MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAG

Computation Structure Group

Memo No. 28

CENERALIZED PACKAGE NOTATION

by

Fred Luconi

This memo attempts to define the syntax of a digital system design
language. Many such languages have been discussed in the literature*
Most of these languages represent registers and register transfer
gating as basic to the logic design process. Some are more oriented
towards simulation of the described structure than others,but all tend to
allow easy specificatiom of combinatory logic in terms of Boolean equations
while treating the sequentially operating flip~flop as a special case.
There are several problems with such approaches. First ef all, the
components used in modern design are not AND, OR, NOT-gates and flip-flops
but highly complex combinatorial and sequential cells having several imput
and putput terminals and providing a varielty of functions. Designs must
therefore be transformed either manually or automatically from the design
specification to 2 specification reflecting the technology used. Another
major problem arises if the design specification is to be used as input Lo
a simulator for design checkout. System designs are usually the result of

the cooperating efforts of a team of destigners cach working on a subsystem.

Burnett, G. J., "A Design Language for Digital Systems', M.3. Thesis at
M.I.T.:; August, 1965.

Schlaeppi, H. P., "A Formal Language for Describing Machine Logic, Timing
and Sequencing (LOTIS)" IEE Tramsactions, Vol. Ec-13, pp 439-548; 1963.

Schorr, H., "Computer-Aided Digital System Design and Analysis Using a
Register Transfer Language', IEE Transactions, Vol. EC-13, pp 730-737; 1964,

Proper simulation of any subsystem usuzlly requires some modelling of the
subsystem's environment. Moreover the various compornent subsystems at any
one time may exist in a variety of developmental stages. One may only
exist as an initial functional specification. Another may have been
broken down into a more detailed block diagram representation, while still
another may have been completed and exists as description of interconnected
logical components. To allow subsystems at ecach of these stages of development
to be represented within the same design language and to be "executed" {possibly
concurrently) by a single simulation program is a problem which has been
insufficiently dealt with.

Following the aforementioned arguments we will establish the following
criteria for a design language:

1) The language should be easy and natural to use in the specification
of logic at various stages of development. Yet descriptions must

be precise, unambiguous and organized for machine simulation.

2) The language should be fiexible enough so that components

implemented in future technologies may be used in design.

3} The language must allow designs to be subdivided into subsystems
with specified interfacing. A hierarchical language structure
could allow referencing by name, parts of a system which have

been previously defined.

Generalized Package Notation, GPN

GPN is a notation which involves the writing of 'package” equations
rather than Boolean logic equations and register tramsfer notation. The

basic unit, the package, is considered to be any cellection of logic elements

which are assumed to be grouped together as 2 named entity. Thus a
package can be a single NAND gate in detailed design where ecach HAND
gate represents a separate physical unit. Alternately a package can
be an entire subsystem, e.g., an integrated ecircult, an adder, or a CPU.
Digital systems can thus be described as a network of interconnected
packages.

Associated with every package in A design is & name which can consist

of one or two components as shown:
<Package Name>::= <Type Kames \ <Type Name» . <lnstance Name>

The type name is a designation for ihe particular logical functiom defined
for the package. Examples of type names might be NAND for a nand- gate,
FF for a flip-flop, or ADD for a combinatiomal adder. if more than one
package of a given type is used in a design, then each representative
must possess a separate INSTANCE NAME to uniquely identify it.

All but the most trivial packages will have a number of input/output

terminals. A particular terminal can be referenced by the following notation.

<Terminal Name> 1:= <Package Name> : <Terminal Designation>
For example, a type FF flip-flop might have the following package input/output

designations:

FF.4l

H O o W "

Future reference to this particular package would appear as FF.41. Reference
to the "true"-output of this package would appear as ¥F.41: T

The simple package equation is a specification of the input to a particular
package. The package name is written on the left hand side of an equal sign
and the right hand side contains the list of input signals and the particular
terminal to which each signal is commected. Formally a simple package equation

can be defined as follows:

«Bimple Eg>» ::= <Package Name>» =

{ ¢<Terminal Designation> (<Terminal Name> {, ¢Terminal Name> }*) }ik
Note that several signals may be conmected to a single terminal such as at a
common-collector tie point.

Figure 1 shows a three-bit binary counter along with the corresponding
GPN equatioms. The N type package contains four two-input NAND gates and
the FF-type flip-flops are of the clocked, gated-imput types.

For those who feel that the notation isn't very "graphical” inm its
presentation of informatien, figure 2 defines the identical circuit but
a few syntax changes have been made. +« 15 substitutable for =. Coemmas,
asterigks, and dashes are all interchangeable., For type FF packages, the
terminals have been renamed as follows A 4 set 1, B #set 2, D+ Reset 1,
E + Reset 2. In some sense figure 2 may be more easily interpreted,
tut such changes to the language are simply "'syntactic sugar" and do not
alter the concepts involved. However it is freely admitted that syntax must

be developed carefully if our first criterion is to be satisfied.

A system of simple package equations is not enough to specifly a
design. Since it is our desire to make as many detalls of the design as
explicit as possible, mo assumptions will be made about the operation
of gates, flip-flops or any package type. Rather, the operation of each
package type used in a design must be defined in detail. This definition
is specified in the following format:

define «Package Name> [<list of terminal names>] ",

Specification of
{package operatiog}

end definition s

The specification of package operation may take many forms. If the design
specification only provides a format of communication between designers,
then the specification of gates, flip-fiops, and other hasic building
blocks may only refer teo the circuit type iised. If, however, it is
degired to use GPM equations as direct impub to a simulation routine, then
specification of basic building blocks can take the form of subroutines
for simulating the operation of the elements. A third alternative is to
define a package by a system of package equations.

From the above discussien we can see that a digital system description
appears as a hierarchical structure of packapge definitions. For example,
an adder can be defined in terms of a system of cquatiens using half-adder

packages; the half-adder packages can be defined as a system of equations

using NAND-gates; the NAND-gate packages can be represented as primitives
{subroutines for simulation purposes). Such an adder package can then be
used as simply another package type in the construction of a multiplier.
The hierarchical structure of a digital system description enables
the construction of a relatively simple simulator which need only operate on an
interconnection of comsistently defined packages according to their
definitions. To speed simulation or to allow simulation when not all
subsystems have been designed in detail, package definitions at any level
can be replaced by simple, fast running modelling subroutines. The accuracy
of simulation can be changed by merely altering the definitional subroutines.
Before terminating this discussion of basic GPN with a final example, (see Fig. 3)
a simple embellishment is made to show one of the possible extensions
to the language which simplifies design but removes none of the programmability
of the language. The addition is the iteration statement which is constructed
as follows:

for <integer ident> in <integer> ¢systen of package equaticnss

FF.1
FF.2

FF.3

COUNT

1l

A(FF.1:F),
A(FF.2:F},
A(FF,3:F),

A(COUNT) ,

3-bit Counter

B(COUNT) ,
B(N:JY},

B(N:L),

C(CLOCK), D(FF.1:T),
C(CLOCK), D(FF.2.T),
C(CLOCK), D(FF.3.T),

grock

0)

(1

ey FRA

(F

E{COUNT)
E(N:T)

E{N:L)

B(FF.1:T), C(N.I}, E(N.J), F(FF.2:T), G(N.K)

Figure 1.

FF.

FF.

fad

)

+ C(CLOCK) - Set
Resget
+ C(CLOCK) - Set
Resget
+ C(CLOCK) - Set
Reset

A{COUNT) * B(FF.1:T),
C(N.T),

E(N.J) * F(FF.2LT),
C(N.Kk)

e

e

=

(FF.1:F)
(FF.1:T)

(FF.2:T)
(FF.2:T)

(FF.3:T)
(FF.3:T)

Figure 2.

* Bet
* Reset

* Set
* Resetl

* Set
% Reset

2 (COUNT) ,
2 (COUNT)

2{N:1),
2(N: 3)

2(N:1),
2(N:1L)

Nand Gate

|

Full Adder
CL

A __:;?\ —
1

-
oL

e TN T

T .
1

ol

V|

N 4 Y
%

7

Co

Defipe Add[A, B, S, CI, CO]

A.1 = (Add:A) * (Add:B); - (see footnote)
A.2 = (AddIA) * (Add:CI) * (A.1);
A.3 = (Add:B) * (Add:.CI) * (A1)
Mg = (A.2) * (A.3);
A.5 = (Add:A) * (A 1) * (A.2);
A.6 = {Add!B) * (A.1) * (A.3);
A.7 = (A.4) * (A.5) * (A.5);
A8 = (A 1) * (A.2) * (A.3);

Add:S = A.7;

AddiCO = A.8;

end definition;

If terminal designation is unspecified, any free input terminal may
be assigned.

-10-

36-bit Adder

Define Adder [x, ¥. 213

Add.1 = A(x[1]), B(y¥[11), CI(zero);

for k in 2, ..., 36
Add.k = A(x[k]), B(ylkD), CI(Add.k-1:C0);

for k im 1, ..., 36

Adder:z|[k] = Add.k:5;

end definition;

