent
instances of the middle loop, each of which spawns 16 instances of the inner product. Unfolding of
the inner product depends on the availability of elements of the input matrices. The critical path
length is 291 and the total number of operations is 72,344, out of which 8192 are floating point
operations. The average parallelism is 249 operations per step. The bell-shape of the profile arises
because the way loops unfold causes inner loops to by staggered slightly, and the summation in the
innermost loop is done sequentially. The rapid oscillations reflect the oscillating parallelism in the
inner product. We could spawn the inner-loops in a tree, and perform the summations as a binary

21.structure operations introduce a subtlety in the ideal model. The node which receives the result of an I-fetch
operation does so one unit after the maximum of the time of the I-fetch and the time of the corresponding I-store.
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tree to reduce the length of the critical path further, but it is evident that substantial parallelism
is present even in the traditional algorithm.
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Time Step

Figure 5 shows the parallelism profile for a 16 x 16 LU decomposition, an important step in
solving simultaneous linear equations (critical path = 1312 , total operations = 35,552). This
example involves nesting of loops conditionals and user-defined functions. The descending stair-
step behavior coincides with our intuition that after each pivot the remaining portion of the matrix
has one fewer row and one fewer column.

These profiles accurately capture the inherent parallelism in programs, given the specific algo-
rithms employed and the compilation technology. Factors which place additional constraints in any
realistic implementation, such as as multiple simultaneous reads to an array component, commu-
nication latency, locality, contention, and distribution of work are abstracted away entirely and do
not affect the parallelism profile.

3.5 Large Id Application Kernels: PIC and SIMPLE

In keeping with the goal outlined in Section ! we now show that parallelism profiles can be generated
and analyzed for complete programs. The two programs we consider are large with complex data
and control structures, exhibiting non-trivial producer/consumer relationships.

Figure 6 shows the parallelism profile for an entire electrodynamics application (PIC) using a
particle-in-cell approach. The idea is to model the movement of charged particles under the field
they induce. This example shows 4 time steps with 640 particles in 64 cells (8 x 8 mesh); realistic
problems use = 1 million particles and 100,000 cells. For the problem in Figure 6, the number of
operations executed is 1,573,733 and the critical path length is 3,399.

The parallelism profile shows that a large amount of parallelism is generated while computing
the potential and solving Laplace’s equation. This particular program uses a multigrid method to
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solve Laplace’s equation, which generates the first peak in the profile. Partially overlapped with
this, but generating a second peak, is the calculation of the field and the resultant acceleration of
each particle. Then there is a strong constriction point as the maximum acceleration and velocity
are extracted and Newton’s approximation is used to compute the time step. Once the time step
is determined, the computation of new particle positions begins, generating substantial parallel
activity. But note, the computation of the new charge density overlaps with the particle push,
until a2 new time step is determined. After the second iteration, the behavior is periodic,

Figure 7 shows the parallelism profile of the SIMPLE code, a hydrodynamics and heat flow
code that has been studied extensively both analytically [7] and by experimentation. A detailed
discussion of the program appears in [4] and [10]. 3 This profile shows 3 iterations of the outer
loop of SIMPLE on a 20 x 20 mesh, while a typical simulation run performs 100,000 iterations
on 100 X 100 mesh. The critical path is 1976 and the instruction count is 1,471,374. As can be
seen from iterations 2 and 3, there is no significant parallelism between the outer loop iterations
of SIMPLE; the profile for N iterations can be obtained by repetition of a single iterations profile.
To show how the profile changes with the size of the problem, we have drawn the profile for the
32 x 32 mesh in Figure 8. (Critical path = 1082, instruction count = 1,446,478.)
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Figure 7: (p = co,! = 0) Parallelism Profile for SIMPLE (3 iterations, 20 x 20).

It is noteworthy that the potential parallelism varies tremendously during execution, a behavior
which in our experience is typical of even the most highly parallel programs. We believe that
any large program that runs for a long time must have sufficient parallelism to keep hundreds of
processors utilized; several applications that we have studied support this belief.

3The version of Simple used here is slightly different than that used in the bulk of {10]. It uses lower level
abstractions and has minor algorithmic differances.
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4 Parallelism Profiles on Finite Number of Processors

Characterizing the inherent parallelism in programs is important insofar as it allows us to infer the
behavior of the program on a finite number of processors. We are unlikely to be interested in the
maximum number of processors potentially active at one time or to see execution times close to the
critical path. Even average parallelism can be a misleading indicator of performance. However, as
we consider the program behavior on a finite number of processors, we must discard our unrealistic
assumption of zero communication latency, as it is impossible to build a machine that can always
communicate an operand from the output of one node of a dataflow graph to the input of the
destination node instantaneously. One reason is the internal pipelining of a processor and another is
the delay in processor-processor and processor-memory communications. In most realistic designs, n
processors and memories are interconnected by a multi-stage network, where the average latency of
memory access is of the order of log(n). Consider the best-case assumption that the communication
network and processors are completely pipelined, i.e.,a processor/memory can send a message at
every time step. To keep the pipelines full, processors need many instructions eligible for execution
at each time step. If a processor is to avoid idling then the program must have sufficient parallelism
to absorb memory access and communication latencies. In this section we present two approaches
to characterizing the behavior of programs on a finite number of processors. The first modifies the
ideal machine to constrain the program to execute a finite number of operations in each step, and
the second estimates potential speedup from the parallelism profile itself.

12



4.1 The “Finite-Processor” Execution Model

The first step towards a realistic execution model is to bound the amount of available processing
resources. Instead of allowing an arbitrary number of instructions to be executed during each
step, a maximum limit of n operations during each step is imposed. This represents n processors
only in a very abstract sense. We do not assign activities to processors, but rather choose up to
n enabled activities in each step. One can view it as representing a dataflow system where the
mapping of activities onto processors is perfect in that there can never be a situation where n
operations are enabled, but not all n can be processed because some are on the same processor.
We consider mapping issues for a specific architecture in a companion paper{2]. In addition, we
introduce communication latency by assuming that the output of every instruction takes ! steps
to be delivered to its destination. This is consistent with the view that activities are distributed
arbitrarily over all the processors. This finite-processor latency model has the following attributes:

¢ Unit time per operation,
¢ Bounded number of operations per step,

o Fized communication delay,

¢ Unbounded resources.

“Fair” (FIFO) scheduling.

Obviously, for a program whose parallelism profile is less than n throughout, this restriction
will not alter its behavior at all. But when it exceeds n, then the effect of execution on n Processars
may be visualized by drawing a horizontal line at n on the parallelism profile and then “pushing”
all the instructions which are above the line to the right and below the line. Figure 9 shows the
profile for SIMPLE generated under this model with n = 1000, slightly greater than the average
parallelism. The length of the critical path is increased from 1,976 to 2,763,

The finite-processor model is somewhat imprecise as a subset of the enabled activities must
be chosen in each step and different choices may result in different profiles. We assume a “fair”
choice, by which we require that if activity S1 precedes 52 under the ideal model, then it does
so under any finite-processor model. In the profiles shown below, ordering among activities which
occur in the same step under the ideal model is determined arbitrarily by the way the compiler
orders destination arcs. We do not, for example, favor the critical path. To see how the scheduling
choice affects the parallelism of a program, we show two different parallelism profiles, based on
two scheduling policies: FIFO and LIFO. FIFO scheduling is fair, as defined above. With LIFO
scheduling, the most recently enabled instructions are considered before any enabled activities
carried over from the previous step. Figure 10 show the results of applying the scheduling orderings
to the inner product program graph introduced in Section 2, with only two processors. In general,
the performance of the best and worst scheduling choices differ at most by a factor of two [12], and
this degree of variance arises in pathological cases.

The discussion thus far has assumed zero communication latency. When latency is introduced
in the model, we must be careful in modeling I-structure operations. An I-fetch is a split-phase
transactions as shown in Figure 11, so the result of an I-fetch is available at the destination node
20 + 1 units after the later of the I-fetch and the I-store for the particular elements.

13
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Figure 12 shows two parallelism profiles for 3 iterations of SIMPLE on a 20 x 20 mesh, with at
most 100 operations per step. The top profile has latency { = 0 while the bottom has latency { = 10.
Note, the length of the critical path is increased by a factor of 2, not a factor of 10. These profiles
suggest that the program has enough parallelism to absorb significant latency on 100 PTOCESS0Ts,
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Figure 12: Effect of Latency on Parallelism Profile for Simple (100 processors, 3-iterations,
20 x 20).

4.2 Speedup and Utilization

The amount of parallelism available in a program in the context of the finite-processor model can
be expressed in terms of speedup and utilization, as follows. Let (n,/) be the number of steps
required to execute the program with at most n operations per step and fixed communication
latency of { units.
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speedup(n,l) = iia utilization(n,!) = —Tlnﬂ:f:g

£(1,0) is simply the total number of operations executed, i.e.,the area under the parallelism
profile. These numbers tell us the limits to improved performance imposed by data dependencies
in the algorithm itself, modulo influences of instruction scheduling. For example, for 3 iterations of
SIMPLE (20 x20), speedup(100,0) = 97, and utilization(100,0) = 97%. Thus, even on an idealized
machine, i.e.,one with instantaneous commaunication and synchronization, it is not possible to utilize
all the processors all of the time.

4.3 Estimating Speedup on Finite Machines from Parallelism Profiles

The ideal parallelism profile provides a means of estimating potential speedup, as an alternative to
computing numerous t(n,{) under the finite-processor model. To motivate the approach, we observe
that for any 7, if pp(r) < n, we perform all pp(r) operations in one step. However, if pp(r) > n,
then we assume it will take the least integer greater than Eﬂnﬂ steps to perform pp(t) operations.
So far the estimate is conservative, because we do not consider that some of the operations from
the next step may be performed along with the last few operations of pp(r). We must also consider
when tokens will have reached their destination nodes. If! < [H’;&ﬂ] , then computation of pp(r +1)
may start immediately after the last operations for pp(r), because the earliest results from rp(T)
have already arrived at their destinations. Otherwise, we must wait { steps from the start of the
first n operations of pp(r) to begin computing pp(r + 1). This estimate is optimistic, for consider
if all the operations of pp(r + 1) depended on the last operation performed for pp(r). If we assume
that dependencies are uniform, we have

t(n,0) = > max(i,

=1

5 =2, 1)

where #(o0,0) is the length of the critical path. Figure 13 shows the speedup curves derived in
this manner for SIMPLE.* The points in the figure show the speedup measured under the finite-
processor model for various settings of n and I,

Our estimate of #(n, !) tends to be conservative, as explained above. We can partially account for
the dynamic instruction scheduling capability of dataflow machines with the following, somewhat
optimistic formula.

t{c0,0)
t(n,l) = TZ:=1 ma.x(l,l,ppir)).

Finite processor execution gives $(1000, 0) = 2,763 and ¢(100,0) = 15,176, while our estimation
technique shows them to be 2,551 and 15, respectively. Figure 14, shows the speedup and utilization
curves for SIMPLE, estimated from the ideal parallelism profile using formuja 1.

For realistic architectures the latency is determined by the depth of the processor and storage-
controlier pipeline, as well as the number of stages in the communications network, which is expected
to grow as the log of the number of processors. We have avoided drawing curves where { is a function
of n because the appropriate constants are unclear, but suggest that we should consider fairly large

*The data for this figure was generated using an earlier version of the compiler (with fewer optimizations).
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latencies. At the same time, since the data comes from an artificially small problem size, we should
consider a fairly small number of processors, and extrapolate to realistic problem sizes on more
Processors.

5 Parallelism and Speedup With Program Partitioning

In characterizing and analyzing the inherent parallelism in programs above we have taken the view
that all operations are treated equally. In effect, this models a scenaric where any operation can
execute on any processor. In practice, there are numerous reasons to require that a collection of
operations should execute on the same processor. Advocates of pure dataflow have suggested that
this can reduce communication requirements(l], simplify resource management, tag manipulation,
and handling of loop invariants[3], and allow for more efficient processor pipelines{17]. Advocates of
hybrid von Neuman /dataflow approaches suggest that collections of operators executing on a single
processor should be collapsed into a sequential program serving as a kind of “macro” operator{11,
18, 14]. Two natural places to partition programs to form such collections are code-block boundaries
i.e., instances of a loop or user-defined function, and iteration boundaries. Although we do not
consider it here, one could imagine partitioning the program to minimize the number of arcs crossing
the cut, ignoring program structure. Below we consider the amount of parallelism present under
the constraint that no more than one operation in each code-block instance (or each iteration) can
execute per step.

Two subtleties must be made clear. Let us call a collection of operations which are constrained
" to execute on one processor a task; it may be a code-block invocation or a single iteration. A task
denotes a unit of distribution of work. We allow an unbounded number of concurrent tasks and
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Figure 14: Speedup and Utilization for Simple (3 iterations, 20 x 20).

tasks do not compete for processing resources. Within each task operations are scheduled fairly, as
in the finite processor model, based on availability of data; instructions are not statically ordered.
Scheduling of operations within different tasks is entirely independent, except as dictated by data
dependencies. Any number of tasks can be active concurrently, and in a single step an operation
is processed from each task that has any enabled operations. In this way, we are isolating the
effects of intratask scheduling constraints without introducing additional effects due to mapping
tasks onto a fixed set of processors. The parallelism available under this model can be viewed as
an upper bound on that available under hybrid approaches. It should be stressed that within a
task, instruction are scheduled according to dataflow firing rules; if a schedule of operations within
each task were determined at compile time, the critical paths would probably increase substantially
beyond what we show here due to inability to mask memory and communication latency. Below
we consider two levels of granularity in partitioning program execution into tasks: code-block level
and iteration level.

5.1 Parallelism Under Different Task Granularities

The code-block invocation provides an expedient boundary for partitioning. There are enough such
invocations in most programs to yield a sufficient number of tasks for distribution among many
processors, and code-blocks form natural boundaries of localized activity. A finer grain partitioning
treats each iteration of each loop as a task. We can characterize the inherent parallelism of the
program under each task granularity through parallelism profiles generated on an unbounded-
processor task-oriented ideal machine, subject to the following specifications:
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¢ Unit time per operation,

o At most one operation per step per task,
o Unbounded number of tasks per step,

e Zero communication delay,

Unbounded resources.

“Fair” (FIFO) scheduling within each task,

Figure 15 shows the ideal parallelism profiles of 1 iteration of SIMPLE 32 x 32 under the
instruction level finite-processor model and under the two task granularities [15]. Note these profiles
all show operations per step, so the areas under the curves are the same. While the peak parallelism
is reduced by factors of 21.5 and 74 from instruction to iteration and to code-block granularity, the
more telltale critical paths are lengthened 8.4 and 32 times, respectively, so the average parallelism
is 1/8 and 1/32 that under the ideal instruction level model. These factors represent the loss in
potential parallelism arising from the intra-task scheduling constraints.

5.2 Speedup under different task granularities

In estimating speedup in a finite-processor task-oriented model we place a bound on the number of
operations per step, but not on the number of tasks. Since the task-oriented parallelism profiles the
number of concurrently enabled operations in each step (subject to intra-task scheduling constraints
in addition to data dependencies) speedup can be estimated from these parallelism profiles using
Formula 1, taking ! = 0. Figure 16 shows the estimated speedup from parallelism profiles of
SIMPLE 32 x 32, 50 x 50, and 64 x 64. Note that for an n X n mesh the plateau in the curves of
code-block-level partitioning indicates that approximately n-fold parallelism is available.

It is difficult to estimate the effect of latency from the parallelism profile, because different
amounts of latency should be charged for inter-task and intra-task communication. To this end,
we develop a finite-processor task-oriented ideal machine with the following attributes.

e At most one operation per step per task,

¢ bounded number of tasks per step,

¢ Unit time per operation,

o “Fair” (FIFO) scheduling within each task,

¢ “Fair” (Round-robin) scheduling amongst tasks with enabled operations,

¢ Zero communication delay for tokens between operations within a task,

» Fixed communication delay for tokens crossing between tasks or to or from I-structures,

¢ Unbounded resources.
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Under this finite-processor task-oriented model we observe the speedups shown in Figure 17
on SIMPLE 32 x 32 for the three levels of granularity and latency of 0, 10, 20, and 40 units for
non-local tokens. The instruction level versions experience this latency on every token. Code-block
level versions experience it only in transfer of arguments and resuits, and in I-structure requests.
Still, since I-structure operations constitute roughly 25% of the instruction mix[10], the latency
is significant. Iteration level versions experience additional latency on values circulated across
iterations. Therefore, we expect that for sufficiently high latency, the reduction in speedup due
to latency may be greater than that due to intra-task scheduling constraints. Indeed, at ! = 10
instruction and iteration level versions cross at roughly 200 processors. At ! = 40 instruction level
falls below code-block level. However, we must note that the crossovers observed here occur at high
latency relative to the number of processor, at a large number of processors given the problem size,
and ignoring internal latency due to processor pipelining. More realistic scenarios are studied in
detail in a companion paper[2].

5.3 Asymptotic Speedup of Programs under Different Partitioning Granulari-
ties

While the techniques presented here allow us to analyze applications specified in full detail, the
evaluation has been limited to artificially small problem sizes. We would like to extrapolate these
results to larger problem sizes, on potentially larger machines. To do this we observe certain trends.
Consider once again the effects of partitioning granularity in SIMPLE. We observed in Figure 7
that the behavior of the program is nearly periodic; there is very little useful overlap between
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iterations.> Thus, we can easily extrapolate to more iterations. Changes in the size of the mesh
are more interesting.

The following table shows the average parallelism for one iteration of simple with various mesh
sizes under the three granularities. Figure 15 represents the middle column. Loocking across the
columns we see that the average parallelism changes with problem size.

[Mode [ 10x 10 [ 16 x 16 [ 32 x 32 | 50 x 50 | 64 x 64 |
Instruction | 178 361 922 1584 2108 |
Iteration 19 40 110 199 270
Code-block 8 14 26 46 59

To get a better idea of the trends, we consider the ratio of average parallelism, which effectively
normalizes the problem size, giving the following table.

Ratio 10x 10 | 16 x 16 | 32 x 32 50x50|64x64|

Instruction / Code-block 22.3 27.8 32.9 35.2 35.7
Instruction / Iteration | 9.9 9.0 8.4 8.0 7.8
Iteration / Code-block ||  2.25 3.1 3.9 4.4 4.6

Here the trends are more apparent. The loss of parallelism under code-block granularity becomes
significant as the problem size increases. However, the loss of parallelism under iteration level
decreases. This reflects inner loops, which tend to be small, becoming more dominant. Indeed,
we see that the ratio of average parallelism in iteration versus code block granularity grows faster
than instruction versus code-block granularity. This suggests that iteration level granularity is even
more attractive for large problem sizes. These results are highly dependent on problem structure,
however, and should consider carefully as in [10].

6 Conclusion

We have presented a method for quantifying the parallelism in real programs developed in the
context of a dataflow model, but generally useful. It allows programs to be studied in full detail,
without biasing their behavior by implementation constraints. This allows us to draw a clear
distinction between the parallelism inherent in a program and the speedup achieved under a specific
implementation. We have presented two methods for deriving upper-bounds on potential speedup
and presented data on how speedup is effected by latency and intratask scheduling constraints.
Studies using the techniques presented here have substantiated our belief that large programs
employing traditional algorithms exhibit “sufficient” parallelism when coded in a dataflow language
for machines of reasonable size. Moreover, this work brings us closer to answering questions of the
form, "Does this program have sufficient parallelism for a machine of n processors?”, considering
the characteristics of the program and the characteristics of the machine. Certainly, we would like
to verify these predictions on real machines. A companion paper(2] examines the observed speedup
on a detailed simulation of the MIT Tagged-Token Dataflow Architecture as a first step.

*A companion paper shows that there is, in fact, a hazardous kind of overlap beiween iterations, but that this can
be removed.
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