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Abstract

A method for assessing the benefits of fine-grain parallelism in “real” programs is presented.
The method is based on paralielism profiles and speedup curves derived by executing dataflow
graphs on an interpreter under progressively more realistic assumptions about processor re-
sources and communication costs. It is shown that programs, even using traditional algorithms,
exhibit ample parallelism when parallelism is exposed at all levels, i.e., within expressions,
across nested loops and function calls, and in producer-consumer relationships on individ-
ual elements of data structures. Since we only consider dataflow graphs compiled from the
high-level language Id, the bias introduced by the language and the compiler is examined. A
method of estimating speedup through analysis of the ideal parallelism profile is developed,
avoiding repeated execution of programs. It is shown that fine-grain parallelism can be used
to mask large, unpredictable memory latency and synchronization waits in architectures em-
ploying dataflow instruction execution mechanisms. Finally, the effects of grouping portions
of dataflow programs, such as function invocations or loop iterations, and requiring that the
operators in a group execute on a single processor, are explored.

1 Introduction

The high-performance computing community has engaged in a long-standing debate on the proper
“granularity of parallelism” for multiprocessors {24]. Coming from a mind-set of migrating sequen-
tial programs to complexes of sequential machines, one tends to view sequential execution as fast
compared to the time required for communication and synchronization. It is observed that as the
logical partitions of a program are made smaller the amount of external communication increases
and this can offset the advantage of parallel execution. While this view is basically correct, the
mind-set encourages one to consider only the sorts of parallelism these machines can exploit, and
this can lead to the dubious conclusion that the “useful” parallelism in programs is small. We come
into the debate with the opposite bias — a dataflow model where any two operators can execute

1This research was done at the MIT Laboratory for Computer Science. Funding for this project is provided in
part by the Advanced Research Projects Agency of the Department of Defense under the Office of Naval Research
contract N00014-84-K-0099.



in parallel, unless one actually provides data directly or indirectly to the other, and where no fun-
damental distinction is made between inter- and intra-processor communication. From this view
point, it makes sense to ask how much parallelism is inherent in a program; can machines be built
to exploit this kind of parallelism; and what advantages may such machines hold over currently
available machines. If, indeed, a large class of programs have substantial fine-grain parallelism and
the machines that exploit this parallelism are cost-effective, we can expect tremendous performance
improvements in general-purpose computing.

In this paper, we focus on the first question and develop a methodology for studying inherent
parallelism in programs. Though our methodology is developed in the context of dataflow, we
believe it is applicable to other types of systems as well. Dataflow program graphs provide a
precise description of parallel computation[12]. Arcs indicate data dependence between operations,
and operators not connected by paths in the graph represent opportunities for parallel execution.
In Section 2, we define an ideal execution model for dataflow graphs, which executes all operators
in parallel except as constrained by data dependencies. Based on this model, programs can be
characterized by their parallelism profile, from which critical-path length, average parallelism, and
potential speedup can be deduced.?

Program graphs are generated by compiling Id, a high-level declarative language [20, 7] which
holds the potential of making a dent in the cost of producing application software. In Section 3, we
examine the bias that this introduces and restrict our attention to problems which are comfortably
expressed both in Id and traditional languages. In Section 4, we offer experimental evidence for
our primary claim: parallelism is pervasive, even in programs employing traditional algorithms,
provided that parallelism is exposed al all levels, not only in loops and function calls but even
in producer/consumer relationships which may require synchronization on individual elements of
data structures. We show how failing to exploit certain kinds of parallelism can significantly
increase execution time. We expect that only architectures geared to provide synchronization and
communication efficiently can exploit the fine-grain parallelism in dataflow graphs.

In Section 5, we consider the behavior of programs under the constraint that at most a certain
number of operations can be performed simultaneously. This gives us a way to compute the
potential speedup curve of a program for a finite processor machine. We then consider the impact
of communication latency, showing that as the latency increases more parallelism is required to
achieve a given speedup. Another interpretation of this data is that fine-grain parallelism can be
used to mask large, unpredictable communication latency and synchronization waits, which will
occur in any parallel architecture. To avoid the repeated executions that are needed to generate
the parallelism profiles of a program, a method for estimating the speedup from a single parallelism
profile is also given.

Finally, we introduce program partitioning at various levels of granularity into the execution
model. Since the operators in a partition are not allowed to execute in parallel, the available
parallelism is reduced; Section 6 examines its effects on potential speedup. We also consider the
more realistic scenario in which external communication is expensive, and examine the trade-offs
between the granularity and the speedup.

Throughout this paper we assume that the reader has some familiarity with dataflow; a good
introduction to the MIT Tagged-Token Dataflow Architecture may be found in [5].

2Flsewhere {1} we have presented a detailed account of the fraction of operators that represent the overhead or the
cost of parallel execution. Resource requirements of parallel programs are discussed in [11]. Taken together, these
papers provide a better characterization of the “pseful” parallelism in dataflow programs than this paper alone does.



92 Parallelism Profiles under Ideal Execution

Dataflow is an asynchronous, time-independent model of computation; nonetheless, in order to
characterize the parallelism in dataflow programs, we consider a synchronous execution model with
unit time per operation. Timing assumptions are purely for quantification; we do not exploit any
aspect of synchronous execution in dataflow program graphs.

The parallelism profile for a dataflow graph on a given input is a function pp(t) which gives
the number of operators executed at each step ¢ on an ideal machine. The ideal machine has the
following characteristics:

1. All operators take unit time,

2. Any number of operations can be performed in a step,

3. Communication is instantaneous, and

4. Fach operator executes as early as possible, i.e., as soon as all its input data are available.

This model assumes unbounded processor, storage, and communication resources.

We illustrate the method for generating parallelism profiles through an example. Figure 1 shows
a simplified program graph which computes the inner products of two vectors, A and B, of size n.
Initially, a token for sum, with value zero, is sent to the left switch, and tokens for i, with value
one, are sent to the right switch and the < predicate. The value n and the descriptors for the two
vectors are loop invariants[5], and thus can be considered to be embedded in the graph. Assume
that the value of n is 3. In step 1, instruction 1 (i.e., the operator <) fires, producing tokens with
value TRUE that are instantly available at the control inputs of the two switches. Instructions 2 and
3 fire in the second step and produce tokens carrying the value of sum for instruction 8 and i for
instructions 4, 5, and 6. In step 3, instructions 4, 5, and 6 execute while the token for sum waits for
the other input to instruction 8. The firing of instruction 6 provides input to the predicate and the
right switch. In step 4, the value of sum that has been waiting is added to the result of instruction 7,
while the new value of i passes through the switch. Note that, in step 5 of the parallelism profile,
the second iteration has begun while the first is still active. Execution continues in this manner
until step 14 when a token on the FALSE side of the switch in instruction 2 is produced. The
pattern in steps 4 to 6 covers all 8 instructions and repeats for every iteration. Note, an operator
is executed at the step corresponding to the later of the arrival times of its input tokens.

The step beyond which pp(t) is uniformly zero is called the critical path length, and is denoted
by Teo. Thus, Ts, is the length of the longest chain of data-dependencies in a program. The area
under the curve pp(t) gives the total number of operations executed, and is denoted by 77. The
ratio of these is the average parallelism, P = T /To. The parallelism profile of the inner product
of length 3 is shown in Figure 1. Tt can be seen from it that the critical path length is 12, and the
total number of operations is 27. Note, this describes the parallelism for this particular method
of computing the inner product; it may be possible to achieve greater parallelism with a better
algorithm, but that would be described by a different graph.

3 Generating Dataflow Graphs

Although dataflow graphs provide a precise representation of parallel execution, the utility of the
model is limited by our ability to generate the graphs themselves. We will consider only graphs
generated by a reasonably sophisticated compiler for the language Id{25]. 1d is a functional language,
extended with I-structures[6] to provide efficient array manipulation. A broad class of algorithms
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are easily expressed in Td, although we recognize that it is difficult, perhaps impossible, to express
efficient algorithms for certain types of problems in the current version of Id. This section explores
the implications of the language and the compiler on parallelism profiles.

3.1 Compiler generated graphs

Inner product may be expressed in Id as follows.
DEF ip & B = {1,h = bound= A ;
s =0
IN {FOR j FROM 1 TO h DO
NEXT s = s + A[j] * B[j]
FINALLY = }} ;

The dataflow graphs produced by the Id compiler are based on a fixed set of schemas and rules
of composition which are described in [5, 25]. Very briefly, arithmetic expressions are translated
into acyclic graphs. Blocks, which give names to expressions, are treated as “wiring diagrams” to
compose graphs. Conditional expressions are constructed using switch operators to steer values to
the appropriate arm based on a predicate. Iteration is captured by a loop schema, which permits
arbitrary overlap of iterations unless constrained by data dependencies. User defined functions and
loops are compiled into code-blocks, which are invoked by an apply schema, permitting arbitrary
recursion. (Values which are arguments to an invocation of a loop but are constant over all iter-
atlions are not circulated; instead, they are explicitly stored in a constant area (see [5]) as part of
the loop preamble.) The graphs generated by the Id compiler are determinate and self-cleaning.
Furthermore, graphs are embellished such that each code-block receives a “trigger” to enable op-
erators without any data inputs, i.e., operators all of whose inputs are literals or loop constants.
To facilitate termination detection, all operators that don’t have a natural output, e.g., the store
instruction, are made to produce a “signal” indicating that they have consumed their inputs{25].

The graph generated by the Id compiler for ip, the inner-product program, contains 31 in-
structions. Most of these are for loop set-up and termination detection, and are executed only
once. The graph for ip shown in Figure 2, though stylized, captures the essential features of the
compilation for drawing the parallelism profile. The output of the Id compiler can be executed on
GITA [21], the Graph Interpreter for the Tagged-Token Architecture, which generates parallelism
profile graphs as a part of its runtime statistics reports. As can be seen in the profile in Figure 2,
the compiler-generated graph executes 5 more instructions per iteration than the graph in Figure
1. These additional instructions are generated for tag manipulation and control of loop unfolding,
discussed further in [11]. Graphs generated by the current Id compiler incur roughly 150% overhead
in terms of the number of instructions executed beyond the essential computation, in order to allow
maximal parallelism[1] while preserving determinacy.

3.2 Compiler Optimizations

The Id compiler performs most of the traditional optimizations, including constant propagation,
common subexpression elimination, and code hoisting, plus optimizations which are particular to
functional languages, such as tuple elision and arity analysis. A powerful function inlining capability
is provided to reduce the overhead of function application. The traditional optimizations are very
offective on dataflow program graphs, because of the clean semantics and structure of dataflow
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graphs. Optimizations such as loop fusion and unrolling, and incorporation of algebraic boolean
and relational identities are planned for the future.

Note that in the inner-product example, the multiplications could execute in any arbitrary
order and the sum would still be formed in sequence. In particular, if the select operators incur a
delay in providing data to the multiply because of communication latency, the loop will unfold and
multiple outstanding fetches will be issued, masking the latency. The critical path can be shortened
if the compiler can recognize associative operations, reassociating them into balanced trees. For
this problem, the programmer could also have used a recursive formulation to do a binary tree
summation to achieve the same effect. It is also possible to describe dataflow graphs which combine
arbitrary partial products, in whatever order they happened to be produced, but this will require a
non-deterministic operator. Intentionally, Id has no means for expressing non-determinism; assuring
determinacy under parallel execution is critical in developing correct applications. Still there are
important application areas where non-determinism is essential and extensions to the language are
being considered.

4 Fine-grain Parallelism in Programs

Generally, a given machine can exploit only certain kinds of parallelism. Most machines exploit
parallelism within the instruction cycle through instruction prefetch. Many machines exploit local
parallelism in an instruction sequence by using pipelined execution units. Vector processors (23]
exploit parallelism in simple, inner-most loops. Long-instruction-word machines [8, 13] exploit fine-
grain parallelism within many kinds of loops and possibly in instruction sequences, but generally
do not consider executing completely unrelated loops together. Multicomputers generally exploit
parallelism between large tasks, but little within a task. Only a few machines, the Sigma-1 [15]
and HEP [17] being the most notable examples, have the capability to support parallelism between
producers and consumers of data structures. The dataflow model does not draw a distinction
between different kinds of parallelism; independent operators within an expression are treated in
the same way as the operators within a vectorizable loop or those in large unrelated tasks. In this
section we show how this results in ample available parallelism.

4.1 Non-strict Data structures

Generally, imperative languages compromise parallelism in manipulation of data structures by
requiring a barrier between the producer of a structure and its consumers. Functional languages
with “strict” semantics exhibit a similar shortcoming because data structures are treated as a
single value, and operations which access particular elements of the structure cannot execute until
the entire structure is defined [12]. This prevents asynchronous production and consumption of
structures, much as does barrier synchronization. Our model avoids this limitation through I-
structures, a form of non-strict array which is explicitly allocated and filled, with synchronization
on an element-by-element basis. An attempt to read an element that is not present is deferred
until the element is written, and processed immediately thereafter. To ensure determinacy, an
element can only be written once. Approaches which detect parallelism in sequential programs
are severely restricted by the difficulty of compile time analysis of subscript expressions; with I-
structures no such analysis is required, as dependencies are resolved dynamically. With the help
of the following example, we show concurrent production and consumption of an array which is
produced by summing two vectors and then “consumed” by the inner-product program.
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DEF ip_vsum A B = ip (vsum A A) (vesum B B) ;

DEF vsum A B = {1,h = bounds a;
C = ARRAY (1,h) ;
{FOR j FROM 1 TC h DO
c[il = aljl + B[j1}
INC?} ;

The vsum program implies no restrictions on the order in which the elements of array C are
filled. Furthermore, the iterations of the loop are independent and can proceed in parallel. In most
conventional languages, the best one could hope for is that the critical path length for ip_vsum
would be the sum of the critical path lengths of ip and vsum. In Id, however, vsum can return
the descriptor of C, its result vector, as soon as it is allocated, even before its loop has completed
filling it. ip gets these descriptors and can begin work immediately. Because arrays in Id have
“L.structure” semantics, vsum and ip are automatically pipelined, working in tandemn as producer
and consumer respectively. I-structure operations introduce a minor complication in computing
parallelism profiles. The operator which receives the result of a select operation does so one unit
after either the time of the select or the time of the corresponding store, whichever comes later.

Figure 3 shows the parallelism profiles for vsum, ip and ip_vsum respectively with n = 10. The
critical path is 64 for vsum and the total operations 158. For ip they are 60 and 153, respectively.
In ip.vsum, the individual profiles of vaum and ip are superimposed, rather than strung out in
sequence. The critical path, instead of being 64 + 60, is only 77, even though the instruction count
is 500. The last number is greater than 469 (= 153 + 2 x 158) because of the three procedure calls.
Figure 3 also introduces our notation for ideal profiles: p = co, unbounded operations per step, and
! = 0, zero latency. More realistic models, to be introduced later, are indicated by the particular
values of p and [.

Certainly, loops as simple as these could be made to work in tandem under synchronous execu-
tion, or by loop fusion transformations. However, such approaches break down when the producer
and consumer are large, complex processes with irregular accessing patterns and varying computa-
tional requirements, operating asynchronously under the influence of unpredictable communication
latency due to network contention and other factors. I-structures are still effective in this general
setting.

4.2 Parallelism in Nested Loops

Composition of control structures does not inhibit parallelism in dataflow programs. In contrast,
some approaches exploit parallelism only in outer-most or inner-most loops, or only within a pro-
cedure, or only in spawning a procedure. Id allows loops to unfold and functions to be spawned,
irrespective of the nesting of control structures, constrained only by data-dependencies.

Figure 4 gives the parallelism profile for matrix multiplication of two 16 X 16 matrices by the
traditional algorithm, showing unfolding of nested loops. The upper profile counts all operations,
and the lower profile counts only the fioating point operations. The outer loop spawns 16 concurrent
instances of the middle loop, each of which spawns 16 instances of the inner product. Unfolding
of the inner product depends on the availability of elements of the input matrices. The critical
path length is 291 and the total number of operations is 72,344, out of which 8,192 are floating
point operations. The average parallelism is 249 operations per step. The bell-shape of the profile
arises because loop unfolding causes inner loops to be staggered slightly, and the summation in
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the inner-most loop is done sequentially. The rapid oscillations reflect the cumulative effect of the
variations in parallelism in the inner-most loop. We could spawn the inner loops in a tree, and
perform the summations as a binary tree to reduce the length of the critical path further, but it is
evident that substantial parallelism is present even in the traditional algorithm.
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Figure 4: (p = 00,! = 0) Parallelism Profile for Matrix Multiply (16 x 16)

LU decomposition is the central component of many equation solvers. It involves nesting of
loops and conditionals. An Id program for LU decomposition with partial pivoting is given below.

Def decompose A 1 =
{ D = matrix ((1,n},{i,n));
B = {For k From 1 To n-1 Do
r = find_pivot A;

{For j From k To n Do
D[k,jl = Alr,j1 };

{For i From k+1i To n Do
D[i,x] = -Ali,X] / Alr, kK1 };

Fext A = { A? = matrix ((k+1,n},(k+i,n));
{For i From k+1 To n Do
{For j From k+1 To n Do
A’[i,j] = D{i,k)*D[k,j] + AL(If i==r Then k Else i),j1 ¥
In
A D}
Finally A};
D{n,n] = B[n,n];
In
D};
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Figure 5 shows the parallelism profile for a 16 X 16 LU decomposition (critical path = 1312,
total operations = 35,552). The descending stair-step behavior coincides with our intuition that
after each pivot the remaining portion of the matrix has one less row and one less column.
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Figure 5: (p = 00,1 = 0) Parallelism Profile for LU Decomposition with Partial Pivoting (16 % 16)

4.3 Recursive Data Structures and Loops

One normally thinks of producer/consumer relationships as being between two distinct portions of
a program, but recursive data structures can create such a situation between successive iterations
of a single loop. The example below, based on common relaxation methods, shows such a situation.
In addition, this example demonstrates that a program may have ample parallelism, even though
every loop appears to be a linear recurrence in isolation. The only way to expose this parallelism
is to allow all the loops to unfold together.

DEF wave previous_m =
{m = matrix {((1,n),{1,n));
ml1,i] = previous_m[1,13;
{FOR i FROM 2 TO n DO
m[1,i] = previous_m[1,i]; % Copy left and upper edges
m[i,1] = previous_m[i,1];

% Fill in the rest by averaging
{FOR j FROM 2 TO n DO % with left and upper neighbors
mli,j] = (ali-1,j1 + mli,j-13 + mi-1,j-11 +
previous_m[i,jl) / 4}

}
IN m};

DEF multiwave mesh k = {FOR i FROM 1 TO k DO

11



NEXT mesh = wave mesh;
FINALLY mesh} ;

Computations along the diagonal in wave can be executed in parallel, so a single invocation
of wavefront exhibits a profile which increases linearly as the diagonal grows to O(n) and then
decreases as the diagonal shrinks. Multiple invocations of wave in multiwave generate a plane of
parallel activity, giving the profile with a single peak shown in Figure 6. The other profile in Figure
6 shows the behavior when parallelism is exposed within wave, but barriers are placed between
iterations of multiwave, excluding producer/consumer parallelism. To achieve even this level of
parallelism under more traditional approaches, it is necessary to transform wave to have a much
more complicated control structure; an outer loop traverses the diagonal of the matrix sequentially
and a parallel inner loop computes the elements on the perpendicular diagonal [18].
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Figure 6: (p = o0,! = 0) Parallelism Profiles for Multiwave, 10 iterations on a 16 X 16 mesh

4.4 Large Application Kernels: PIC and SIMPLE

We now discuss the parallelism profiles of the kernels of two large applications. These kernel codes
are of the order of 1000 lines of Id, and are complex enough to make static analysis of parallelism
a very difficult task. However, it is often possible to explain even complex parallelism profiles after
they have been generated, provided one has a good understanding of the application.

Figure 7 shows the parallelism profile for an electrodynamics application (PIC) using a particle-
in-cell approach. The idea is to model the movement of charged particles under the field they induce.
This example shows 4 time steps with 640 particles in 64 cells (8 x 8 mesh ); realistic problems use
1 million particles and 100,000 cells, approximately. For the problem in Figure 7, the number of
operations executed is 1,573,733 and the critical path length is 3,399.
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In PIC, a large amount of parallelism is generated while computing the potential and solving
Laplace’s equation. This particular program uses a multigrid method to solve Laplace’s equation,
which generates the first peak in the parallelism profile. Partially overlapped with this, but gener-
ating a second peak, is the calculation of the fleld and the resultant acceleration of each particle.
Then there is a strong constriction point as the maximum acceleration and velocity are extracted
and Newton’s approximation is used to compute the new time step. Once the time step is deter-
mined, the computation of new particle positions begins, generating substantial parallel activity.
We think, however, that the computation of the new charge density overlaps with the particle push,
while the new time step is being determined. After the second iteration, the behavior is periodic. It
is possible for us to verify the above analysis by tracing operators belonging to a particular function
call.

Figure 8 shows the parallelism profile of the SIMPLE code, a hydrodynamics and heat flow
code that has been studied extensively both amnalytically [9] and by experimentation. A detailed
discussion of the program appears elsewhere [3]. This profile shows 3 iterations of the outer loop of
SIMPLE on a 20 x 20 mesh, while a typical simulation run performs 100,000 iterations on 100 x 100
mesh. The critical path is 1976 and the instruction count is 1,471,374. As can be seen from
iterations 2 and 3, there is no significant parallelism between the outer loop iterations of SIMPLE;
the profile for N iterations can be obtained by repetition of a single iteration’s profile. To show how
the profile changes with the size of the problem, we have drawn the profile for the 32 x 32 mesh in
Figure 9. (Critical path = 1082, instruction count = 1,446,478.)

Hidden in this profile is substantial producer/consumer parallelism, possible only with element
by element synchronization. A total of thirteen matrices are created during each iteration, in eight
distinct phases of the computation. If barriers are introduced between producers and consumers,
the critical path increases by more than a factor of three.

Parallelism profiles accurately capture the inherent parallelism in programs, given the specific
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algorithms employed and the compilation technology. Factors which place additional constraints
in any realistic implementation, such as multiple simultaneous reads to an array component, com-
munication latency, locality, contention, and distribution of work are abstracted away and do not
affect the parallelism profile. Profiles shown thus far provide an upper bound on the parallelism.
Though this bound is not achievable, it still provides insight into the application. For example, it is
noteworthy that the potential parallelism varies tremendously during execution, a behavior which
in our experience is typical of even the most highly parallel programs. But more importantly, we
have come to believe that any large program that runs for a long time on current supercomputers
has sufficient fine-grain parallelism to keep hundreds of processors utilized.

5 Parallelism Profiles on a Finite Number of Processors

Characterizing the inherent parallelism in programs is important insofar as it allows us to infer the
behavior of the program on a realistic machine, i.e., a machine with finite number of processors
and non-zero communication latency. We are unlikely to be interested in the maximum number of
processors potentially active at one time, or the length of the critical path. Even average parallelism
can be a misleading indicator of performance. In this section, we focus on the question of whether
a given program has sufficient parailelism for an p processor machine with latency {. A related
question is what speedup is to be expected as more machine resources are provided.

We present two approaches to characterizing the behavior of programs on a finite number
of processors. The first modifies the ideal machine, i.e., the graph interpreter, to constrain the
program to execute a finite number of operations in each step, and the second estimates potential
speedup from the parallelism profile itself.

5.1 The “Finite-Processor” Execution Model

As the first step towards a realistic execution model, we impose a limit of p operations to be executed
during each step. This represents p processors only in a very abstract sense. We do not assign
activities to processors, but rather choose up to p enabled activities in each step. One can view
it as representing a datafiow system where the mapping of activities onto processors is perfect, in
that there can never be a situation where p operations are enabled, but not all p can be processed
because some are on the same processor. In addition, we introduce communication latency by
assuming that the output of every operator takes I steps to be delivered to its destination.

In our abstract model, we assume that the communication system is highly pipelined, and has
as much bandwidth as is needed. Thus, if an operator can produce a token at every step, the
communication system can deliver them at the destination at every step after incurring an initial
delay of I. Modeling I-structure operations requires care, since a select is a split-phase transaction;
the token produced by the select operator is sent to the I-structure and, once the data is available,
another token carrying the value is sent back to the operator waiting for the result. Thus, the result
of a select is available at the destination operator 2/ 4+ 1 units after the later of the select and
the store for the particular element.

Modeling latency in this manner avoids the issues of network congestion and topology. For
realistic architectures, the latency a token may experience is determined by the number of stages in
the processor and storage-controller pipelines, as well as the number of stages in the communications
network, which is expected to grow as the log of the number of processors. Thus, I and p are really
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not independent parameters. However, we think it is better to estimate ! for a real machine by
taking a weighted average of latencies experienced by tokens taking different paths.

In summary, the (p,l) or the finite-processor non-zero latency machine has the following char-
acteristics:
1. All operations take unit time,
2. At most p operations can be performed in a step,
3. Communication takes ! steps, and
4, Enabled instructions are selected through “fair” scheduling.

Ignoring latency for the moment, the finite processor restriction will not alter behavior of a
program whose parallelism profile is less than p throughout. When the parallelism exceeds p, the
excess enabled instructions are thrown into a pool with the newly enabled instructions, and the
instructions for the next step are chosen from this pool. For example, consider the dataflow graph
and the parallelism profile in Figure 1. Suppose we set p to 2. At step 3, we will only be able to
execute two out of the three enabled instructions (i.e., instructions 4, 5 and 6). Suppose we choose
instructions 4 and 5. Then, the pool of instructions available for step 4 will contain instructions
6 and 7 (instruction 1 must execute after instruction 6). If, instead, we had chosen instructions 3
and 6 at step 3, then the pool for step 4 would contain instructions 1 and 4. In general, the choice
of instructions from the pool at each step affects the finite-processor parallelism profile. However,
the variation is negligible, provided the scheduling policy is fair, defined as follows.

Let S; and S;y1 be the set of operators that execute in the ith and i + 1** steps, respectively,
on the infinite-processor machine. A fair schedule for the finite-processor model is one in which
all operators in S; are scheduled before any operators in S;1;. In the profiles shown below, the
particular fair schedule used by GITA, our graph interpreter, is determined by the way the compiler
numbers destination arcs. It does not, for example, favor operators on the critical path.

The effect of execution on p processors may be visualized by drawing a horizontal line at p on
the parallelism profile and “pushing” all the instructions which are above the line to the right and
below the line. Figure 10 shows the profile for SIMPLE generated under this model with p = 1000,
slightly greater than the average parallelism. The length of the critical path is increased from 1,976
to 2,763.

The effect of latency in the infinite processor model is uninteresting because the profiles are
unchanged, except for gaps of I steps between each of the steps in the zero-latency profile. The
critical path length is simply dilated to (1 + {) X T, where Tt is the critical path length on the
ideal machine.

When there are a finite number of processors, “excess” parallelism, i.e., pp(T) > p, can be
used to mask delays due to latency, assuming dataflow instruction scheduling. Again, consider the
parallelism profile in Figure 1. Suppose we set both p and { to 1. In step 1, we execute instruction
1, after which we must wait one step before executing either instruction 2 or instruction 3. Suppose
we execute instruction 3 at step 3, and instruction 2 at step 4 when the result of instruction 3 is in
transit to its destinations, i.e., instructions 4, 5 and 6. Thus, excess parallelism has been used to
fill the gaps due to latency.

Figure 11 shows two parallelism profiles for 3 iterations of SIMPLE on a 20 x 20 mesh, with
at most 100 operations per step. The top profile has latency [ = 0 while the bottom has latency
! = 10. Note that in this example, the length of the critical path is increased only by a factor of
2 when latency is increased from 0 to 10. These profiles suggest that the program has enough
parallelism to absorb significant latency on 100 processors, if the processors are designed to take
advantage of fine-grain parallelism.
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5.2 Speedup and Utilization

The effective parallelism available in a program under the finite-processor model can be expressed
in terms of speedup and wutilization, as follows. Let t(p,]) be the number of steps required to
execute the program with at most p operations per step and fixed communication latency of {
steps. Recall from Section 2 that 71 is the total number of operations executed, i.e., the area under
the parallelism profile. Therefore, Ty is simply (1,0).

T
p x t(p, 1)

T
speedup(p,l) = t(pll) utilization(p,l) =

These numbers tell us the limits on improved performance imposed by data dependencies in
the algorithm itself, modulo influences of instruction scheduling. For example, for 3 iterations
of SIMPLE (20 x 20), speedup(100,0) = 97, and utilization(100,0) = 97%. Thus, even on an
idealized machine, i.e., one with instantaneous communication and synchronization, we see that it
is not possible to utilize all the processors all of the time. The utilization for this problem drops
to 53% for p = 1000.

The explicitly plotted points in Figure 12 (we will discuss the curves momentarily) show the
speedup measurements, at various settings of p and [, for OLD-SIMPLE, which is the same program
as SIMPLE, but coded in a previous version of Id. (Since procedure calls were strict in old Id,
the potential parallelism in the program is reduced significantly. A direct comparison is difficult
because the compiler for the earlier version used fewer optimizations).

300

Speed Up

200 |

100

0 100 200 300 400 500 N

Figure 12: Speedup in the Presence of Latency for Simple (1 iteration, 32 x 32).

It is possible to derive asymptotes of the speedup curves, by observing that a machine with
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latency I cannot execute the program in less steps than #(co,1), i.e., (1+ ) X Too. Thus,

T; ! L
)= < -
speedup(p,!) tp,) - 1+0xTe 1+1

This shows the trade-off between average parallelism and latency, i.e., we need more parallelism
in a program to achieve the same speedup, if the latency is increased.

5.3 Estimating Speedup from the Ideal Parallelism Profile

Our interpreter, GITA, running on Lisp machines, took several hours to compute each point in
Figure 12. Instead, an estimate of the speedup curve can be made from the ideal parallelism
profile, pp(r). Observe that for any time step 7, if pp(7) < p, all pp(T) operations can be performed
in one step. However, if pp(r) > p, then we assume it will take the least integer greater than
p—(ppﬂ steps to perform pp(r) operations. This is conservative, because it does not recognize that
operations from the T + 1% step may be performed along with the last few operations of pp(7).

We must consider the time at which tokens reach their destinations. A conservative estimate is
to take [p—(%ﬂ] + 1 as the time required to perform the computation in step 7 and communicate its
results. However, this is too conservative to model the behavior of dataflow execution, because we
expect the tokens produced by the first p operations to be in transit while the next p operations of
pp(r) are performed. Thus,ifl < {Pﬂpﬂ] , we assume the computation of pp(7+1) starts immediately
after the last operations for pp(r), since the earliest results from pp(r) are likely to have arrived
at their destinations by this time, with others following in pipelined fashion. Otherwise, we wait
! steps from the completion of the first p operations of pp(r) before computing pp(r + 1). This
estimate is optimistic; consider the pathological case where all the operations of pp(7+1) depended
oun all operations of pp(r). Under our optimistic assumptions about dependencies, we get

0 S (11 [20)]). W

Figure 12 shows the speedup curves derived in this manner. It can be seen that, in spite of
our optimistic assumptions about data-dependencies, our estimate is conservative. We can get a
somewhat more optimistic estimate by dropping the ceiling function.

6 Parallelism and Speedup With Program Partitioning

In characterizing and analyzing the inherent parallelism in programs, we have taken the view
that all operations are treated equally. In effect, this models a scenario where any operation can
execute on any processor. In practice, there are numerous reasons to require that a collection
of operations should execute on the same processor. Advocates of pure dataflow have suggested
that this can reduce communication requirements, simplify resource management, tag manipulation,
and handling of loop invariants[2]. Advocates of hybrid von Neumann/dataflow approaches suggest
that collections of operators executing on a single processor should be collapsed into a sequential
program serving as a kind of “macro” operator (14, 16]. If the hardware is designed properly, then
such “macro” operators can handle the “local state” more efficiently than pure dataflow.
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Let us call a collection of operations which are constrained to execute on one processor a task.
A task denotes a unit of work to be distributed. We allow an unbounded number of concurrent
tasks, and tasks do not compete for processing resources. Within a task, instructions are not
statically ordered by the compiler. Instead, they become enabled based on availability of data, and
are scheduled fairly, as in the finite processor model. The scheduling of operations within different
tasks is entirely independent, except as dictated by data dependencies. Any number of tasks can
be active concurrently, and in a single step one operation is performed from each task that has any
enabled operations. In this way, we isolate the effects of intra-task scheduling constraints without
introducing additional effects due to the mapping of tasks onto a fixed set of processors. The
parallelism available under this model can be viewed as an upper bound on that available under
hybrid von Neumann/Dataflow approaches. If the schedule of operations within each task were
determined at compile time, the critical paths would probably increase substantially beyond what
we show here due to unpredictable communication latency and synchronization waits.

6.1 Parallelism Under Different Task Granularities

Syntax suggests two natural places to partition programs: code-blocks, i.e., instances of a loop or
user-defined function, and, for a finer grain, iterations. Although we do not consider it here, one
could imagine partitioning the program to minimize the number of arcs crossing the cut, ignoring
the syntactic structure of the program.

We can characterize the inherent parallelism of the program under each task granularity through
parallelism profiles generated on an unbounded-processor, {ask-oriented machine with the following
characteristics:

1. All operators take unit time,

2a. At most one operation is performed per step per task,

2b. Operations from any number of distinct tasks may be performed in one step,
3. Communication is instantaneous, and

4. Fair scheduling within each task.

On such a machine, it makes sense to talk of task-pp(T ), or task parallelism profiles. Figure 13
shows the ideal profiles for one iteration of OLD-SIMPLE 32 x 32 under the instruction-level finite-
processor model and under the two task granularities [19]. Note, these profiles all show operations
per step, so the areas under the curves are the same. While the peak parallelism is reduced by
factors of 21.5 and 74 from instruction to iteration and instruction to code-block granularity, the
more important indicator, critical path, increases 8.4 and 32 times, respectively. Thus, the average
parallelism is 1/8 and 1/32 of that under the ideal instruction-level model. These factors represent
the loss in potential parallelism arising from the intra-task scheduling constraints. Within a task,
the benefits of dynamic instruction scheduling are still realized, so these numbers represent the
“hest-case” using coarse-grain parallelism.

6.2 Speedup under different task granularities

In estimating speedup in a finite-processor, task-oriented model we place a bound on the number
of operations per step, but not on the number of tasks. Since the task parallelism profiles show the
number of concurrently enabled operations in each step (subject tointra-task scheduling constraints,
in addition to data dependencies), speedup can be estimated from these profiles using Formula (1),
taking ! = 0. Figure 14 shows the estimated speedup from parallelism profiles of OLD-SIMPLE
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32 x 32, 50 x 50, and 64 x 64. Note that for an n X n mesh the plateau in the curves of the
code-block-level partition indicates that approximately n-fold parallelism is available.
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Figure 14: Speedup of OLD-SIMPLE(32-64) as Computed from Its Parallelism Profiles.

It is difficult to estimate the effect of latency from the parallelism profile, because different
amounts of latency should be charged for inter-task and intra-task communication. To this end,
we develop a finite-processor task-oriented machine model with the following characteristics:

1. All operators take unit time,

2a. At most one operation is performed per step per task,

2b. Operations from no more than p tasks may be performed in one step,
3a. Communication is instantaneous within a task,

3b. Communication requires ! steps otherwise,

4a. Fair scheduling within each task, and

4b. Round-robin scheduling amongst tasks with enabled operations.

Under this finite-processor task-oriented model, we observe the speedups shown in Figure 15 on
OLD-SIMPLE 32 x 32 for the three levels of granularity and latency of 0, 10, 20, and 40 units for
non-local tokens. The instruction level versions experience this latency on every token. Code-block
level versions experience it only in transfer of arguments and results, and in I-structure requests.
Still, since I-structure operations comstitute roughly 25% of the instruction mix[1], the latency
is significant. Iteration level versions experience additional latency on values circulated across
iterations. Therefore, we expect that for sufficiently high latency, the reduction in speedup due
to latency may be greater than that due to intra-task scheduling constraints. Indeed, with { = 10
instruction- and iteration-level versions cross at roughly 200 processors. At [ = 40 instruction-level
falls below code-block level. However, we must note that the crossovers observed here occur at high
latency relative to the number of processors and at a large number of processors given the problem
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Figure 15: Speedup under various task granularities and latencies for OLD-SIMPLE 32 x 32.

6.3 Asymptotic Speedup of Programs under Different Partition Granularities

While the techniques presented here allow us to analyze applications specified in full detail, the
evaluation has been limited to artificially small problem sizes. We would like to extrapolate these
results to larger problem sizes, on potentially larger machines. To do this we observe certain
trends. Consider once again the effects of partition granularity in OLD-SIMPLE. The behavior of
the program is nearly periodic, as there is little useful overlap between iterations.> Thus, we can
easily extrapolate to more iterations. Changes in the size of the mesh are more interesting.

The following table shows the average parallelism for one iteration of OLD-SIMPLE with various
mesh sizes under the three granularities. Figure 13 represents the middle column. Locking across
the columns we see how the average parallelism changes with problem size.

Mode [[10x 1016 x 16 | 32 x 32 | 50 x 50 | 64 x 64 |
Instruction P 178 361 922 1584 2108
Iteration P 19 40 110 199 270
Code-block P 8 14 29 46 59

To get a better idea of the trends, we consider the ratio of average parallelism, which effectively
normalizes the problem size, giving the following table.

3Other work [11] shows that there is, in fact, a hazardous kind of overlap between iterations, but that this can be

removed.

23



{ Ratio [10x10]16x 16 ] 32x32] 50 x 50 [ 64 x 64

Instruction P / Code-block P 22.3 27.8 32.9 35.2 35.7
Tnstruction P / Iteration P 9.9 9.0 8.4 8.0 7.8
Tteration P / Code-block P 2.25 3.1 3.9 44 4.6

Here the trends are more apparent. The loss of parallelism under code-block granularity becomes
significant as the problem size increases. However, the loss of parallelism under iteration level
decreases. This reflects inner loops, which tend to be small, becoming more dominant. Indeed,
we see that the ratio of average parallelism in iteration versus code-block granularity grows faster
than instruction versus code-block granularity. This suggests that iteration level granularity is even
more attractive for large problem sizes.

7 Conclusion

We have presented a method for quantifying the parallelism in real programs developed in the
context of a dataflow model, but the method should be useful in providing insights into other
systems as well. It allows programs to be studied in full detail, without biasing their behavior
by implementation constraints. This allows us to draw a clear distinction between the parallelism
inherent in a program and the speedup achieved under any specific implementation. We have
presented two methods for deriving upper-bounds on potential speedup, and presented data on
how speedup is affected by latency and intra-task scheduling constraints. This work brings us
closer to answering questions of the form, “Does this program have sufficient parallelism for a
machine of p processors?”, considering the characteristics of the program and the characteristics of
the machine. Studies using the techniques presented here have substantiated our belief that large
dataflow programs, even employing traditional algorithms, have “sufficient” fine-grain parallelism
for machines of reasonable size. We have examined the speedup on a detailed simulation of the MIT
Tagged-Token Dataflow Architecture. However, these experiments have necessarily been limited,
due to the enormous space required for even small problem sizes. We run out of space on a stand-
alone TBM 4381 on a 10 % 10 run of OLD-SIMPLE! To gain further insight, it is essential to conduct
experiments on real dataflow machines, such as Sigma-1 {15] and Monsoon [22], which is now under
construction at MIT.

Elsewhere [4] we have argued that efficient synchronization and dynamic scheduling of instruc-
tions are fundamental to general-purpose parallel architectures. Efficient synchronization is clearly
essential to exploit producer-consumer paralielism. Here, we have shown the benefits of such an
approach— by exploiting all forms of parallelism, ample parallelism is made available in most pro-
grams. Further, we have shown that a portion of this parallelism can be “invested” in masking
communication latency, again relying on efficient low-level synchronization. Coarse-grain partition-
ing of programs may be advantageous to reduce communication requirements, but we claim that
fine-grain parallelism is still required within a partition to mask latency. Also, we have tried to
quantify how much parallelism is lost with such partitioning,.

The goal of our research has been to show that dataflow architectures and languages can lead to
general-purpose, programmable, parallel computers. This paper has presented only one aspect of
our efforts to show the viability of dataflow. The programmability of these machines is demonstrated
in [3]. Furthermore, in [1] we have shown that the cost of fine-grain parallelism, measured in
terms of the number of extra instructions executed, is roughly a factor of 2 to 3. Development of
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resource management strategies [10] and construction of what we believe will be a cost-effective,
high-performance dataflow machine are currently underway [22].
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