MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

)

Programming Generality and Parallel Computers

Computation Structures Group Memo 287
May 1988

Arvind, S.K. Heller, and R.S. Nikhil

Also appears in Fourth International Symposium on Biological and Artificial
Intelligence Systems, Trento, Italy, September 18-22, 1988.

This report describes research done at the Laboratory of Computer Science of the
Massachusetts Institute of Technology. Funding for the Laboratory is provided in
part by the Advanced Research Projects Agency of the Department of Defense

under Office of Naval Research contract N00014-84-K-0099.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Programming Generality and Parallel Computers
Arvind, Steve Heller and Rishiyur S. Nikhil
MIT Laboratory for Computer Science
May 27, 1988

Abstract

In recent years, many “parallel, general-purpose” computers have become available, using
various interconnections of processors and memories. However, extensions to conven-
tional languages to program these machines have made programming significantly more
complex— a clear regression in software technology. The user now has the additional
problem of partitioning his program into parallel parts, and often this is very machine-
specific. Further, it is no longer easy to write determinate programs, making debugging
a nightmare. In this paper we present an alternative approach. Id is a declarative, im-
plicitly parallel language that simultaneously raises the level of programming and reveals
much more parallelism than is possible with programmer annotations. Determinacy is
guaranteed by the language semantics. We demonstrate this by developing a program in
Id for a non-trivial problem called the “paraffins problem”, and examining the available
parallelism, after the fact.

1 Introduction

Tt is clear that parallelism will be fundamental to computing in the future. In recent years, many
“parallel, general-purpose” computers have become available, using various interconnections of
conventional processors and memories. These machines are usually programmed in conventional
sequential languages (such as FORTRAN, C or Lisp) that have been extended with constructs or
annotations by which the programmer indicates that certain things may be done in parallel. These
extensions are necessary because the automatic detection of adequate parallelism from sequential
programs remains a difficult problem, in spite of recent advances in compiler technology.

If anything, these parallel annotations constitute a regression in the level of programming [10].
The programmer now has the additional task of deciding how to partition his program into parallel
parts. In some cases, it is easy to identify what can be done in parallel— for example, matrix
multiplication has n® unrelated, and hence parallel multiplications. But even then, there is usually
no clear criterion as to how the partitioning should be done (should all »® multiplications be done
in parallel, or should only n? inner-products be done in parallel?) Usually, the decision is based on
machine-specific parameters such as number of processors, task-creation overhead, synchronization
overhead, network topology, efec.

In many (if not most) other cases, where the parallelism is less structured, it may be difficult to
identify and code the parallelism in an algorithm. For example, it is non-trivial for the programmer

®This research was done at the MIT Laboratory for Computer Science. Funding for this project is provided in
part by the Advanced Research Projects Agency of the Departmenti of Defense under the Office of Naval Research
contract N00014-84-K-0099.

Address for all three authors:
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA.
ARPANET addresses: arvind@xx.lcs.mit.edu, heller@xx.lcs.mit.edu, nikhil@xx.lcs.mit.edu

to understand just how much parallelism there is, say, in LU decomposition. Or, consider a vector
product in which one of the input vectors is itself the result of another vector product. There is
much producer-consumer parallelism here, but it is usually not exploited in languages with explicit
parallelism. Whenever this dynamic behavior is difficult to conceptualize and reason about, the
programmer avoids coding it. Explicit coding of such parallelism ofter makes the program non-
modular; for example, the programmer has to code the two vector products together, rather than
calling an existing vector product routine twice.

There is something very strange here. In all these cases, the algorithms, mathematically ex-
pressed, are abundantly parallel. However, when coded into a sequential language, all the paral-
lelism is discarded, and the order in which operations are to be performed is overspecified to the
limit. Now, the programmer (or the compiler) has to reintroduce parallelism into the program, us-
ing annotations. The difficulty in doing this biases our thinking to the point where is a widespread
belief that existing algorithms may not have adequate parallelism, that parallel machines will be
utilized effectively only by designing new algorithms.

. Another serious issue is the potential loss of determinacy. Even though matrix multiplication
is conceptually a determinate computation, if the programmer carelessly used the same variable to
accumulate two inner-products computed in parallel, he is likely to obtain indeterminate behavior.
Such mistakes are very easy to make, and it is notoriously difficult to detect them. Further,
indeterminate behavior is difficult to reproduce, for debugging, because it can depend on input
data and machine-specifics such as configuration and load, and even on the fact that the debugger
is active.

There is already a “software crisis” with sequential machines; writing, debugging and maintain-
ing large, complex programs is very difficult. As we move to parallel machines with significantly
improved performance, we are only going to become more ambitious in the problems we tackle.
Consequently, rather than complicate the programming process, it is even more urgent that we
raise the level of programming.

We recommend an alternative approach to parallel programming. The programmer specifies an
algorithm in Id, a high-level, declarative language [15]. The programmer does not explicitly encode
parallelism; instead, it is implicit in Id’s operational semantics. None of the conceptual parallelism
in the algorithm is obscured. Of course, the implicit parallelism comes with determinate semantics—
a program is indeterminate only if it is deliberately introduced by the programmer for genuinely
non-deterministic computations (e.g., transactions against a shared database).

In Id, parallel components compose in a modular fashion, i.e., producer-consumer parallelism is
exploited automatically. Qur experiments show that there is plenty of parallelism, even in ezisting
algorithms. In other words, while the development of new algorithms is always a worthwhile
and exciting effort, we cannot lay all the blame for a disappointing lack of speedup on existing
algorithms.

In this paper, we demonstrate our approach by developing a program for the non-trivial “Paraf-
fins Problem” (which we explain in the next section). We will concentrate on producing a clear,
high-level program, without any conscious consideration of parallelism. Efficiency issues are tack-
led at the algorithmic level and not at the level of managing resources in some parallel machine.
We will then show experimental results that quantify the parallelism in our solution. Finally, we
comment on the difficulty of coding this problem without Id’s high-level abstractions.

2 The Paraffins Problem

The problem we attack is one that was posed and solved by David Turner in [26]. Paraffins are
molecules with chemical formula C,H2s42, where C and H stand for carbon and hydrogen atoms,
respectively, and n > 0. Carbon and Hydrogen atoms have valence 4 and 1, respectively. Here are
some examples of paraffins:

Methane (CH4) | Butane (C4Hyo) | Iso-Butane (C4Hqo)
H H H HH H H H
H C H H CCGCCH H ¢ C C H
H H H H H H | H
]
H CH
H

The butane example shows that for a given n, there can be many isomers, i.e., distinct paraffins
with the same formula C,Hzn43.

We can describe the structure of paraffin molecules in terms of redicals. Let us pick any carbon
in a paraffin molecule, call it the root— its four bonds are each attached to a radical, which is a
molecule of valence 1, with formula C,Hgpn4+1. The structure of a radical can be defined inductively
as follows:

¢ A hydrogen atom is a radical.
e If r1, r2 and r3 are three radicals, then attaching them to three bonds of a carbon atom— (¢
rl r2 r3)— also constitutes a radical.

Note that this description is not unique. First, the four bonds of a carbon atom are chemically
indistinguishable, so that (¢ r1 r2 r3), (C r2 r1 £3), (C r2 r3 r1), ... are all the same radical. Second,
the choice of the root carbon in a paraffin is arbitrary, so that, for example, ¢ attached to four
radicals CHs, CHa, H, and H is the same paraffin as ¢ attached to-coHs, H, H, and H.! Here are some
examples of different pictorial representations of the same molecule (by convention, we omit the
hydrogen atoms, showing only the carbon “spine”, and place an asterisk to the right of the chosen
root):

C c c C
C«xC C C C CxC C C CxC C
C C
It may interest the reader to note that for this particular cgH4 molecule, there are 108 equivalent
representations.

The specification of the programming problem is this:
“Generate all distinct paraffins containing up to n carbon atoms.”
What makes makes this problem especially interesting is that we do not want the result to contain

multiple representations of the same paraffin. A straightforward solution would be first to pick a
representation for paraffins and enumerate all possibilities containing up to n carbons. Then, we

1Radicals are called oriented, or unordered trees and paraffins are called free trees; see [11] for a general discussion
of these structures, including the equivalence issue.

could group them according to the equivalences described above, and pick just one member from
each group. In fact, Turner’s original solution was coded in this way.

In this paper, we develop a solution that is more efficient in that it never generates any paraffin
that does not belong in the final output. The basic idea is this. We define a “canonical” form for
paraffins such that there is exactly one in each equivalence class. Then, our algorithm will only
generate these canonical representatives.

~ As we develop the solution, we will pay no attention at all to parallelism issues. In the end, we
will examine how much parallelism our solution actually contains.

3 Radicals, Orderings and Canonical Forms

The inductive definition of radicals can be expressed directly in Id:

type radical = H | € radical radical radical ;

This declaration introduces a new data type called radical. It is an example of a union type with
two disjuncts, i.e., objects of type radical are either the constant g, or a data structure (¢ r1 r2
r3), where the three components ri, r2 and r3 are themselves objects representing radicals. The
constants ¥ and ¢ are called constructors, and can be viewed as a “tag” that identifies the data
structure.?

Let us define a function carbons that counts the number of carbon atoms contained in a radical
(we shall also speak of the number of carbons in a molecule as its size):

def carbons H = 0
| carbons (C r1 r2 r3) = 1 + (carbons r1) + (carbons 12} + (carbona r3) ;

which reads as follows: If the argument to the function carbons matches the patiern H, the count is
0. If the argument matches the pattern (¢ r1 r2 #3), the count is 1 (for the carbon) plus the sum
of the carbons in r1, r2 and z3. As in the second clause, a pattern can also introduce names (here,
r1, r2 and r3) for the corresponding components of the actual argument, and these names may be
used on the right-hand-side of the clause. The clauses of a definition are not ordered; we could just
as well have written:

def carbons (C rl r2 r3) = 1 + (carbons r1) + {carbone r2) + {(carbons r3)
| carbons H =0 ;
The patterns must be mutually exclusive (this is checked by the compiler).?
We can define a canonical form for radicals, assuming we had a total ordering on radicals:

e The radical H is in canonical form.
e A radical ¢ r1 r2 r3 is in canonical form if and only if r1 < r2 < r3, and ri1, r2 and r3 are
themselves in canonical form.

2Union types are analogous to “variant records” in Pascal, except that (a) our variants always have discriminating
tags (here H and C), and (b) components of a record (here, three radicals) are accessed by position, not by name.

3Although the clauses with patterns in an Id definition are reminiscent of clauses in a logic programming language
like Prolog, the similarity is only superficial. In functional languages, there are no “logic variables”; pattern-matching
is completely deterministic and does not require unification.

4

How do we define this total ordering? First, a comparison of two radicals will result in r1 < r2,
ri = r2 or r1 > r2. We define a new type containing three constants to represent these outcomes:

type ordering.cutcome = 1t | eq | gt ;

This is, again, a union type, with three disjuncts.*

Here is a function called ordering that computes the relative ordering of any two radicals, based
on the number of carbons they contain:

def ordering H H = gq
| ordering H (C r21 22 r23) = 1t
ordering (C ri11 r12 r13) H = gt

ordering (C rii ri2 ri3) (¢ r21 r22 r23)
{ nc1 = carbons (C ril ri2 ri3) ;
nc2 = carbons (C r2t r22 r23)
In)
if (ncl < nc2) then 1t
else if (nc1 > nc2) then gt
else {case (ordering ril r21) of
To1t = 1t

| gt =gt
} eq = {case (ordering ri2 r22) of
1t = 1t

| gt =gt
| eq = (ordering r13 r23) }}} ;

The first three clauses are straightforward: comparing a hydrogen with a hydrogen, a hydrogen with
a non-hydrogen and vice versa. The fourth clause compares two non-hydrogens, and is written as
a block. A block introduces a nested scope (analogous to BEGIN ... END in Pascal), in which there
are some declarations specifying values for local variables, followed by the keyword In, followed
by the body of the block, which is an expression representing the final value of the block. Here,
two local declarations bind variables nc1 and nc2 to sizes of the given radicals, which are computed
using the carbons function. In the body of the block, the first two lines of the conditional expression
specify that if sizes are unequal, we immediately know the ordering. In the final else clause, the
sizes are known to be equal. The outer case expression recursively determines the ordering of the
corresponding component radicals r11 and r21. If 1t or gt, the ordering is known. If equal, the
nested case expression similarly tests the ordering of r12 and r2t. If these, too, are equal, the
ordering is determined by that of r13 and r23.

The case expression is a fundamental construct in Id, and is used to dispatch on the disjuncts
of a union type. Many other constructs can be expressed using case expressions. For example,
conditional expressions are a syntactic shorthand for case expressions on booleans, i.c.,

if b then el else o2

is equivalent to

{case b of
true = al
| talse = o2}

*Note that union types also subsume enumerated types in Pascal.

Similarly, the clauses in a function definition are a syntactic shorthand for a case expression. For
example, we could have written the carbons function as follows:

def carbons r =
{case r of
H =0
| (C rt r2 r3) = 1 + (carbons ri) + (carbons r2) + (carbens r3)} ;

Here is a useful help-function that uses ordering to check if one radical is less than or equal to
another:

def le? r1 r2 = { o = (ordering rl r2)
In
(o == 1t) or (o == eq) } ;

3.1 More Efficient Representations

Unfortunately, the ordering computation described above is very inefficient! Consider supplying
this function with two arguments that are equal, but deeply nested, radicals. The ordering function
will traverse them both completely, calling carbens at every level. But carbons itself traverses the
entire sub-structure. Thus, we will compute the carbons of an inner radical repeatedly, once for
each carbon above it!

It seems unnecessary to construct a radical first, and then to traverse it again to compute its
the number of carbons. As we build radicals, we can simultaneously count the carbons and “cache™
it at each level in the radical structure itself. To do this, we change our type definition for radicals:

type radical = H | CI int radical radical radical ;

Here, the non-hydrogen structure is augmented with an integer component in which size of the
radical will be cached. The carbons function is now trivial:

def carbens H = {
| carbons (CI nc rl r2 r3) = nc ;

To construct a radical given its three components, we use the following function:

det C r1 r2 r3 = { ncl = carbons r1 ;
nc2 = carbons 12 ;
ncd = carbons r3
In
CI (l+nci+nc2+nc3) rl1 r2 r3 } ;

Finally, we can rewrite our ordering function (it is identical to the earlier version except that we
do not have to call carbons to compute the number of carbons in a radical):

def ordering H H = aq
| ordering H (€I nc2 r21 r22 r23) = it
| ordering (CI nci ril ri12 r13) H = gt
| =

ordering (CI ncl ri1 ri12 ri3) (CI mc2 r21 r22 r23)
if ncl < nc2 then 1t
else if ncl > nc2 then gt

else {case (ordering ril r21) of
1t = 1t

| gt =gt
| eq = {case (ordering ri2 r22) of
1t = 1t

| gt =gt
{ eq = (ordering ri3 r23) }} ;

4 Generating Radicals

The first step in our program is to generate all radicals with n carbons, which we do inductively,
following the definition of radicals. Assume that we have generated all radicals with less than n
carbons. Then, for each triple r1, r2 and z3 such that r1 < r2 < r3 and (carbons r1) + (carbons r2)
+ (carbons r3) = (m-1), we construct the radical (¢ r1 r2 r3) with n carbons.

We will first develop a transparent but slightly inefficient version of the radical generator in
order to familiarize the reader with basic Id constructs. Later, we will analyze this solution to
identify the inefficiencies and produce an efficient solution.

4.0.1 List and Array Comprehensions

Let us first concentrate on the sub-problem of generating a list containing all canonical 3-partitions
nel, nc2, nc3 of a number a, i.e., nc1 < nc2 < nc3 and nel + nc2 4+ ne3 = n. One solution would be
to write it using three nested loops, specified informally below:

“For each nci in the range 0 through u,
For each nc2 in the range 0 through =,
For each nc3 in the range 0 through a,
Such that nc1 < nc2 < ne3
and nc1 + nc2 + nc3 = n,
Let the 3-tuple (nci,nc2,ne3) be in the result list.”

Rather than using loops, we use a more elegant notation called a list comprehension:®

def 3_partitiona m =
{: (nc1,nc2,nc3) || ncl <- 0 to m
k nc2 <~ 0 tonm
k ncd <- 0 to m vhen ncl <= nc2
and nc2 <= ncl
and ncl+nc2+nc3 == n } ;

A list comprehension has the general form {: eBody || generator & ... & generator }. The gener-
ators nest from left to right, like loops. The expression eBedy is evaluated inside the innermost loop
and all the results are collected into a result list. A generator of the form z <- e repeatedly binds
the identifier x to each element of the list o. Here, the expression “0 to »” evaluates to a list of
integers from o0 through a. A filter “shen p” can be attached to any generator, and has the effect of
rejecting those combinations of variables that do not satisfy the predicate expression p. It is also

*Popularized by David Turner in his language KRC [26].

possible to have a generator of the form “x = e”, which merely has the effect of binding identifier x
to the value of e.

A closely related construct in Id is the array comprehension. For example, suppose we wished
to compute an array containing the first n Fibonacci numbers (n > 2). Here is the definition:

tib_array = {array (1,n)
| (11 = 1
| {23 =1
| [j] = fib_array[j-1] + fib_array[j-2]1 |l j <- 3 to n} ;

The prefix “{array (1,m)” introduces the array construct, and declares the array bounds to go from
1 through n. In Id, array bounds are determined at run time but, once allocated, arrays do not
shrink or grow. The phrase “[1] = 1" indicates that, at index 1, the value is 1. Similarly, at index
2, the value is 1. Finally, at index j, for j ranging from 3 to n, the value is the sum of the previous
two components. Each component of the array must be defined exactly once— a run-time error is
detected if the clauses overlap, i.e., if two different clauses attempt to define the same element j.

The ability to define both functions and data structures recursively is a fundamental part of
Id. We say that data-structures are non-strict, i.e., some components may be read while other
components are as yet undefined. Such recursive data-structure definitions are also possible in
non-strict functional languages such as Miranda [25] and Lazy ML [6], but not in strict functional
languages such as SISAL [13], Scheme(20] and SML[14].% Recursive definitions of data-structures
are notoriously difficult to parallelize. Id’s write-once semantics for data structures, along with the
hardware support in dataflow machines in the form of “I-structure” storage allow the programmer
to use such definitions freely. We discuss this issue in Section 7.1.

The generators to the right of the “11” separator in list and array comprehensions have exactly
the same syntax and semantics. Thus, list and array comprehensions are simply two different
ways of packaging the results of the inner loop. Lists are used to create arbitrary length collections
with subsequent linear-time access, whereas arrays are used to create known-length collections with
constant-time access.

Let us try to improve our solution to the canonical partitions problem. We were generating
w3 triples only to discard most of them using the shen clause (actually, more than % of them are
discarded). A little algebra makes it obvious that under the conditions imposed, nci cannot be
more than ¥, nc2 cannot be more than kﬁ-ﬂ, and that nc3 = m - (nci+nc2). Here is a more efficient
solution that directly generates the required numbers:

def 3_partitions m =
{: (nel,nc2,nc3) | ncl <~ 0 to floor (m/3)
& nc2 <~ ncl to floor ((m-ncl)/2)
g nc3 = m- (nel +ne2) };

Since the divisions may produce real-numbered results, we use the function floor to truncate them
back to integers.

®Miranda and Lazy ML achieve non-strictness via a technique known as lazy evaluation, which permits the
manipulation of “infinite” data structures but also introduces some inefficiency in implementation. Lazy evaluation
is entirely unnecessary in this problem, since we are dealing only with finite data structures.

4.1 First Attempt

Let us now look at the inductive step in generating radicals of size n. Let us first assume that we
are given an array radicals such that at each index j < n, radicals[j] contains the ordered list of
radicals with j carbons. This is depicted pictorially in Figure 1, where the L symbols indicate that
the array components are as yet undefined beyond index 3.

radicals nm
o| - "
[| il
1 I am
CH,
2 n nil
o L [4 | nil |
514 (C HHCGH,) (CH CHy CH,y)
n| 1
Figure 1: The radicala array

Here is a function for the inductive step. It generates the ordered list of radicals with a carbons,
assuming it is given radicals with less than n carbons:

def rads_of_size_n radicals n »
{: ¢r1 r2 r3 |l (nci,nc2,nc3) <- 3_partitions (n-1)
& r1 <- radicals{nci]
& r2 <- radicala[nc2] when (le? rl r2}
& r3 <- radicals{nc3] when (le? r2 r3) } ;

The first generator produces the canonical 3-partitions of radical sizes totalling (n-1). The second
generator produces all radicals r1 with nct carbons. The third and fourth generators produce all
radicals r2 and r3 with nc2 and ne3 carbons, respectively, and we ensure canonical ordering using
the when clauses. Finally, we collect together all radicals of the form (¢ r1 r2 r3) into the result list.

All that remains is to package the base step and the inductive step to produce all radicals of
size up to n. Here is a definition of the array radicals with indices 0 through n, such that the j'th
component is an ordered list of all radicals with j carbons:

9

radicals = {array (0,n)
{ [0] = H:mil
| [j] = rads_of_size_n radicals j | j <- 1 to n}

At index 0 (representing radicals with 0 carbons), the array contains a singleton list containing the
radical H, expressed using the notation H:nil. Here, the constant nil is the empty list, and “:” is
an infix “cons” operator that a adjoins an element to a list. At each index j in the range 1 through
n, the array contains the list computed by (rade.of_sizen radicals j).

Note that the definition for the array radicals is recursive, i.e., the array being defined is
itself passed as an argument to rads_of sizen within the array definition. This is a reflection of
the induction, or recurrence relation with which radicals are defined, and relies on Id’s non-strict
evaluation of data structures.

4.2 Critique of rads.of_sizen

Let us concentrate on that fragment of rads_of sizen that produces radicals r1 and r2 in canonical
order (with nct and nc2 carbons, respectively). When nc1 < ne2, we know that r1 < r2, by definition.
It is only at the boundary condition when ne1 = nc2 that r1 and r2 may be in the wrong order.
To protect against this, we used the filter “vhen (167 ri r2)”. The inefficiency is this: we are
unnecessarily performing radical comparisons even when nc1 < ne2.

We can fix this immediately as follows:

def rads_of_size_n radicals n =
{: ¢r1 r2zx3 || (nei,nc2,nc3) <- 3_partitions (n-1)
t rt <- radicals[nci]
& 12 <- radicals[nc2] when (if (ncl == nc?) then {(le? ril x2)
else true)
& r3 <- radicals[nc3] when (if (nc2 == nc3) then (le? r2 x3)
else true) } ;

so that the radical-comparison is done only when nc1 = nc2. This may be worthwhile because the
equality test on the numbers nct and nc2 is likely to be cheaper than the radical comparison.

Another possible fix is this:

def rads_of_size_n radicals n =
{: ¢ 1 r2 ¥3 || (nci.,nc2,nc3) <- 3_partitions (n-1)
& r1 <- radicals[nci]
& r2 <~ if (n¢1 == nc2) then
{: r2temp || r2temp <- radicals[nc2] vhen (le? ri r2temp)}}
alae
radicals[nc?]
&k r3 <- if (nc2 == nc3) then
{: r3 || r3 <- radicals[nc3] when (le? r2 r3)}
else
radicala{nc3} } ;

which brings the equality test outside, i.e., when nc1 # nc2, we directly use the list radicals{nc2];

otherwise we filter the list. But in this solution we generate many extra intermediate lists which
may be difficult to optimize away. :

10

In any case, there is still a lingering inefficiency. Even if the filtering is limited to the case
when nct = nc2, we are still generating many ri1, r2 pairs that are out of order, only to have
them filtered out subsequently. For example, let nct = nc2 = 3. Rt and r2 will be drawn from
radicals[3]. Referring back to Figure 1, each will be bound, in turn, to the values (C H H H C:Hy)
and (C H H CHa CHs). But when r1is (C H K CHs CHy) and r2 is (C H H H C;Hs), they are out of order.
In general, we are generating n? pairs and rejecting half of them.

4.3 Second Attempt

The basic problem in rads.of_sizen is this: when picking a radical r1 from the list radicals{nc1], we
do not keep track of the position in the list that r1 was drawn from. Thus, when we pick radicals
r2 from the same list (i.e., when ne1 = nc2), we pick some radicals from earlier positions in the list,
so that r1 and r2 are not in canonical order.

To correct this, whenever we pick an ri from the list radicals(nc1), we will also keep the
remainder of the list starting at that radical, so that whenever nc1 = nc2, we will pick r2’s from
this remainder instead of the full list radicalslnec2]. In this way, we never pick any r2's that are
earlier than r1.

Similarly, whenever we pick an r2 from a list, we keep with it the remainder of the list starting at

that radical, so that whenever we wish pick r3’s with the same size, we pick it from this remainder
instead of the full list radicals(nc3].

For this purpose, we first define a help-function called remainders that takes a list of radicals:
PayThyTe---
and produces a list of remainders of this list, i.e., a list of lists of radicals:

(Ta, Ths Ty TdyTey - - ')1 (Tb’ PeyTdyTe - ')s (Tc, TdyTe .o °)s "
Then, we can pick r1’s from the heads of these lists, to get rq,r5,7c,..., but for each of them, we
also have available the remainder of the list, from which we can pick r2’s, ensuring canonical order.
For example, when we pick rt to be r., the first element of the third list, we can also pick r2’s from
the third list, to get r.,74,7e,.... Here is the code to generate the remainders list:

def remainders nil = nil
| remainders (r:rs) = (r:rs) : (remainders rs) ;

Note that remainders is actually a general-purpose function— it will work on lists of anything, not
just radicals.

Here is the efficient version of rads of.sizen:

def rads_of_size_n radicals n =
{: Cr1r2r3 || (ncl,nc2,ne3) <- 3_partitions (n-1})
& rl:Tis <- remainders {radicals[act])
& r2:r2s <- remainders {(if (ncl == nc2) then ri:ris
else radicals[nc2])
k13 <~ it (nc2 == nc3) then r2:r2s
else radicals[ne3] }

Note that in this version, we do no radical comparisons at all, i.e., the functions 1e? and ordering,
which were useful for expository purposes, are not really necessary.

Finally, we abstract our definition of the array radicals into a function on a:

11

def radical_generator n =
{ radicals = {array (0,n)
| [0] = H:nil
| [3} = rads_of_size n radicals j || j <- 1 te n}
In
radicals} ;

5 Paraffins from Radicals

5.1 Representation and Canonical Forms for Paraffins

Suppose we chose the following simple representation for paraffins:

type paraffin = ROOT_CARBON radical radical radical radical ;

i.e., a root carbon connected to four radicals. To avoid duplicates, we may impose the condition
that the radicals in a paraffin ROOT.CARBON r1 r2 r3 r4 must be ordered, i.e.,, r1 < r2 < r3 < 4.
Unfortunately, this is not sufficient to guarantee uniqueness of representation, as shown by the
following example:

1. Attach radicals B, H, CH3, and cH3 to a carbon atom to get:

ROCT_CARBON HH (C HHH) (C HH H)

2. Attach radicals 8, #, 4, and CoHs to a carbon atom to get:
ROOT_CARBON HH H (CHHH (CHHH)

Despite satisfying the ordering constraint, both represent the same molecule.

The solution is straightforward— rather than picking an arbitrary root in a paraffin, we define
a unique “center” such that it is “balanced” on all sides.” We define the center of a paraffin with
n carbons to be:

e either a bond with radicals of size % on either side,
s or a carbon atom connected to four radicals such that all of them have size strictly less than 7.

In the former case, we call it a bond-centered paraffin (BCP), and in the latter, a carbon-centered
paraffin (CCP). We leave it as an exercise to the reader to prove that the definition is sound, i.e.,
that the center is uniquely defined, and that every paraffin is either a BCP or a CCP, but not both.

We can express this in the representation of paraffins:
type paraffin = BCP radical radical | CCP radical radical radical radical ;

Having defined unique centers, we can avoid duplicates as follows:

¢ In a bond-centered paraffin (BCP r1 r2), we require that r1 < r2.
o In a carbon-centered paraffin (CCP r1 r2 r3 r4), we require that r1 < r2 < r3 <r4.

"That is, it is straightforward in retrospect. One of the authors (Heller) discovered several possible definitions for
the “center” of a paraffin, based on carbon counts, size of longest carbon chains, etc. We were also assisted in this
direction by hints in some code for this problem that we received from Olaf Lubeck and Vance Faber of Los Alamos
National Laboratories.

Finally, (sigh! need we be surprised?) we discovered that this problem has been discussed extensively by Knuth
[11]. It turns out that it is identical to the problem of finding a unique center for what Knuth calls free trees, i.e.,
trees for which the root is unknown.

12

5.2 Generating Bond-Centered Paraffins

Here is a function to generate all bond-centered paraffins with j carbons, given that we have already
computed the array radicals where radicals[i] contains the list of canonical radicals with i carbons
in canonical order:

def BCP_generator radicals j =
if odd? j them nil
else
{: BCP r1 x2 || ri:rls <- remainders (radicals[floor (j/2)1)
k x2 <- rl:ris } ;

From the definition, we can see that the size of a bond-centered paraffin must be even, so that if j
is odd, the list of BCPs is empty. When j is even, the radicals on either side of the bond must have
% carbons. We need pairs of radicals rt and r2 with this carbon count, but to avoid duplicates, we
need them in canonical order. So, we use the same trick as before— when picking an r1 from the
list, we also keep with it the remainder of the list, so that we can pick r2 from that remainder, thus
guaranteeing canonical order.

5.3 Generating Carbon-Centered Paraffins

As before, let us first concentrate on the problem of generating all canonical 4-partitions nc1, nc2,
ne3, nc4 of a number a, representing the sizes of the four radicals of a carbon-centered paraffin of
size m+1. We know that:

1. nci,ne2,nc3,ncd < 5, by the definition of “center”.
3. ne1 + nec2 + ned 4 ned = m, and
2. nc1 € nc2 € nc3 < ncd, by our canonical ordering.

Under these conditions, it is obvious that:

® nci ranges from 0 to §;
® nc2 ranges from nci to !.:il_c_l;
o Normally, nc3 ranges from ne2 up to B=BSi=BE2 ang

® nc4 = ¥ - ncl - nc2 - ned.
It is clear that nc1, nc2 and ne3 satisfy condition 1, above. Unfortunately, when they are all small,
nc4 can become greater than §. We can avoid generating large nc4’s by imposing an additional
condition on nc3 so that it is always large enough to keep nc4 < J. We ensure that ne3 must be at

least §-nci-nc2. Here is the code to generate the partitions:

def 4 partitions m =
{: (ncil,nc2,nc3,nc4) || ncl <- 0 to floor (m/4)
k nc2 <- nci to floor ((m-nci)/3)
& nc3 <- (max nc2 (ceiling (m/2-nci-nc2)))
to (floor ((m-ncl-nc2)/2))
kncd s a-ncl -nc2 -ncd };

The ceiling function converts a fraction to the next integer.

Assume, again, that we are given the array radicals where radicals(il contains the list of
canonical radicals with i carbons in canomnical order. Here is the function to generate all carbon-
centered paraffins with j carbons:

13

def CCP_generator radicals j =
{: CCP r1 r2 r3 r4 || (ncl,nc2,nc3,ncd) <~ 4_partitions (j-1)

k rl:ris <- remainders (radicals[nci})

& r2:r28 <- remainders (if ncim=nc2 then ri:ris
else radicals[nc2])

k r3:r3a <- remainders {if nc2=anc3 them r2:r2s
else radicals[nc3])

&k ra <- if (ncim=nc4) then r3:r3s

else radicalslnc4] } ;

5.4 The solution to the Paraffins Problem
Here, finally, is the solution to the paraffins problem:

def paraffins_until n =

{
radicals = radical_generator (floor (n/2)) ;
In
{array {1,n)
! [j1 = (BCP_generator radicals j),
(CCP_generator radicais j} 1l j <~ 1 to n}} ;

Because our paraffins are “centered”, we need generate radicals only up to size 5. The result is an
array of pairs of lists. The j’th index of the array contains all paraffins with j carbons, represented
as a pair— a list of bond-centered paraffins and a list of carbon-centered paraffins with j carbons.

6 Parallelism

In our development of the solution, we did not pay any explicit attention to parallelism at all,
concentrating, instead, on correctness and clarity of expression. Let us now turn our attention to
the parallelism issue. Here are some interesting statistics concerning the size of the problem:

n Number of parafins Number of radicals [n Number of paraffins Number of radicals
with n carbons with n carbons with n carbons with n carbons

0 — 1 9 35 211

1 1 1 10 75 507

2 1 1 11 159 1238

3 1 2 12 355 3057

4 2 4 13 802 7639

5 3 8 14 1858 19241

6 5 17 15 4347 48865

7 9 39 16 10359 124906

8 18 89 17 24894 321198

There are some opportunities for parallelism that are fairly apparent. For example, it is clear that
the computation of paraffins of size i can proceed in parallel with the computation of paraffins
of size j, where i # j. Also, for a given size j, the computation of bond-centered paraffins can
proceed in parallel with the computation of carbon-centered paraffins. These would be fairly easy
to express in a language with annotations for parallelism.

14

There is also much producer-consumer parallelism in the program. For example, the computa-
tion of the list radicals(j]1 can begin soon after the initial segments of the lists radicals[il, where
i < j, have been computed. The computation of paraffins[k] can begin soon after the initial seg-
ments of the lists radicals[i], where i < %, have been computed. There is a similar kind of overlap
between radical _generator and 3_partitions, and between CCP_generator and 4_partitions. This kind
of parallelism is difficult to express using explicit annotations.

In Id, all this parallelism is available automnatically to the programmer. Rather than abandoning
the pursuit of parallelism at the iteration or procedure level, the Id compiler goes all the way down
to the level of individual instructions. It is possible to do this a) because of the single-assignment
(functional) semantics of Id, and b) because the synchronization of the producer-consumer is as-
sumed to be done in hardware (as in a dataflow machine), so that the compiler does not have
to worry about it. A program is translated into a dataflow graph, which is a parallel machine
language in which each instruction directly designates its successors (there can be more than one)®
An instruction may also have multiple predecessors, so that a dataflow graph describes a partial
order on instructions. The partial order specifies only data dependencies, i.e., instruction j is a
successor of instruction 7 if and only if the value produced by i is used by j. Because of the lack of
anti-dependencies, aliasing, etc. [17], the translation of Id programs to dataflow graphs is relatively
straightforward.

We can execute dataflow graphs on GITA, our dataflow graph interpreter [16]. In the first step,
we execute the initial instructions in the dataflow graph (i.e., the “roots” of the partial order of
instructions). In each subsequent step, we execute all instructions for which all their predecessors
have executed, and we repeat this until the program terminates. Notice that there is no separate
“program counter” that schedules instructions. Finally, we can plot the “parallelism profile” of
the run, which measures how many instructions were executed at each time step. Because Id and
the compiler do not introduce any dependencies that were not originally in the algorithm, the
parallelism profile is, in a sense, a measure of the inherent parallelism of the algorithm, an “ideal”
reference point against which to measure how much parallelism is actually exploited by a particular
machine.

The parallelism profile for generated by GITA for (paraffins.until 15) is shown in Figure 2. At
the point of maximum parailelism, a little over 1700 instructions were executed concurrently. The
total instruction count was 533,503, and the critical path length (number of time steps in which
the program completed) was 4857 instructions. A detailed interpretation of parallelism profiles is
beyond the scope of this paper; we refer the reader to [2].

7 Conclusion

In this paper we have made the point that for future, general-purpose paraliel programming, we
can kill two birds with one stone by moving to languages such as Id. We can not only raise the
level of programming significantly and guarantee determinacy, but we can also generate code with
abundant parallelism, which is necessary if we are to exploit parallel hardware effectively. Higher-
order functions, non-strictness, list and array comprehensions all play a major role in this, as does
the declarative nature of the language. We will elaborate on these points in this section.

#Which is unlike sequential machine languages, where each instruction has a single successor, and, except in jumps,
the successor is the instruction that follows textually.

15

Number of Instructions Executed

1700

1500

1300

1100

900

T00

500

200

100

e e o e —

1000

2000

4000
Time Step

Figure 2: Parallelism profile for (paraffins.until 15)

16

7.1 Level of Coding: Programming without List and Array Comprehensions

List and array comprehensions constitute a powerful, compact and intuitive notation.® As an

illustration, consider the problem of producing the squares of all integers from 1 to n. Using list
comprehensions, we write:

{: sqr i || 1 < 1 to n}
To write it without list comprehensions, we may use the function map given below:

def map f nil = nil
| map t (x:xs) = (£ x):(map £ x8) ;

Map takes a function and a list as arguments, applies the function to each member of the list, and
returns the list of results. The solution to our problem, then, is:

map sqr (1 te n)

Suppose we wanted the squares of only the even integers from 1 to n. Again, using list compre-
hensions, we write:

{: sgr i {| i <= 1 to n vhen even? i}

To write it without list comprehensions, we need a filter:

def filter p nil a pnil
| filter p (x:xs) = if (p x) then x:(filter p xs)
else filter p xs H

Filter takes a predicate function and a list as arguments, and returns a list containing only those
elements that satisfy the predicate. The sclution to our problem, then, is:

map aqr (filter even? (1 to n))

The solution is not very efficient, because tilter produces an intermediate list that is immediately
discarded after it has been consumed by map. '

Now let us complicate the problem somewhat. Consider the problem of generating the indices
of an n X n matrix, in the order (1,1), (1,2), ..., (1,r), (2,1), (2,2), ..., (n,n). In other words, we are
generating the cross-product of two lists going from 1 to n. Using list comprehensions, it is easy:

{: pair 1 j || i <- 1 ton & j <- 1 to n}

(Here, we have written “(pair i j)” instead of the semantically identical “(i,3j)” in order to simplify
subsequent examples.) Here is a solution that does not use list comprehensions:

{ def £ nil js = nil
| £ (i:i3) js = (map (pair i) js) ++ (£ is js)
In
f (1 ton) (1 tomn) }

*The reader may be interested in parsuing the observation that list comprehensions subsume the SELECT ...
FROM ... WHERE ... construct in the popular relational database query language SQL(1].

17

Here, £ is applied to the two lists going from 1 to n representing the i's and the j's. It recursively
iterates over i’s; at each i, it maps (pair i) over all the j’s. This returns a list (1,1}, (1,2), ..., (i,n)-
Finally, all these lists are appended together (using the built-in append operator “++”} to produce
the final list.

An inefficiency in this solution is due to the append operation. In the expression (et ++ 2),
each sub-expression produces an intermediate list, and these are immediately discarded after the
append operator consumes them. Further, the append involves a linear-cost traversal of the list
produced by et, and this is done repeatedly, once for each i.

Let us complicate the problem further. Suppose we wished to generate the indices of only the
right-upper triangle of the matrix, i.e., (1,1), (1,2), ..., (1,»), (2,2), (2,3), ..., (2sm), (3,3), ..., (n,n).
Again, using list comprehensions, it is easy:

{:pair i j il i<~ 1tonk j < i ten}

The solution without list comprehensions, above, cannot be changed so easily— we cannot simply
replace the second (1 to n) by (i to n). The problem is that here, we need to generate a dependent
or relative cross product, i.e., the list of j’s is defined relative to each i. We can fix the solution as
follows:

{ def £ nil = njl
| ¢t (i:is) = (map (pair i) (i to m)) ++ (f is)
In
f (1 ton)?}

If we wanted to impose a further condition on the desired indices, such as “for only even values of
i+j”, we'd have to introduce a filter:

{ def p i j = even? (i+j) :
def f nil = njl
{ £ (i:is) = (map (pair i) (filter (p i)} (i to n))) ++ (£ is)
In ' .
£ (1 ton)}

The list comprehension solution:
{: pair i j Il i <- 1 ton & j <~ i to n vhen even? (i+j)}

As the number of nested generators and predicates increases, it becomes difficult to continue
this ad hoc process of developing a solution using recursive functions. The reader is referred to
[18], Chapter 7, where a systematic, general method is given to translate list comprehensions. The
method is ultimately powerful enough to eliminate all the intermediate list-building performed by
map’s, filter’s and appends.!® By the time all these optimizations are applied, the program can
become extremely obscure compared to its counterpart using comprehensions.

107¢ is interesting to uote that the optimization amounts to a data-structuring analog of the “continuation-passing
transformation” used in Scheme compilers [23,12]. Rather than returning an intermediate list from map and then
appending it the “rest-of-the-result-list”, we send the rest-of-the-resuli-list in as an extra grgument to map and leave
it to map to attach it to the end of the list that it produces.

18

7.2 Loops and Open Lists

Even if we were to write the obscure solution to the above examples that was “optimal” in the
sense that it produced no intermediate lists, we are still left with a basic inefficiency. The essence
of the problem is this. In all architectures that we are aware of, it is always better if we can express
something using a loop instead of general procedure calls. In many implementations of functional
languages, the compiler automatically implements a certain category of recursive functions, called
“tail-recursive” functions, using loops. Unfortunately, the functions map, tilter, “+” etc. are not
tail-recursive, and hence are not subject to this optimization.

Let us again look at the problem of generating all indices of a n X n matrix in the order specified
above. Consider this solution using a (functional) loop, written in Id:

{ result = nil
In
{for i <= 1 to n do
next result = {for j <- 1 to n do
next result = (i,j) : result
finally result}
finally result}}

In Id, a loop is an ezpression, i.e., it evaluates to a value. The phrase “next result = ¢” binds the
value of e to the identifier result for the next iteration of the loop. The phrase “tinally result”
returns, as the value of the loop, the value of result in the last iteration.

Clearly, this solution is optimal in that it directly creates the result list; no extra intermediate
lists are created. The only problem is: the result list is in the wrong order ((n,n), (n,n - 1), ...,
(1,2), (1,1))! How do we create the list in the right order? We could reverse the direction of the
loops, by saying “for i <- n downto 1 do ...”, but this unacceptable in general because we may
have while loops that cannot be reversed. We could change the list construction in the inner loop
so that, instead of adjoining the new pair to the front of the result list, we appended it to the end:

next result = result + ((i,j):nil)

Unfortunately, this is back to square one— it is very extravagant in space and time, as each append
operation takes order n time and space! We could bite the bullet, produce the answer in reverse
order, and write a subsequent loop to reverse it, but this still doubles the space and time. '

The basic problem is this: there is no efficient way to “grow” the end of the result list in a purely
functional setting. In Id, it is possible to solve this problem by stepping out of the purely functional
subset and using a construct known as “I-structures” [5]. In functional programming languages, it
is not possible to allocate an “empty” data structure and separately fill its slots— a data structure
and its components are always defined simultaneously. I-structures allow this separation, and this
is exactly what we need to solve this problem. At first glance, filling an I-structure slot will appear
to be an ordinary assignment statement, but there is a crucial difference— I-structures slots are
“write-once” locations; we will return to this issue at the end of this section.

We use a technique in Id known as “open lists”.}* A cons cell is a data structure with two slots
(at indices 1 and 2, respectively). A list is a chain of cons cells; in each cons cell, slot 1 contains

Y1gimilar to the technique of “difference lists” in logic programming.

19

an element of the list, and slot 2 contains a reference to the next cons cell in the chain. An open
list is one in which slot 2 of the last cons cell is empty.

We define an open list by a pair of references, one to the first cons cell in the list and the other
to the last cons cell in the list. An empty open list is simply a pair of references to the same cons
cell. We first define some abstractions to manipulate open lists. Assume that we have a function
new_cons_cell that allocates a new, empty cons cell. Here is a function that creates a new, empty,
open list:

def make_empty_ol () = { ol = new_cons_.cell ()
In
ol,0l } :

i.e., is allocates a new cons cell and returns two references to it. Here is a predicate that tests for
the empty open list (where eq? tests if its two argument references are identical):

def empty_ol? (first,last) = (eq? first last) ;

Here is a function that, given an open list and a value, extends the open list by “growing” the tail
of the open list with a new cons cell containing this value, and returns the new open list:

def extend_ol (firat,last) x = { new_last = new_cons_cell () ;
nev_last[1] = x ;
last[2] = new_last
In
first,new_last } ;

The second line in the block is an I-structure assignment that stores z in the first slot of the new
cons cell; the next line is an I-structure assignment that connects the current last cell to the new
last cell. Finally, we return references to the head and to the new last cell. Note that the first cons
cell in an open list is “unused”. It simply acts as a stub onto which we can attach new cons cells
containing the real elements of the list.

Here is a function that, given two open lists, appends them together and returns the resulting
open list:

def append_ol (firstl,last1) (first2,last2) =
if (empty_ol? (first2,last2)) then
(tirsti,lasti)
else
{ lasti1[2} = tirst2[2]
In
firsti, last2 } ;

If the second open list is empty, it simply returns the first open list as is; otherwise, it connects
the end of the first open list to the second open list, and returns the references to the extremities
of this appended list.

Finally, here is a function that, given an open list, “closes” the empty slot at the end using nil,
the empty list, and returns a reference that can be used as a normal list.

def close_ol (first,last) =
{ last[2) = nil
In
first[2] } ;

20

We can now express our matrix index-generation problem in Id:

{ ol_i = make_open_liat () ;
final ol i = {for i <- 1 to n do
ol_j = make_open_list () ;
final ol _j = {for j <- 1 to n do
next ol_j = extend ol ol_j (i,j)
finally ol_j} ;
next ol i = append_ol ol_i final ol_j
finally ol_i}
In
close final_ol_i}

The compiler for Id automatically translates list comprehensions into an open list form (with several
optimizations that avoid unused cells at the heads of open lists, etc.).

A similar translation is, of course, also possible in any sequential language, such as FORTRAN
or Lisp. In fact, a good compiler for a functional language may translate list comprehensions into
von Neumann code of this form. However, a crucial issue is this: Id treats I-structure slots as
“write-once” locations, and this has a major impact on compiling, determinacy and parallelism.

An Lstructure location has extra “presence” bits that indicate whether a value is present or
whether the location is empty. When an I-structure is allocated (e.g., in nev_cons.cell), all its
slots are initialized to the empty state. Note that by “empty” we do not mean nil, the empty
list; rather, “empty” literally means “no value yet” (for semanticists, “empty” is identical to 4,
or “no information”). When a consumer attempts to read an empty slot, it is automatically
suspended until a producer writes a value there, at which time the consumer is automatically
resumed. It is a runtime error to attempt to write a value into a non-empty location. Thus,
Id’s I-structure assignments are “safe”, in that they do not compromise determinacy and, because
they are synchronized automatically, they do not limit parallelism. The presumption of I-strucure
semantics makes compilation significantly easier, as it obviates the concern for introducing explicit
synchronization. I-structure semantics are not easy to simulate in software. The Id compiler
presumes hardware support for presence bits and the automatic suspension and resumption of
processes. Such support is fundamental to dataflow architectures (4]

Suppose there is one function that produces an open list and another that consumes it, and we
wish to overlap their execution. If the consumer overtakes the producer, it will attept to read a
value from the empty slot at the end of the open list. With Id’s I-structure semantics, the consumer
will automatically suspend until the producer has extended the list further.

7.3 Comparison with Other Functional Languages

Many of the language features of Id that we have presented here are also available, to varying
degrees, in other functional programming languages.

ML [14] and Scheme {20], while containing some imperative features, have subsets that are
pure, higher-order functional languages. Common Lisp {22}, too, can be used in this way, though its
distinction between function values and other values complicates higher-order programming. These
languages have strict semantics which, while simplifying compilation, also reduce their expressive
power in not being able to define data structures with recurrences. Strict semantics, if retained in
parallel versions, would also limit producer-consumer parallelism,

21

Miranda [25) (and its predecessors SASL [24] and KRC [26]) and LML [6] are purely functional
languages with non-strict semantics, which is achieved vig lazy evaluation. The choice of lazy
evaluation gives the programmer a very powerful tool— the ability to use “infinite” data, structures
freely. Unfortunately, lazy evaluation also induces a significant performance penalty even on those
programs that do not need it.

Lucid is another “dataflow” language [27], though the dataflow graphs used to interpret Lucid
Programs are at a much too abstract leve] to be considered a machine language. Lucid omits
higher-order functions, but like Miranda and LML, uses infinite data structures and relies on lazy
evaluation.

To date, compilation of the languages cited above has focused on sequential machines,

SISAL is a parallel functional language [13]. It deliberately omits higher-order functions in
favor of simplicity, and has strict semantics, though a special construct called “streams” can be used

language of dataflow graphs [21]. Most current SISAL research focuses on compiling to existing
multiprocessors, except at Manchester, where the target is the Manchester dataflow machine,

Amongst all these languages, Id is the only one that we are aware of that gives an efficient
treatment of arrays.

Researchers at Yale (8,7]) and University College London (19] are actively investigating the
parallel implementation of higher-order, non-strict functional languages. Their preference is for
lazy evaluation, which, as we have pointed out before, can induce a performance penalty even
on programs that do not require it. The compiler uses information from strictness analysis and,
perhaps, programmer annotations, to alleviate this. Programs are partitioned explicitly by the
compiler into paralle] tasks, each of which is compiled to conventional von Neumann code. A
major issue is deciding how to do this partitioning [9].

In contrast, Id has evolved, from the beginning, with implicit, fine-grained parallelism in mind
[3]. Each feature in Id was included only after it was understood how to compile it to dataflow
graphs. The compilation of Id continues to be a major research effort. In this, we are assisted by
the abundant parallelism arising out of Id’s declarative nature. Our target is to be competitive
with the fastest languages available on parallel supercomputers, We believe that, simultaneously,
Id will also raise the leve] of programming.

References

(1] Database Language SQL. American National Standards Institute, 1986. (also International
Standards Organization Document ISO/TC97/SC21/WG3 N117.

22

(2] Arvind, D. E. Culler, and G. K. Maa. Assessing the Benefits of Fine-grained Parallelism in
Dataflow Programs. Technical Report CSG Memo 279, Computation Structures Group, MIT
Lab. for Computer Science, 545 Technology Square, Cambridge, MA 02139, March 1988.

[3] Arvind, K. P. Gostelow, and W. Plouffe. The (preliminary) Id report. Technical Report 114,
Dept.of Information and Computer Science, University of California, Irvine, CA, 1978.

[4] Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow Architec-
ture. In Proceedings of the PARLE Conference, Eindhoven, The Netherlands. (LNCS Volume
259), Springer-Verlag, June 15-19 1987.

[3] Arvind, R. S. Nikhil, and X. K. Pingali, I-Structures: Data Structures for Parallel Computing,.
In Proceedings of the Workshop on Graph Reduction, Santa Fe, New Mezico, USA, {Springer.
Verlag LNCS 279)., pages 336-369, September/October 1986.

[6] L. Augustsson and T. Johnsson. Lazy ML User’s Manual Technical Report (Prelimi-

" nary Draft), Programming Methodology Group Report, Department of Computer Science,
Chalmers University of Technology and University of Goteborg, 5-421 96 Goteborg, Sweden,
January 1988.

[7] B. Goldberg and P. Hudak. Alfalfa: Distributed Graph Reduction on a Hypercube Multipro-
cessor. In Proceedings of the Workshop on Graph Reduction, Santa Fe, New Mezico, USA,
(Springer-Verlag LNCS 279)., pages 94-113, September/October 1986.

(8] P. Hudak. ALFL Reference Manual and Programmer’s Guide. Technical Report YALEU/
DCS/ RR-322, Second Edition, Department of Computer Science, Yale University, October
1984,

[9] P. Hudak and B. Goldberg. Serial Combinators: “Optimal” Grains of Parallelism. In Proceed-
ings of Functional Programming Languages and Architectures, Nancy, France, pages 382-399,
September 1985. Lecture Notes in Computer Science 201, Springer-Verlag, Berlin.

[10] A. H. Karp. Programming for Parallelism. IEEE Computer, 43-57, May 1987.

[11] D. E. Knuth., The Art of Computer Programming, Volume 1/ Fundamental Algorithms. Ad-
dison Wesley, Reading, Massachusetts, 1973.

(12] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. ORBIT: An Optimizing
Compiler for Scheme. ACM SIGPLAN Notices, 21(7):219-233, July 1986. (Proceedings of the
SIGPLAN 86 Symposium on Compiler Construction).

(13} J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J. Glauert, P. Hohensee, and
I. Dobes. SISAL Reference Manual, Technical Report, Lawrence Livermore National Labora-
tory, 1984,

(14] R. Milner. A Proposal for Standard ML. In Proceedings of the 1984 ACM Symposium on Lisp
and Functional Programming, pages 184-197, August 1984,

[15] R. S. Nikhil. Id (Version 88.0) Reference Manual. Technical Report CSG Memo 284, MIT
Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, March 25
1988.

23

(17] D. A. Padua and M. J. Wolfe. Advanced Compiler Optimizations for Supercomputers. Com.
munications of the ACM, 29(12), December 1986.

(18] S. L. Peyton Jones. The Implementation of Functiongl Programming Languages. Prentice
Hall, 1987.

(19] §. L. Peyton-Jones, C. Clack, J. Salkild, and M. Hardie. GRIP - A High Performance Archi.
tecture for Parallel Graph Reduction. In Proceedings of the $rd. International Conference on
Functional Programming and Computer Architecture, Portland, Oregon, September 1987,

[20] J. Rees and W. Clinger. Revised® Report on the Algorithmic Language Scheme. Technical
Report, Massachusetts Institute of Technology Artificial Intelligence Laboratory, Cambridge,
MA, 1986.

[21] S. Skedzielewski and J. Glauert. [FI: An Intermediate Form for Applicative Languages. Tech-
nical Report M170, Lawrence Livermore National Laborator » Livermore, Californja, July 31
1985,

[22] G. L. Steele Jr. Common Lisp: The Language. Digital Press, Billerica, Massachusetts, 1984.

[23] G. L. Steele Jr. RABBIT: A Compiler for SCHEME, Technical Report AFTR-474, Mas-
sachusetts Institute of Technology Artificial Intelligence Laboratory, Cambridge, MA, May
1978.

[24] D. A. Turner. A New Implementation Technique for Applicative Languages. Software: Prgc.
tice and Ezperience, 9(1):31-49, 1979.

(27) W. w. Wadge and E. A. Ashcroft. Lucid, The Dataflow Programming Language. Academic
Press, London, 1985.

(28] P. Wadler (editor), Arvind, B. Boutel, J. Fairbairn, J. Fase], P. Hudak, J. Hughes, T. Johnsson,
R. Kieburtz, J. Launchbury, R. S. Nikhil, S. Peyton Jones, M. Reeve, and D. Wise. Report on
the Programming Language Haskell, Technical Report, July 1988.

24

