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Abstract

The dataflow approach exposes ample parallelism, even in programs where littie attention has
been paid to special parallel algorithms, but the approach may be too successful in this respect. As
more parallelism is exposed, more resources are required. Unless precautions are taken, programs
with tremendous parallelism will saturate, and even deadlock, a machine of reasonable size. We
examine the waiting-token requirements of realistic programs through resource profiles, which depict
the number of outstanding tokens over time under an idealized execution model. The requirements
are shown to be large, regardless of the number of processors executing the program. We develop a
mechanism for reducing resource requirements, called loop bounding, which constrains the unfolding
of loops to control the amount of exposed parallelism, and show its effectiveness. This mechanism
is shown to be a key step towards managing other resources, such as I-structure storage and tags.
Comparisons are made throughout with more conventional approaches to parallel computing, in
order to show that this resource problem is not peculiar to dataflow, even though it may be most
evident in that context.



Resource Requirements of Dataflow Programs

1 Introduction

The dataflow approach exposes ample parallelism, even in programs where little attention has been
paid to special parallel algorithms, but the approach may be foo successful in this respect. As
more parallelism is exposed, more resources are required. Unless precautions are taken, programs
with tremendous parallelism will saturate, and even deadlock, a machine of reasonable size. This
claim is clearly evident in resource profiles presented below which correspond to parallelism profiles
described in a companion paper[4]. We claim that this resource problem arises in any system which
allows dynamic generation of concurrent tasks, although it may be most acute in dataflow models
since parallelism is so aggressively exploited. Ideally, enough parallelism should be exposed to fully
utilize the machine on which the program is executing, while minimizing the resource requirements
of the program. We show that limiting the maximum number of simultaneously active iterations of
a loop is highly effective in reducing the resource requirements of typical scientific programs without
sacrificing performance. The implementation of this idea is based on compiling loop programs into
dataflow graphs with a “loop-bounding” parameter which can be set at run time according to some
policy.

We begin Section 2 by articulating the resource requirements of programs on conventional,
sequential machines and show that certain properties of high-level languages complicate storage
management. We then argue that parallel execution generally requires more storage than sequen-
tial execution. Both concerns must be addressed to support dataflow execution of programs in
a language like Id. Also, since the execution of dataflow programs is usually given in terms of
propagating data tokens through a graph, it is not obvious what resources are needed to execute a
dataflow program; Section 2 relates the resources associated with dataflow programs and compares
these to familiar storage concepts. Section 3 develops the concept of resource profiles, expanding
on the characterization of programs offered by parallelism profiles, and presents data for various
examples. Section 4 introduces a method of controlling resource requirements by controlling the
amount of exposed parallelism, and demonstrates its effectiveness. Section 5 examines broader re-
source management concerns, such as recycling data-structures and other resources within portions
of the program graph.

2 Dynamic Resource Allocation Under Parallel Execution

2.1 Stack-and-Heap Storage Model for Programming Languages

One way to characterize the expressiveness of a programming language is by its storage model.
Among high-level languages Fortran has the simplest storage model. The storage requirement of a
Fortran program is determined at compile-time and does not change during the course of execution.
The static storage model contributes toward the efficiency of Fortran at the cost of expressiveness;
traditional Fortran does not support recursion. Any language that supports recursion needs a stack
allocated storage model to provide storage for activation frames.

Languages such as Algol-60 and its modern derivatives support recursive procedures and con-
sequently, rely on a stack-allocated storage model. However, these languages do not permit data
structures to be returned by a procedure, and the lifetime of an array or record may not be longer
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than the lifetime of the procedure activation that creates it. The reason is that such a data structure
cannot be allocated on the procedure activation stack; a heap-allocated storage model is required
to support dynamic creation of data structures which can be passed around freely. A storage heap
is a directed graph of objects. At the implementation level, a distinction is always made between an
object (a data structure) and its descriptor (a pointer). The storage occupied by a data structure
is not released until it is determined implicitly or explicitly that no part of the data structure can
be accessed. Pointers, on the other hand, are manipulated more like scalar values.

Allocation and deallocation of storage is significantly harder for heaps than stacks. Conse-
quently, all language implementations treat stack storage differently from heap storage. Stacks
are used for procedure activation frames which contain local variables and heaps are used for data
structures accessible from more than one frame.

All modern programming methodologies require a heap storage model, although differences in
operations on data structures permitted in various languages are considerable. For example, in
Lisp, CLU and Smalltalk storage is reclaimed implicitly by a process known as Garbage Collection,
whereas in Pascal and C heap storage is explicitly deallocated by the programmer, perhaps in
recognition of the fact that automatic garbage collection is an expensive and difficult operation.
Functional and other declarative langnages such as Id, Miranda, ML and Prolog invariably require
a heap storage model and insist on implicit storage reclamation. However, heaps in functional
languages are usually acyclic graphs which can be scanned for garbage eollection more efficiently
than arbitrary cyclic graphs.

There are significant differences in storage requirements of programs written according to dif-
ferent methodologies. Generally, a more abstract programming style implies that more storage
management is done by the system and less by the programmer. For example, Functional lan-
guages do not permit updating of data structures and, hence, often require more storage or at least
more storage allocation and deallocation operations than, say, Lisp. Among functional languages
also there are significant differences between those that permit non-strict functions and data struc-
tures (e.g., Miranda and Id) and those that do not (e.g., pure Scheme and ML). Non-strictness
supports a methodology of programming with infinite objects which often simplifies control struc-
tures in programs. In addition, it allows more parallelism to be exposed in programs. In particular,
non-strict data structures allow concurrent production and consumption, and thus require synchro-
nization on an element by element basis. One cost of supporting non-strict data structures is that
the lifetime of data structures is often longer than in strict implementations. Estimating the “real”
storage requirements of programs under automatic storage management is difficult; non-strictness
makes the problem even more difficult.

2.2 Parallelism and Storage

Exploiting parallelism in a program increases it storage requirements and complicates storage man-
agement. The simplest form of parallelism is the introduction of vector operations to replace certain
loops. Consider the vectorization of the following Fortran program for inner product.

SUBROUTINE IP (i, B, X)
DIMENSION A(¥), B(N)
S =0.0
Do 10, I= 1,N
T = A(I) * B(I)
S=5+T



10 CONTINUE
END

Following the recipe given in the literature[14, 17] this would be vectorized by expanding T, a
scalar, into a vector of size N and splitting the loop. The result is shown below.

SUBROUTINE IP (A, B, N)
DIMENSION A(N), B(F), T(W)
DOALL &, I= 1,K

T(I)} = A(I) * B(I)

5 CONTINUE
S =0.0
DO 10, I= 1,¥
S =5+ T(I)
10 CONTINUE
END

Vectorization has clearly increased the storage requirement of the program. However, the sub-
tlety here is that vector T can not be declared locally, because its dimension is determined when
the subroutine is called. It may be introduced in the same manner as A if every call is modified to
pass in a temporary vector, but this requires global analysis. Temporary vectors like T could be
allocated dynamically when the subroutine is called, but this fundamentally changes the storage
model of Fortran. Presumably the compiler sets aside a special common block and uses it for
temporary vectors throughout the program, but it is still unclear how the size is determined.

With the recent availability of commercial multiprocessors, emphasis has shifted to program
transformations that can spread a loop over multiple processors. One approach, developed by the
NYU Ultracomputer group{12] and implemented on IBM’s RP3[15], is to maintain the loop index
variable in shared memory which a processor atomically increments when it attempts to execute
an iteration of the loop. Still, each processor must maintain its own copy of local variables. In
the parallel version of inner-product, each processor could have its own stack frame containing the
local value of I, T and pointers to various arrays, as suggested by Figure 1. Each processor has its
own local data area, in addition to the shared data area, which changes the storage model of the
language in a subtle and significant manner. This approach only supports parallelization of one
loop level. If a loop within a parallel loop were parallelized, an additional level of local data areas
would be required, whereas the storage paradigm is one global address space and one local address
space per processor.

More generally, if subroutines can be spawned dynamically as tasks, which in turn may spawn
tasks, a tree of stack frames is required, not just a stack, and allocation and deallocation is no
longer a simple, constant time operation. Management of trees is only slightly simpler than general
heap management, and multiple tasks can be supported by allocating local variables on the heap as
well[13]. The tricky part is, of course, reclaiming unused storage in the heap, and especially doing
so in parallel. Moreover, parallel execution may require exponentially more storage than sequential
execution, because where the calling depth is n the size of the tree is 2 if each task spawns two
subtasks.

Parallel execution and storage management are related in an even more subtle way involving
names for synchronization points. The easiest way to explain this is by example. Take a Load/Store
architecture like the Cray which is able to issue a memory read and continue to execute instructions
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Figure 1: Tree of Activation Frames Under Parallel Execution

while the read takes place. To do this, a register is used as the target of the read, and instructions
can be issued as long as they do not refer to this register. Clearly, the number of concurrent
read requests is bound by the number of such registers. The register serves as a synchronization
point for two asynchronous events. A similar situation arises with semaphores, locks and other
high level synchronization mechanisms - as more parallelism is exploited, more concurrently active
synchronization points are required.

2.3 Storage in the Dataflow Model

The resources involved in executing a dataflow program are influenced by both the factors dis-
cussed above: a powerful functional language augmented with non-strict arrays and highly parallel
execution. Not surprisingly, this requires a tree of activation frames and a heap. Each user-defined
function and loop in the program is represented by a dataflow graph called a code-block. At any
point an executing dataflow program comprises a tree of concurrent code-block invocations, each
identified by a contezt. Loop code-blocks may unfold allowing many iterations to be active concur-
rently, so the invocation tree can branch with arbitrarily large degree.

Variables in the dataflow program do not denote storage directly, but rather denote arcs in the
graph. While a token is present on the corresponding arc, however, a certain amount of storage is
required to represent the data value. Thus, one measure of the storage requirement of a program
is the number of tokens in existence. We can consider the tokens associated with a context to be
the activation frame for the code-block invocation. However, unlike stack frames which are laid out
statically by the compiler, token storage is typically managed dynamically by the hardware, c.f,,
the description of the waiting-matching store in [1]. Often we distinguish tokens which are waiting
for a partner from those that are not, because the first occupy more crucial storage resources.
Waiting tokens correspond to temporary variables held on the stack, whereas short lived tokens are
more akin to values held in high-speed registers.

I-structures are allocated dynamically and filled by the program and are implicitly reclaimed.
They can be passed into and out of functions, so their lifetime is independent of the code-block
invocation that creates them, Thus, I-structure storage corresponds with the heap in many language
implementations. Element by element synchronization is provided to allow concurrent production
and consumption of structures.



In the remainder of the paper we focus on the token storage requirements of programs, as this
is a critical resource in dataflow machines. Once the token store s exhausted, a dataflow machine
will deadlock. I-structure requirements are, of course, extremely important as well, for generally
large scientific problems are limited by storage for arrays, not temporaries, but as we will show in
Section 5, the techniques for reducing token storage are an essential step toward solving the harder
problem of effectively managing I-structures.

3 Resource Profiles of Dataflow Programs

In a companion paper[4] we developed an ideal model of dataflow program execution where in
each step all enabled operations execute concurrently producing results for the next step, ie.,
unbounded parallelism, unit time operation, and zero communication latency. Relative to this
model we defined the Parallelism Profile of a program to be the number of concurrent operations
over time. Similarly, we can define the Token Storage Profile of a program to be the number of
tokens in existence during each step of the ideal execution.

We again consider the simplified inner-product example. Figure 2 shows the graph (top),
the parallelism profile (middle) and token storage profile (bottom). The token storage profile is
annotated with arc names for each token, represented by the destination node number concatenated
with Jor r as needed. Initially three tokens are input, one carrying the initial value of sum and two
carrying the initial value of i. The < predicate is enabled and fires, producing two tokens, one for
each switch node, to make a total of four. The two switches fire, the left producing a single token
while the right produces three. At this point nodes 4,5, and 6 are enabled and a token is waiting
at the left input to the +. The rest of the token storage profile is obtained employing the dataflow
firing rule and observing that when a node fires the total number of tokens changes by the number
of outputs minus the number of inputs. The maximum of the token profile is the token storage
requirement of the program.l.

Under this ideal execution model the average parallelism approaches 8/3 operations per step,
while the token storage requirement is five tokens. Thus, approximately two tokens worth of storage
are required to support each operation. It is not surprising that the token storage requirement is
proportional to the exposed parallelism, as indicated here, since a certain amount of storage is
required to hold the operands of each of the concurrent activities, although we shall see that the
storage requirements can in fact be worse.

The waiting token profile is similar to the token profile, but more subtle. Note that the token
produced by the left switch must wait until the result of the multiply is available. The data input
to the right switch must wait until the predicate is evaluated. The boolean input to the left switch
must wait for the data input. Stepping through the idealized execution yields the waiting token
profile shown by the thick line in the bottom portion of Figure 2. As these waiting tokens are
architecturally most significant, we focus on waiting token profiles.

This analysis assumed that arrays A and B were available. Suppose instead, that only array A
is available, and the elements of B have yet to be filled in. Select operations against B are deferred
until the stores are performed, but the index variable i continues to circulate causing elements of
A to be selected, resulting in as many as n tokens waiting at the left input to the * node. Tags
associated with the tokens ensure that correct pairing is achieved with elements of B, and when

!This rule can be formalized to give a system of integer linear constraints whose solution is the worst-case token
storage requirement of the graph.[10]
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Figure 2: Graph, Parallelism Profile, and Token Profile for Inner Product




the elements of B are available all the multiplies may potentially execute in parallel, This scenario
is quite similar to the vectorization example discussed above, and pays a similar storage penalty.
Since the summation is still serial, the storage requirement is O(n), while the average parallelism
is constant.

We now present three examples which will be used in the remainder of the paper. First, matrix
multiply using the straight-forward algorithm generates the parallelism and waiting-token profiles
shown in Figure 3 on 16x16 matrices. The Id code appears in a companion paper.[11] The outer
two loops unfold, allowing n? inner products to proceed in parallel for matrices of dimension n, and
the waiting-token requirement is proportional to the amount of parallelism. The parallelism profile
shows a bell shape because each loop spawns instances of inner loops in a staggered fashion. Second,
a hydrodynamics and heat conduction application (Simple) run for eight timesteps on a 16x16 mesh
(see [11, 5] for details) generates the nearly periodic parallelism profile in Figure 4, with a stair-step
waiting-token profile. In this case, the storage requirements are excessive compared to the exposed
parallelism. This example shows eight iterations on a 16x16 mesh; real problems involve 100,000
iterations on a 100x100 mesh. Finally, Figure 5 shows the parallelism and waiting token profiles
of a 2-dimensional Gaussian relaxation for four iterations on a 16x16 grid; the parallelism and
waiting token profiles are both periodic. Again, the waiting-token requirement is proportional to
the amount of exposed parallelism.
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4 Controlling Resource Requirements by Controlling Program
Unfolding

4.1 Excessive Parallelism

While it is to be expected that the storage required by a program would be at least proportional to
the amount of parallelism, since each operation requires operand values, we should consider a more
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realistic scenario where the amount of parallelism that can be exploited is fixed by characteristics
of the machine, i.e., number of processors, latency, etc. It is a serious problem if the potential
parallelism in the program is large compared to that which the machine can exploit and resource
requirements track the potential parallelism. In a companion paper{4] we introduced a finite pro-
cessor execution model as a refinement of the ideal execution model. In each step, a fixed number
of operations may be performed. Operations are selected from the set of enabled operations on a
FIFO basis.

Figure 6 shows the parallelism and token profiles for 16x16 matrix multiply under this finite
processor model with at most 50 operations per step. The number of steps required has increased
to 1,511, and the waiting token storage requirement has not diminished. In fact, it has increased
substantially. We observe that limiting the amount of parailelism that can be ezploited does not
reduce the resource requirement under fair scheduling. To reduce the resource requirement, we must
reduce the exposed parallelism.

The source of parallelism here is the unfolding of loops; the outer loop initiates n instances of
the middle loop, each of which initiate n inner products, for nxn matrices. By limiting the number
of concurrent iterations of various loops we can limit the exposed parallelism. If iterations of the
outer loop were executed serially, the #(n?) parallelism should be reduced to 6(n) parallelism, with
the critical path extended from #(n) to #(n?). Serializing the middle loop should have a similar
effect. The inner loop is nearly serial because of how the inner product is coded.
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Figure 6: (p = 50,/ = 0) Finite Processor Parallelism and Token Profiles for 16x16 Matrix
Multiply

In order to exploit the full parallelism in matrix multiply using Fortran annotated for multiple
processors as outlined in Section 2.2, an inner product would have to be initiated on each of
n? processors, requiring o(n?) storage in stack frames, which is comparable to what we see in
the waiting token profile. In general, it is difficult to exploit parallelism in nested loops with these
approaches, although in this case it is possible with a certain amount of additional control overhead.
If only a small number of processors were available, this would be extremely wasteful, so we might
elect to parallelize only one loop, forcing the other to execute sequentially. Unfortunately, having



done so the program is no longer well-suited to a large number of processors. In addition, the loop
we have chosen to parallelize may have few iterations, depending on the shape of matrices passed
to the matrix multiply routine, resulting in little parallelism. Vectorization is difficult to apply in
this example, because it must work from inner loop outward, but we observe that in order to reduce
the amount of temporary storage introduced it is possible to “strip-mine” the loops, i.e., break a
loop into a loop of smaller vectorized loops.

4.2 Loop Bounding in Dataflow Programs

Under a dataflow approach parallelism can be constrained by bounding the unfolding of loops in a
flexible manner, which does not “compile in” a limit on the parallelism that can be exploited. We
expect the runtime resource management system to handle the differing requirements of large and
small configurations, thus loops are compiled to have bounded unfolding, where loop bound can
be set at the time the loop is invoked. In a dataflow model, the only way to ensure that one event
follows another is to introduce an (artificial) data dependence between the two events. It has been
shown that loops have bounded unfolding under any execution order if and only if all loop variables
are mutually dependent[10]. We can use this result to develop a loop schema with parameterized
unfolding, i.e., no more than some number k iterations, determined dynamically, can be active
concurrently. One such bounded loop schema is shown in Figure 7. A gate is placed on the output
of the predicate, which inhibits new iterations from starting unless a trigger token is present at the
control input to the gate. Initially, k such trigger tokens are provided, and one is consumed each
time an iteration starts. A termination tree detects when an iteration has terminated and supplies
the trigger token which enables another iteration to start. In effect, initiation of a new iteration
is made dependent on the termination of the one k earlier. Exact details of how tags for these
tokens are manipulated and how the graphs are made self-cleaning are beyond the scope of this
paper[9, 7], but we may consider the effect of this mechanism.2

Figure 8 shows the parallelism profiles and Figure § the waiting token profiles for matrix multiply
example under the ideal execution model, with only the outer loop constrained (top), with only the
middle loop constrained (middle), and finally with both loops constrained (bottom). All of these
show greatly reduced waiting token requirements and moderate potential parallelism, making them
well-suited for a machine of say 16 or 32 processors. Which setting of loop parameters will be best
for a given invocation of matrix multiply depends on the shape of the matrices and the availability
of resources.

To see the importance of this technique, we must consider its effect under the finjte processor
model. Figure 10 shows parallelism and waiting token profiles for matrix multiply with instances of
the middle loop bound to allow at most two concurrent iterations and the execution model allowing
at most 50 operations per step. In comparison with Figure 6 the resource requirement has been
reduced to less than 20% while the total number of steps has increased less than 1%. By bounding
all the loops, the behavior of matrix multiply becomes independent of the problem size.

Under a model where iterations are distributed over processors and each processor executes
one iteration at a time, the number of concurrent iterations is effectively bound by the number of
processors. It might be possible to affect a similar mechanism in a dataflow machine, but here we
have articulated control of parallelism without stepping outside the formal model. Any execution

?Bounding loops introduces a degree of strictness in the computational model, and as such changes the semantics
slightly. It is possible to write programs which will terminate only if arbitrarily many iterations can be active
concurrently, but these programs are rather peculiar can could not be written in any conventional language,
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model which treated each inner product as a task and scheduled them fairly would experience
similar resource requirements.

The current version of the Id compiler generates parameterized bounded-loops for all loop code
blocks. If the bound is large enough, no restriction is placed on program unfolding. This is how all
the unbounded profiles in this paper were generated. Profiles with bounded loops are generated by
setting loop bounds for certain code blocks prior to execution.

4.3 Useless parallelism

The profiles for Simple in Figure 4 above raise a more serious concern than the excess parallelism in
the previous example - useless parallelism. The program unfolds, but major portions of it allocate
resources and then wait until data becomes available. The eight iterations of the outer loop are
clearly visible as there is a strong constriction point, where the new time-step is determined, between
iterations. Each iteration has two distinct phases, the first is the hydrodynamics calculation, the
second heat conduction work. Each phase reduces the values in the mesh to a single value used
in determining the time step for the next phase. Thus, each point of the mesh in one iteration
depends on the entire mesh produced in the previous iteration - there is almost no useful overlap
between iterations. The outer loop simply performs a number of time-steps. All eight iterations
unfold, each allocates instances of the mesh, unfolds over the dimensions of the mesh and issue
reads against the mesh of the preceding iteration. As the data is filled in, the deferred reads are
satisfied, and the computation sweeps across the successive iterations. In many applications this

11
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kind of unfolding would expose essential parallelism, but here it serves only to increase the resource
requirements.

Bounding the outer loop of this application eliminates this problem, giving the ideal parallelism
and resource profiles shown in Figure 11. The waiting token requirement is now independent of
the total number of iterations and proportional to the amount of exposed parallelism. The critical
path is only increased by 10% even under the ideal model. For finite processors the difference is
even less, and loops can be further constrained to reduce excess parallelism. Figure 12 shows the
waiting token profiles with the outer loop unbound and bound to 1 under finite processor execution
with 32 operatjons per step and communication latency of 10 units.
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4.4 Inherently bounded loops

In many cases the dependencies within the application create inherently bounded loops. The
Gaussian Relaxation example appearing below illustrates this situation as indicated by the profiles
in Figure 5. The relaxation is performed until a given convergence criterion is met. We have used
the maximum change of any point in the grid relative to the previous iteration; thus, the predicate of
the loops is dependent on every point in the grid. There may be a slight overlap between iterations
because of termination detection, but the useful work of two iterations does not overlap. It is not
surprising that the waiting token profile is periodic and the storage requirement is independent of
the number of iterations. Detecting this situation is important, because it ensures that a small
unfolding parameter will not compromise the performance of such a program, thereby eliminating
one variable in the resource management policy.

def 2D_relax A steps epsilon =

14
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{delta = 2+epsilon
in {while delta > epsilon do
next A = make_matrix (bounds A) (nine_point_stencil 1);
next delta = max_pointwise difference A (next A);
tinally A}};

This example also shows how subtle differences in program structure may have dramatic effects
on program behavior. If the result of the maximization were used in computing the new grid but
did not appear in the predicate, the program would be ill-behaved in the same way as Simple,
If this result were not used in computing the new grid, the behavior would be more like matrix
multiply; all three loops would unfold, generating a wave-front of parallel activity. However, if we
wished to extract more parallelism than indicated by Figure 5, while still testing for convergence,
it would be necessary change the program, allowing a number of iterations between convergence
tests.

5 Broader Resource Management Concerns

5.1 Recycling resources

The loop bounding technique has been introduced as a means of controlling program unfolding
to reduce token storage requirements, but properly generalized it may serve a broader role. In
embellishing the graph to control unfolding, we begin to build resource management into the graph
itself. It can be extremely effective, because it is integrated with the very structure of the program.
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locally by simply recycling them in the graph.

Token storage is one such resource, but another is tag space. The tag carried on a token includes
an iteration identifier so that tokens belonging to different iterations do not interact. In abstract
formulations of dataflow such as the U-interpreter|6], management of tags is completely localized,
but the tag space is arbitrarily large and very sparsely used. Any realistic implementation of this
model must restrict that tag to some fixed size. With bounded loops, iteration identifiers are

Tokens can be assigned to slots in the block at compile-time by coloring the graph so that no
two tokens which could Potentially coexist fall in the same slot. A lower bound on the number
of slots can be found via linear programming, and actually performing the assignment is similar
to sophisticated register allocation schemes.[8] Setting up a loop requires allocating as many such
blocks as the loop bound permits. Determining if a partner is present only requires checking a
presence bit.

We have focused primarily on token storage resources, but loop bounding plays an essential
role in managing I-structure storage as well. Suppose that implicit storage reclamation were imple-
mented by whatever means: mark-and-sweep, reference-counting, volatility regions, or any other.
An I-structure can be reclaimed only when no references to the structure exist. Consider the Sim-
ple program discussed above, In each iteration, thirteen meshes are allocated and filled using the
set of meshes of the Previous iteration. Without loop bounding, the iterations unfold so that all
the versions of the mesh are allocated, and references exist for each. Only as data moves through
the sequence of meshes will any structures be reclaimed. Thus, the I-structure storage profile will
have the same shape as the waiting-token profile in Figure 4. No reasonable machine could sup-
port 100,000 versions of the mesh at one time. With loop bounding, old versions of the mesh are
reclaimed as new one are allocated.

This idea can be carried further to recycle I-structures within the program graph itself. Many
scientific applications successively transform a large, regular data structure to model behavior over
time or to reach some termination criteria. Traditional methods update the structure in place, but
this can be tricky, especially under parallel execution. The Id style is to allocate a new structure
during each iteration and to fill it in. AN of the examples presented here demonstrate this strategy
to some degree. With bounded loops the lifetime of such structures is clearly defined, so they could
be reset and reused. In effect, this provides multiple buffering within parts of the program, without

16



5.2  Controlling unfolding in general

This loop bounding approach to controlling parallelism ig applicable to a restricted class of pro-
grams. For general recursive Programs there is need of similar techniques. The general approach
of intreducing auxiliary arcs to enforce artificial dependencies still applies, but it is less efficient
to implement and less clear kow to apply. Researchers at Manchester University have suggested
that rather than introduce artificial dependencies in the graph, the effect can be achieved by de-
ferring context allocations when the machine appears busy.[16] Unfortunately, deferring a context

of the computation. Assuming all of these were deferred, the outer loop would completely unfold,
making a huge number of requests. Eventually, some deferred request will be serviced and a subor-
dinate code-block invoked, but unfortunately almost all the deferred requests would be useless to
service. Only those from the first iteration, and only the hydrodynamics portion of the first jtera-

in programs would be lost. Combining such heuristics with loop bounding may bring us a long way
toward automatic control of parallelism of dataflow programs in general.

6 Conclusion

generating inordinate resource demands. Some mechanism for controlling parallelism is necessary,
so that enough is exposed to saturate the machine, while minimizing resource demands. We have

analysis is essential to detecting useless parallelism in cases like Simple, and run-time heuristics
based on availability of resources hold potential, A planning strategy based on building resource
ezpressions for portions of programs has been proposed[3]. All three approaches are still sub Jjects
of study.[9]
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