<.
o o

Computation Structures Group

Academic Staff

Arvind (Group Leader)
J.B. Dennis
R.S. Nikhil

Research Staff
G.A. Boughton P.R. Fenstermacher

Graduate Students

P.S. Barth R.A. Iannucci J.S. Onanian

S.A. Brobst A. Iyengar G.M. Papadopoulos
D.E. Culler S. Jagannathan S. Sharma

B. Guha Roy C.F. Joerg R.M. Soley

S.A. Gupta V. Kathail K.R. Traub

S.K. Heller G.K. Maa E.W. Waldin

J.E. Hicks

Undergraduate Students

V. Chaudhary F. Lam C. Seow
D. Chiou E. Rothfus A. Shaw
C. Colby S. Sanghani V. Singal
A. DeHon J. Santoro S. Zamani
C. Fabian

Support Staff
S.M. Hardy N.F. Tarbet

Technical Staff

J.P. Costanza R.F. Tiberio
Visitors
F. Hutner (Siemens, West Germany)
A. Konagaya (NEC, Japan)
T.S. Mohan (Indian Institute of Science, Bangalore, India)

L. Snyder (University of Washington, Seatile, Washington)

Computation Structures Group

1 Introduction and Overview

The main focus of the group continues to be in exploring the datafiow approach as a means
to achieve the goal of high-performance computers that are general-purpose and easily pro-
grammable. Qur research centers on

o the development of Id, a high-level, implicitly parallel language with a powerful functional
subset;
¢ an optimizing compiler to translate Id programs to dataflow graphs, a parallel machine
language, and
¢ multiprocessor architectures to execute dataflow graphs efficiently.
This year, we produced a reference manual for a major new version of Id (version 88.0). We
have made substantial progress on the compiler for this new version— a major subset of
the language has been implemented, and it is already in regular use within the group. We
expect the complete language to be implemented by late summer 1988.

Work continues on the development of the Monsoon dataflow processor and the intercon-
nection network, The designs for several key components have been tested and we expect to
have a single-processor prototype running by the end of summer 1988,

We have been studying various systems issues (involving the language, the compiler and
the architecture) such as resource management, delayed evaluation, persistence and input-
output. We have also studied the coding of various applications in Id ard their behavior

under parallel execution.

In support of the primary thrust of the group, we have also studied other interpreters and
compilers for functional languages, other parallel languages, and hybrid von Neumann/da-
taflow architectures. '

We began work on Project Dataflow, in which we hope to build a real datafiow computer
system (over 2000 MIPS) over the next three years, based on Id and the Monsoon processor
architecture, Extensive experimentation in the last few years has convinced us that

¢ The basic dataflow instruction-scheduling mechanism is capable of utilizing hundreds of
processors effectively, and a processor architecture based on this mechanism is viable,

¢ Resource management is a major issue, both in dataflow and other models, and can-
not be studied until we can run programs of realistic size. Existing software simula-
tors /emulators are incapable of handling adequately large problems.

The planned work on Id (and its compiler) involves extensions to make it a complete pro-
gramming language in which all the software of the machine (including systems programs)
will be written. We expect to devote substantial energy to the development of very power-
ful, systematic optimizations in the compiler. Though we will initially build single-node and
16-node machines, the ultimate goal is to build a 256 node machine (a node includes proces-
sor and I-structure memory). We are developing the multistage interconnection network for

2

the machine concurrently. The processor and network hardware wili be built on the VME
boards, using Sun workstations as hosts for maintenance, bootstrapping and diagnostics.

Preparation for Project Dataflow occupied much of our time. We gave several presenta-
tions to DARPA visitors, and our proposal for federal funding, which was rewritten several
times (in part because of changes and uncertainties at DARPA) was finally submitted in
March. We expect to build the 16-node machine within a year and, with the help of an
industrial partner, to build the 256-node machine over the next three years. In March, we
organized an Industrial Partners’ Meeting to outline our approach. It was attended by rep-
resentatives of about 20 companies. Follow-up negotiations continue, and we hope to come
to some agreements by the end of summer 1988.

In the past year we also invested extra effort in presenting our work to the the research
community. In addition to a one-week summer course at MIT in July 1987 (about 30
students), professors Arvind and Nikhil taught week-long courses at the Indian Institute of
Science, Bangalore, India (over 50 students) and at Los Alamos National Laboratories, New
Mexico (about 25 students).

2 Personnel

In the past twelve months, we were fortunate to have four visitors from diverse backgrounds
and technical perspectives. Akihiko Konagaya spent a full year with us studying advanced
computer architectures and developing his understanding of logic languages. He returned in
January to NEC Corporation, where CHI-II, the machine in the design of which he had a
major role, had just been launched as a commercial product.

In September, Professor Larry Snyder of the University of Washington joined the group to
spend his sabbatical year exploring to what extent theoretical models of parallel computation,
such as the P-RAM model, reflect real machines. He is also working on the development of
a new taxonomy for parallel architectures.

At mid-year, T.S. Mohan arrived under the auspices of the United Nations Office of
Program Execution to spend a six-month study leave. He is a member of the staff of the
Computer Centre of the Indian Institute of Science, Bangalore, India.

Most recently, we have been joined by Franz Hutner, an engineer at Siemens, Munich,
who will spend four months working with the Monsoon design team under the leadership of
Gregory Papadopoulos.

After more than forty years as student, teacher and mentor at MIT, Professor Jack Dennis
departed at the end of the Spring term to do further research in dataflow computation at
RIACS in Moffett Field, California.

3 Work on Programming Languages

3.1 Id

In March, we released the reference manual for a major new version of Id (Version 88.0) [12],
which we refer to as Id 88. The functional subset of Id is now comparable to other modern
functional languages in that it has a polymorphic type system, user-defined algebraic types,
pattern-matching on user-defined types, abstract types list comprehensions, etc.

A unique feature of Id 88 is the array comprehension which, we believe, is the first viable
solution to the “array problem” in functional languages. Previous functional array primitives
have been difficult to mmplement with adequate eficiency and parallelism, for which reason
they have usually been omitted. For example, one such set of primitives is

nev.array n v and update a j w

The first function creates an array of size n containing v everywhere, and the second creates
a new array that differs from array a only at index j, where it contains ». These primitives
usually result in far too many unnecessary copies of an array. Another popular primitive is

make_array n f

which makes a new array of size n containing £(3) at each index 3. But even this primitive can
result in awkward and/or inefficient programs, as we have argued in [3). For these reasons,
we had advocated the inclusion of I-structures into the language, despite the fact that they
destroyed referential transparency (I-structures still retain determinacy and parallelism).

This study of arrays and I-structures led us to the design of array comprehensions, which
remain functional {and therefore referentially transparent) while addressing all the objections
raised about previous array primitives. The general form is an expression:

{k_nD_arrays (11,u1), vony (1N, ul)
| CeIndex1] = eValuei || generatori
I ...

{ [eIndexM] = eValueX || generatorM }

This simultaneously creates k arrays of the same shape. Each array is n-dimensional, with
the j’th dimension having lower and upper index bounds 13 and uJ, respectively. Each
clause in the expression specifies a region of the arrays. A generator specifies a sequence of
environments; for each environment, eIndex computes an index value, and eValue computes
a k-tuple, specifying the contents of the slot in each of the k arrays, at that index. For
example, here is the definition of an array containing Fibonacci numbers:

A = {array (0,1)
1 [5]1 = 1 Il 3 <-0tot
P 031 = ACj-21 + alj-1] | Jj<-2toN}

Array comprehensions are compiled into very efficient code using loops and I-structures
internally. A small extension to the array comprehension syntax also handles accumulators,
such as histograms and hash tables.

In the future, we believe that Id will evolve into a layered language. The innermost layer
is a functional language that is competitive with other modern functional languages. Being
referentially transparent, programs in this subset of the language are subject to powerful
program transformations (optimizations) and formal reasoning. They are also determinate,
and can be compiled to highly parallel code.

While this innermost, functional layer of Id is syntactically similar to other modern
functional languages, there are some essential differences. Unlike ML [11] (and Scheme
(14]), Id has non-strict semantics, which gives tremendous additional expressive power and
parallelism. Unlike Miranda [16], Id does not espouse normal-order evaluation, which is one
way of implementing non-strict semantics, and which can have tremendous overhead and
can seriously inhibit parallelism.

The next layer adds primitives that may not be refererentially transparent, though they
retain the parallelism and determinacy of functional langnages (e.g., I-structures, general
accumulators). Another layer introduces explicit non-determinism through the use of a
construct called a manager. Using this layer, we can code shared resource management
problems (e.g., databases). Finally, the outermost layer will include primitives for fine control
of the machine, including imperatives for I/0, to set memory, registers, etc. It is expected
that we will be able to code most application programs within the innermost (functional)
layer, thus revealing the most opportunities for optimization and parallel execution.

3.2 Haskell, a new “standard” functional programming language

For some time now, many researchers in functional programming have felt the need for a
common language to facilitate communication and interchange amongst themselves. There
are three widely-known functional languages— Scheme, ML and Miranda. However, Scheme
is unacceptable because of its strict semantics, lack of a type-system, and lack of equational
syntax. ML is unacceptable because of its strict semantics, and Miranda because it is a
commercial product and cannot be used for language research.

In September 1987, at the Functional Programming and Computer Architecture confer-
ence at Portland, Oregon, a committee of about 12 researchers from the U.S. and Europe was
formed to design a new, common functional language. Professors Arvind and Nikhil are on
the committee and have spent substantial time participating in its discussions, particularly
on the topics of arrays, parallel pattern-matching and overloading. The new language is to
be called Haskell, after Haskeil Curry, the logician. Though Haskell was originally intended
to be merely a codification of “well understood” concepts in functional languages, our dis-
cussions have revealed that many of these concepts are not so well understood after all. The

‘result is that Haskell will be as much a new, experimental language as any other. The Haskell
report is expected in July 1988. Whether Haskell is successful or not, the effort has already
paid off handsomely in that it has significantly deepened our own understanding of several

issues, and has had an effect on the current design of Id. Until the research community has
had some experience with Haskell, we will continue to use Id as our own research vehicle.

3.3 Other language-related work
3.3.1 Optimal Interpreters for the \-calculus

Vinod Kathail is investigating optimal interpreters for the A-calculus and functional lan-
guages based on the A-calculus. An optimal interpreter

1. always reduces an expression to normal form if the expression has a normal form;

2. does 50 in a minimum number of reduction steps.

Thus, an optimal interpreter respects the operational semantics of the language, and, more-
over, is in some sense the most efficient implementation.

If we restrict ourselves to the usual string representation of expressions, then it is im-
possible to design an optimal interpreter for the A-calculus [4]. We have strengthened this
result to show that it is also impossible to design an interpreter that approximates the be-
havior of an optimal interpreter. Specifically, we have shown that there exists no reasonable
interpreter that reduces an expression to normal form in k X m number of steps where k is
a fixed constant and m is the minimum number of steps needed to reduce the expression to

normal form.

However, practical implementations of Programming languages rarely use the string rep-
resentation of expressions. Graph reduction has now become a standard technique for im-
plementing lazy functional languages. It is possible to design an optimal interpreter using
a graph representation of expression, and a formal specification of such an interpreter was
given by Lévy [10].

Most interpreters for the A-calculus are based on one of the three models—substitution
model, environment model, and the third model, which we call suspended substitution or
functions on environments model. The first two are well known. The third model is a
new development and occurs in various forms in the literature, the most elegant of which
is Curien’s strong CCL [5]. We have argued that these models are inherently inadequate to
serve as the basis for an optimal interpreter.

We have designed an optimal interpreter for the A-calculus. The interpreter is based on a
new technique for evaluating expressions, which uses features from all the three models. The
graph representation used by the interpreter has a special type of node, called conditional
node. Conditional nodes are used to postpone the copying of shared sub-expressions. We
have implemented the interpreter, and verified its correctness and optimality for a number of
test cases. The details of the interpreter, as well as proofs of its correctness and optimality,
appear in Kathail’s forthcoming thesis [7].

3.3.2 Symmetric Lisp

Suresh Jagannathan has continued his investigation of Symmetric Lisp, a parallel program-
ming language in which naming environments are first-class objects. The representation of
programs is identical to the representation of data: to specify a computation, one writes a
data structure. This structure can be examined and used as a component of other structures,
yet it has the semantics of a naming environment— it defines a scope and can also be used
to affect the evaluation of other expressions. Non-strict evaluation is a fundamental part of
the language: a program’s components may be examined even as its other elements continue
to evaluate.

A logically concurrent interpreter has been implemented on a TI Explorer and a for-
mal operational semantics for the language has been defined. Some of the applications
that have been written include implementations of Simula and Smalltalk-style inheritance,
hash-tables, various graph algorithms, priority-queues, resource managers, mutually recur-
sive stream programs, and a digital-logic simulator. Besides the ability to model a diverse
range of conventional sequential and parallel program structures, the language also appears
useful in expressing more novel program constructs; among the applications currently under
investigation are real-time monitors and simulators. These monitors are formulated as pro-
grams structured as lattices of communicating processes; the internal state of any process
may be freely examined by any other process in the lattice. We are also currently investi-
gating the design of a parallel monolingual computer system using Symmetric Lisp as a base
language.

The viability of any implementation of the language depends upon the ability of the
compiler to minimize the need to perform run-time name lookup. A major focus of our
research is to develop compile-time optimizations and heuristics to lessen the burden on the
run-time system in resolving symbolic names into base language addresses. Symmetric Lisp’s
support for fine-grained, expression-level parallelism makes it well suited for implementation
on a dataflow system. We, therefore, intend to concentrate our efforts in the coming year
on defining and implementing the extensions needed to a dataflow instruction set (e.g., the
instruction set of the TTDA) to support the language efficiently.

3.8.3 Functional Databases

Michael Heytens, a graduate student in Professor Penfield’s CAF group, and Professor Nikhil
have been investigating the synthesis of databases and functional languages. The basic
approach is to treat a database as a persistent environment binding names to arbitrary
values. Queries are expressions evaluated in this evironment, and an update is a declarative
specification of a new environment, based on the old. Our work has focused on the design of
the update language, and is inspired by the I-structure operations of Id. We are also building
a prototype implementation.

4 Work on Compilers

4.1 Progress on the Id Compiler

In Spring 1988 James Hicks extended the Id compiler to handle Id 88. The compiler now
handles algebraic types, abstract types, list and array comprehensions and pattern matching
in procedures and case expressions. The general algorithm for compiling pattern matching,
developed by Wadler and described in [17}, was extended for use in a parallel language. The
pattern matching expressions are compiled so that there is no top-to-bottom or right-to-left
bias in the strictness of the expression and there is no nondeterminacy in the choice of clause
to execute. The only extension that has not been implemented is the compilation of top-level
constant definitions. This will require a great deal of change in the way GITA invokes code

blocks as well as in the Id compiler.

Based on Professor Nikhil's type-inference system for Id 86, Shail Aditya developed the
type inference system for Id 87 and installed it with help from James Hicks. The system
provides full Milner style type inferencing of complete programs, Further work remains
on upgrading the type system to Id 88, incremental type inferencing, and supporting user-
defined overloading of procedure names.

4.2 Compiling Sequential Code from a Non-strict Language

We have recently become interested in developing good sequential or partially sequential
implementations of Id. Such implementations would make Id available (and interesting) to a
wider user community, since there are now many MIMD machines available that are based on
von Neumann processors. This would also be relevant to new hybrid von Neumann/dataflow
architectures, such as the one developed by Iannucci. Id’s non-strict semantics makes this
compilation problem interesting because it may not be possible to order instructions totally
at compile time; the correct order can vary dramatically with the input data.

Sequential implementations of non-strict languages have been achieved by other re-
searchers. They invariably rely on lazy evaluation, in which a subexpression is not evaluated
until known (at run-time) to contribute to the final answer. By scheduling each subexpres-
sion separately, a lazy interpreter automatically deals with the varying orderings required
by non-strictness, but with great overhead. Existing compilers optimize this by attempting
to emulate the lazy interpreter.

Kenneth Traub has just completed a doctoral disseration on an alternative compilation
strategy that separates non-strictness from laziness, through the analysis of data dependence.
We achieve a much cleaner separation between considerations of correct object code behavior
and code-generation for specific architectures. Non-strict object code is described abstractly
as a set of sequential threads, each internally ordered but whose relative order with respect
to other threads is determined at run-time. Translation of a source program into sequential
threads involves first determining the constraints on thread construction imposed by the
language semantics, and then partitioning the original program into threads based on these

constraints. From there, the abstract threads may be converted into concrete object code
for a particular target architecture, given the execution mechanisms it provides.

The method is developed in the context of both sequential implementations and parallel
implementations where the object code is partially sequentialized. It is also shown how lazy
code can be generated from the same framework.

5 Work on Architectures

5.1 Monsoon

The Monsoon processor has moved closer to realization on several fronts. Gregory Pa-
padopoulos completed the low-level microcontrol architecture reference on which the various
versions of the processor will be based. Jack Costanza and Ralph Tiberio have implemented a
subset of the specification in discrete TTL and CMOS logic that is presently being debugged.
This single-processor version is targeted as a system software development accelerator for
TI Explorer Lisp Machines, delivering approximately six dataflow MIPS?, any mix of which
may be 64-bit floating point operations. This is about 1000 times faster than GITA on an
Explorer. The processor employs a scan register design to aid in debugging. The entire
processor was simulated at the gate level under the MENTOR environment. We expect this
prototype to be operational by the end of summer 1988. In a parallel effort, we have been
investigating implementation technologies for a VMEbus printed circuit board version of the
processor and a VLSI chip set architecture to be used in the construction of a 256 processor
machine. Franz Hutner is nearing completion of the network interface unit gate array (NIU)
that will be part of the chip set and used on the VMEbus version. The NIU acts the interface
between the Monsoon processor and the network, performing clock domain crossing, packet
buffering and routing table management.

In the software area, the Id compiler has been modified to produce code that is suitable
for execution on Monsoon. While Monsoon is compatible with the TTDA, it does not directly
execute TTDA machine graphs. The most obvious departures are

e Instruction fanout: TTDA instructions have arbitrary fanout, while Monsoon instructions
may have at most two destinations;

e I-structure descriptors: on Monsoon, tokens can only carry pointers, not entire descrip-
tors, and there is no dedicated hardware support for bounds checking and lower bounds
compensation

We have observed, empirically, that Monsoon executes approximately 20~30% more instruc-
tions than the TTDA. Optimal register assignment algorithms for Monsoon have been ex-
plored but are not yet implemented.

!MIPS = Million Insttuctions Per Second

5.2 Interconnection Network for Monsoon

G.A. Boughton, Christopher Joerg, Robert Lester, and John Santoro have continued devel-
opment of the network for Monsoon. This network is packet switched and is being designed
to support a bandwidth of 800 MBits/sec/ port. The two primary components of the network
are the Packet-switched Routing Chip (PaRC) and the data link.

PaRC is a CMOS gate array being designed by Chris Joerg that will form the basis of
the Monsoon network. A packet is received via one of its 4 input ports, stored in an on-chip
buffer, and sent out through one of its 4 output ports. Each of the input and output ports is
16 bits wide and has a maximum throughput of 800 Mbits per second. Packets are 192 bits
long, and are made up of 12 16-bit words (1 word of header, 9 words of data, and 2 words
of CRC). An input port has 4 buffers, each of which can hold one packet. When a packet
is received, the input port checks the packet for errors (using a CRC code) as it writes the
packet into a buffer. The input port also determines to which output port the packet should
g0, and tells that port that a packet is waiting to use it.

Each output port keeps track of which buffers contain packets that want to use it. When
an output port finishes sending a packet, it knows which buffer to read from next. This allows
it to start sending the next packet immediately. PaRC is designed so that each output port
can read a packet from any buffer at any time (regardless of the state of the other 15 buffers).
This eliminates any unnecessary blocking and greatly increases the utilization of the network.

PaRC also allows a processor to get a fast acknowledgment that its message has been
received. The mechanism for this is able to provide the acknowledgment without further

burdening the network.

The PaRC chip will have 33,000 used gates and will operate at 50MHz. It will also have a
low latency (as low as 100ns in light traffic), while making effective use of its bandwidth (95%
utilization in heavy traffic). PaRC will be fabricated in LSI Logic’s 1.5 micron compacted
array series, and is being designed on a SUN workstation using CAD tools from LSI Logic.
The design and testing of PaRC is nearly complete and the design will soon be handed over
to LSI Logic for fabrication.

PaRC chips will be used to construct both 4 input 4 output network boards and 16 input
16 output network boards. The 4 x 4 board will contain a single PaRC and the 16 x 16
board will contain 8 PaRC’s. A 256 input 256 output network can be constructed using 32
of the 16 x 16 boards.

While the output of a PaRC can be directly connected to the input of another PaRC
on the same board, data links between boards will be implemented using separate data link
transmitters and receivers. The data links between boards will have 4 bit wide data paths.
The 4 bit wide data links have several advantages over 16 bit wide data links, They require
a much smaller number of connector pins on each board and allow the use of more reliable
connectors. They also require fewer wires and allow the use of cables with a higher noise
immunity.

The data link transmitter is an ECL gate array that will multiplex a 16 bit wide PaRC
output port into a 4 bit wide data link. The transmitter will differentially drive each of the

10

4 parallel pairs of the data link. The transmitter will use a balanced 4 into 6 code to encode
the data sent on each of the parallel pairs. Thus 300 MBit /sec signals will be sent on each
parallel pair.

The data link receiver is an ECL gate array that will demultiplex and decode the data
from a data link and present it to a PaRC input port.

Robert Lester has completed a preliminary design of the data link transmitter and the
data link recetver.

John Santoro and Choong Seow have completed the design and construction of a data
link cable test circuit. This circuit uses GaAs circuitry to generate a 400 MBit/sec test
pattern. It uses an ECL differential driver to send the pattern down the cable under test. It
uses an ECL differential receiver and GaAs circuitry to check the received signal. This test
setup is being used in conjunction with an electrostatic discharge noise generator to evaluate
the noise immunity of proposed data link cables.

5.3 Hybrid von Neumann/Dataflow Architectures

Robert Iannucci has been investigating the space of architectures between pure von Neumann
and pure dataflow machines. The overall goal has been to discover the critical hardware
structures necessary for any scalable, general-purpose parallel processor to tolerate latency
and synchronization costs effectively. The main conclusion is that any such machine must
execute a parallel machine language (PML), having the following three characteristics:

¢ The execution time for any given instruction must be independent of latency. Tradi-
tional latency-sensitive operations, e.g., LOADs from memory, must be re-phrased as
split transactions which separately initiate an operation and later explicitly synchronize
on the availability of the result. '

¢ Each explicit synchronization event must be named. This implies efficient means for
creating and re-using names as well as an efficient mechanism for enforcing synchro-
nizing behavior based on the names. Names must be drawn from a large name space,
and it must be possible to manipulate them as first-class hardware data types,

® Means for expressing both implicit and explicit synchronization must be provided.
Implicit synchronization (i.e., program counter based) provides the means for passing
state between instructions within an unbroken thread. Explicit synchronization is
necessary at the programming level in the exploitation of paralielism and at the machine
level in the masking of latency.

[g that neither von Neumann nor dataflow machines exhibit all three characteristics, a new
hybrid architecture was synthesized and analyzed. It has been demonstrated through em-
ulation experiments and analysis that this architecture, based on the principles of parallel
machine language, has the ability to exploit the same classes of parallelism as a dataflow
machine. Consequently, the hybrid architecture can control communication latency cost

11

through the exploitation of parallelism. Moreover, the hybrid architecture can execute se.
quential threads with the same efficiency as a von Neumann machine.

From the standpoint of pure von Neumann architectures, the hybrid is evolutionary in
the addition of a synchronizing local memory, split transaction memory operations, and a
large synchronization name space. Synchronizing local memories and register sets is not
new. The most noteworthy previous machine in this regard is the HEP {6, 8]. The scheme
proposed in the present work is more general than that of the HEP, however. Similarly,
split transactions in and of themselves are not new, but the hybrid architecture shows the
importance of inexpensive context switching as the primary means for making the most of

split transactions.

The biggest departure from the traditional von Neumann architectural view is the jn-
troduction of large name spaces for synchronization purposes in the hybrid. In particular,
the number of low-level synchronization names is limited only by the size of local memory.
Further, the number of processes is limited only by the number of meaningful continuations.
In contrast, the HEP architecture allows only 64 processes per processor to be named si-
multaneously. From a hardware point of view, 64 processes is a sizable number. From the
compiler’s point of view, however, the number is far too small and implies that processes are
a precious resource to be carefully managed. In the hybrid, this artificial restriction is lifted,
resulting in more generality.

From the standpoint of pure dataflow architectures, the hybrid is evolutionary in that it
adds the means for the compiler to exercise some explicit control over the pipeline. Because
a thread holds the pipeline until it executes a potentially suspensive instruction, the entire
machine state can be brought to bear on the problem of efficiently communicating informa-
tion between instructions. This class of compiler-directed pipeline control is absent in both
the TTDA and in Monsoon {13]. The hybrid further takes the stance that synchronization
should be explicit, as should forking of parallel activity. This simplification of the instruction
set demonstrably does not drive the instruction count up in many cases because much of the
forking and its attendant synchronization is superfluous. Even so, in the limiting case, the
hybrid machine can still emulate instruction level dataflow with an instruction count expan-
sion factor of no more than two. This leads to the observation that ezplicit synchronization
instructions, used when necessary, may in some sense be cheaper than paying the full cost of
synchronization at each instruction. This is, perhaps, the equivalent of the RISC argument
applied to multiprocessing.

In [2], the question of the possibility of “modifying” a von Neumann processor to make
it a suitable building block for a parallel machine was raised. It was believed that the salient
characteristics of a dataflow machine which made it a suitable building block were split-phase
memory operations and the ability to context-switch inexpensively. Given the addition of
mechanisms like these, there was some lingering doubt as to what kind of synchronization
efficiencies could be achieved and how much of the von Neumann architecture would be
left. As presented in this work, engineering arguments regarding efficient implementation of
PML’s and the persistence of program counter based sequencing in the hybrid model have
dispelled much of the doubt.

12

6 Work on Systems Issues

6.1 The price of dataflow parallelism

David Culler has made substantial progress in assessing the costs and benefits of the dataflow
approach. This work has focused on three areas:

e Quantifying potential fine-grained parallelism in common programs;

* Assessing the overhead in terms of the number of instructions executed for fine-grained
parallelism, and

¢ Controlling the resource requirements of dataflow programs.

To quantify parallelism in programs, we have developed the concept of an ideal parallelism
profile, from which more common metrics, such as speed-up and utilization, can be esti-
mated. Numerous scientific programs for which little parallelism is uncovered by traditional
methods to accelerate loops [9] show ample parallelism under dataflow execution with I-
structures. Qur measurements show the cost of dataflow execution to be roughly a factor of
two over sequential execution for programs representative of scientific applications. This is
encouraging, since parallel execution will always involve some extra work due to distribution
and synchronization. Preliminary measurements of “parallelized” sequential programs show
a significant cost increase, making the dataflow approach very competitive when a large
amount of parallelism is exploited. On the other hand, our measurements show that naive
dataflow execution can incur inordinate resource requirements, in both token storage and
~ L-structure storage. Judicious use of loop bounding has been very effective in controlling the
token storage requirements of programs and imposes little performance penalty. It also pro-
vides the basis for extremely efficient I-structure storage management in scientific programs.
A new bound-loop schema has been developed and implemented in the Id compiler.

6.2 Delayed evaluation

Steven Heller has been working on programming in Id using explicit annotations for laziness.
Such annotations permit the use of potentially infinite data structures (such as streams),
This is a compromise between the lazy-evaluation approach, which allows infinjte structures
but incurs much overhead even when laziness is not required, and the eager approach, which
cannot handle infinite structures naturally but can be implemented efficiently.

This work involves language design, compiler development, and architectural enhance-
ment. The architectural enhancements necessary to support this approach are well un-
derstood. Two preliminary implementations were completed last summer to demonstrate
feasability at the compiler level.

Language work is now proceeding. Combpiler support will be completed this summer, and
the current Monsoon design includes support for this work.

13

6.3 Resource managers

Paul Barth has been working on managers, a paradigm for non-deterministic access to shared
resources. A design was developed that eliminated several memory management and effi-
ciency problems of earlier designs. The design was successfully implemented and tested on
the GITA simulator. Several examples of managers were written, including a priority sched-
uler and a load-balancing scheduler. Managers were compared to traditional synchronization
techniques (locks); the comparison showed traditional techniques appropriate for managing
local resources that require serial access, while managers are preferable for global resources
that may be accessed concurrently.

6.4 Stream input-output

Richard Soley finished the design and implementation of his scheme for automatic ordering
of stream-based input/output requests, based on the order implicit in the input program.,
This addition to the Id language, described in [15], is available as a software upgrade to
allow properly serialized input/output resource usage in Id programs.

During the analysis of this scheme, it was found that prograrns were “over-serialized”; in
particular, all conditionals in all procedures became part of the critical path of the program.
A scheme to avoid this problem by automatically discerning which procedures never needed
to sychronize on I/O resource usage was added late in the year.

6.5 General persistence

Bhaskar Guha Roy has been working on extending the Tagged-token Dataflow Architecture
to support a highly parallel disk I/O system that is well integrated into the programming
model. The dataflow approach appears well suited for this by virtue of its tolerance of
latency (important due to the slowness of I/O devices), and the fact that the model can
naturally express the overlap of /0 activity with normal computation.

A first version of a file system on GITA has been implemented. The operations on disk
storage units are similar to I-structure operations. Id has been extended for file operations
and we are experimenting with various compilation strategies for file system operations. The
file system has also been used to implement a persistent object system. Ob jects of any data
type in Id (except closures) can be made persistent. Id has also been extended for persistence
operations.

In the coming year, the plan is to examine issues related to locality issues and their
impact on distribution of files across disks, and incremental I/0. We hope to evaluate the
performance by comparing it with I/0O system performance on other parallel machines.

6.6 Controlling speculative parallelism

Richard Soley has been investigating effective methods for controlling the explosive growth
of speculative programs within the dataflow execution paradigm. Speculation, common in

14

symbolic processing tasks, is a potentially rich source of parallelism which was ignored pre-
viously, due to the expected high demand of speculative programs on memory and processor
resources. In fact, such demands can quickly swamp an eager dataflow execution mechanism,
causing deadlock. We have found some interventions for this problem, and have begun to
implant them within standard symbolic processing codes to measure their success. Early
results, based on controlled speculation in game tree searches, look promising.

7 The Id programming environment: Id World

P.R. Fenstermacher produced an alpha version of Id World for the Sun Workstation. In
additon to running on a larger installed base of machines, the Sun version also offers better
performance on large floating-point intensive computations. With Ken Traub, he worked on
the port of Id World from Symbolics Genera 6 to Genera 7. Also with Traub, he worked on
the port of Id World from Release 2.1 of the TI Explorer software to Release 3.2. This allows
Id World to run on the new higher performance Explorer II processor as well as the Explorer

I. Temporal garbage collection allows longer running times before the need to reinitialize the
software. And, all I/O is faster.

Design work on the support software for the Monsoon Processor has begun. The very
large amount of information necessary to specify the machine state of the 256 processor
configuration has led to consideration of a graphic interface. Further, since the forest of
support processors must present a coherent view to the Monsoon processors, network models
are being considered. Because the X Window Sytem has both features, it is the leading
candidate for a platform upon which the support software will be built.

Stephen Brobst has completed Version 1.0 of the C implementation of GITA With the
assistance of Shail Gupta, he has successfully ported the C implementation of GITA to VAX
and Sun Workstation environments. A beta version of the software has been released to Los
Alamos National Laboratories for implementation on the Cray 2.

8 Applications

8.1 Simulated Annealing

Stephen Brobst is currently investigating the implementation of simulated annealing algo-
rithms for the Tagged-Token Dataflow Architecture. Simulated annealing is an approach for
solving certain integer optimization problems. We are working on a program to solve the
quadratic assignment problem (QAP) that arises in the optimization of spatial layouts for
buildings, factories, electronic circuits, and the location of firms and public facilities across
regions. Since the QAP problem is NP-hard, and has been shown to lack efficient direct
solutions, heuristic algorithms such as simulated annealing have been a focus for this appli-
cation domain. We are working on an program in Id 88 for solving the QAP in the context of
building layouts. We will also be looking into the resource requirements for execution of this
algorithm on the TTDA and making comparisons to execution on a von Neumann machine.

15

8.2 Sparse-Matrix Techniques

During the Spring semester Ken Steele wrote a Sparse matrix LU decomposition program in
Id 88, using the new array and list comprehensions. The goal is to investigate the applicability
of Id for writing circuit simulators which currently use sparse matrix solvers. A study of the
parallelism and alternative methods is now under way.

8.3 Signal Processing

In summer and fall 1987 James Hicks developed D-PICT, a diagrammatic language for
signal processing, while completing his VI-A assignment at Lincoln Laboratory. D-PICT
provides constructs for creating and combining signals in a notation similar to that used for
describing signal processing algorithms. Because the execution model of D-PICT is dataflow
based, a D-PICT program is an inherently parallel program. The D-PICT system consists
of a graphical network editor, a compiler, based on Version II of the 1d Compiler, and a
module that converts the dataflow graphs generated by the compiler into sequential Lisp
code. By writing signal Processing programs in a single-assignment language, we are able
to target compilation for both conventional sequential machines and paralle} processors. In
addition we hope to be able to compile code for special purpose signal processing hardware.

Janice Onanian developed a strategy for compiling signal processing dataflow graphs for
more conventional medium-grain multiprocessors. Effective use of parallel processors re-
quires dividing an application into concurrently executable tasks and assigning those tasks
to processors such that their use of the network resources is optimized. We developed a high
level language and intermediate graphical representation for signal processing applications.
Special graphical constructs, called Data Routing Operators, support automatic partitioning
of the application into tasks for static allocation on loosely-coupled, distributed multipro-
cessor architectures. The language is functional and consists of special iteration constructs
which translate directly into graphical constructs upon which optimization is performed.
Real-time throughput requirements of the application contribute to the complexity of the
partition process. The language is used as a front end design tool; once the optimal partition
is determined, coding proceeds in a conventional language. Implementation of the interpreter
for the language is targeted for summer 1988,

8.4 DNA Sequence Algorithms

Arun Iyengar studied paralle} sequence comparison algorithms used in molecular biology for
comparing DNA and protein sequences. DNA sequence databases are expanding very rapidly,
and parallel processing will becormne increasingly important as more data becomes available.
Many of the computationally intensive problems in biological sequence comparison were
found to contain a large amount of inherent parallelism. On the other hand, some of them
require updates to aggregate data structure that require an excessive amount of copying in
functional languages, which can drastically increase the running time of certain algorithms.
Nonfunctional features of the language such as I-structures and accumulators do not always
eliminate this overhead.

16

8.5 Computational Fluid Dynamics

P group, and has expressed a keen interest in exploring the suitability of

Id for CFD applications. One of his graduate students, Sandy Landsberg, is spending the
summer of 1988 in our group, coding one of the CFD kernels in Id.

9 Project Dataflow

We believe that our dataflow research has reached a sufficient level of maturity to warrant
the construction of a real dataflow machine.

First, our experiments to date have shown:

¢ Id is an effective tool for expressing algorithms from a diverse range of applications.

® The parallelism in dataflow object code obtained from Id programs is adequate to keep
hundreds of processors busy, even in existing, conventional algorithms.

¢ The dataflow instruction-scheduling mechanism is capable of keeping processor pipe-
lines utilized effectively, tolerating large memory and inter-processor latencies easily.

Still, since simulations always have numerous assumptions built in, the only convincing
demonstration of these capabilities will be a real dataflow machine.

Second, resource management is still an open problem (both in dataflow and other mod-
els). Simulators are inherently slow, limiting the size of applications that can be run on them.
Thus, we are not able to study the true resource management issues of large applications.
This, again, argues for a real machine.

We have spent almost 9 months in preparing a proposal for Project Dataflow, in which we
describe plans for a 256-processor machine based on the Monsoon architecture, programmed
entirely in Id [1). Our original plan was to do it entirely in-house, sub-contracting the
manufacture of various components such as custom logic, pc boards, cables, ete. Following
extensive discussions with DARPA, the current plan is to build it in three stages:

1. A single-processor machine that can be plugged into a workstation. Expected by 12/88.

2. A 16-processor machine. This will also be plugged into a workstation, though it will
contain its own 16 x 16 interconnection network. Expected by 12/89.

3. A 256-processor machine. Expected by 2/91.

17

We will enter into a collaboration with an Industrial Partner who will do much of the detailed
design, fabrication and packaging of the 256-PE machine, and who may also assist in the

production 16-PE machine.

In Stage 1, we are first building a 6 MIPS, wire-wrapped, microprogrammable prototype
with limited memory and no caches. The design is complete, and the fabrication of the wire-
wrap boards is under way. We hope to have this running by the end of summer 1988. By the
end of the year, we hope to have the pc-board version with caches and more memory. We
plan to use a VME card, plugged into a Sun workstation. These boards will be distributed

to external users from 2/89.

Stage 2 will result in VME cards each containing four PEs, and a VME card containing
& 16 x 16 switch by 10/89. Each PE will run at 12-16 MIPS. As described earlier, work
on the 4 x 4 routing chip has already progressed significantly. The 16-PE machine will be

distributed externally from 2/90.

Stage 3 will be built by the Industrial Partner, by 2/91. We hope to achieve over 2000
MIPS peak, 1000 MIPS sustained.

While the hardware will be built in partnership with an Industrial Partner, the software
for the machine will be our responsibility entirely. The work involves developing Id into a
complete programming language in which all the machine’s software, including systems soft-
ware, will be written; further work on optimizations in the compiler; writing code-generators
for Monsoon (given the fidelity of Monsoon to the TTDA, we anticipate no serious prob-
lem here); and, writing resource managers, primarily for activation-frame allocation and
distribution, and heap allocation, deallocation and distribution,

We spent many months in tuning the proposal and hosting several visits from people at
DARPA. Begun in June 1987, the proposal was finally submitted in March 1988. In March,
we also held an Industrial Partners meeting in which we presented our plans to invited
representatives from about 20 companies. It is likely that we will set up collaborations with
more than one company, since many of them were interested also in implementing Id on
some of their own multiprocessors.

18

Publications

Arvind, Brobst, S.A., and Maa, G.K. Evaluating the MIT Tagged-Token Dataflow Archi-
tecture. Computation Structures Group Memo 281, MIT Laboratory for Computer Science,
Cambridge, MA, December 1987, the fourth in a sequence comprised of CSG Memos 278-281
(Not available.)

Arvind, and Culler, D.E. Resource Requirements of Dataflow Programs. In Proceedings
of the 15th IEFE/ACM Annual Symposium on Computer Architecture, Honolulu, Hawaii,
May 1988. Also Computation Structures Group Memo 280, MIT Laboratory for Computer
Science, Cambridge, MA, the third in a sequence comprised of CSG Memos 278-81.

Arvind, Culler, D.E., and Maa, G.K. Assessing the Benefits of Fine-grained Parallelism in
Dataflow Programs. To appear in Supercomputing 88. Also Computation Structures Group
Memeo 279, MIT Laboratory for Computer Science, Cambridge, MA, the second in a sequence
comprised of CSG Memos 278-281.

Arvind, and Ekanadham, K. Future Scientific Programming on Parallel Machines. To ap-
pear in Languages, Compilers, and Environments, a special issue of Journal of Parallel and
Distributed Computing. Also Computation Structures Group Memo 272, MIT Laboratory
for Computer Science, Cambridge, MA, March 1987, revised February 1988.

Arvind, Dertouzos, M.L., Nikhil, R.S. and Papadopoulos, G.M. Project Dataflow: A Parallel
Computing System Based on the Monsoon Architecture and the Id Programming Language
(Extracts from March 1988 DARPA Proposal). Computation Structures Group Memo 285,
MIT Laboratory for Computer Science, Cambridge, MA, March, 1988.

Arvind, Heller, S. and Nikhil, R.S. Programming Generality and Parallel Computers. To
appear in Fourth International Symposium on Biological and Artificial Intelligence Systems,
Trento, ltaly, September 18-22, 1988. Also Computation Structures Group Memo 287, MIT
Laboratory for Computer Science, Cambridge, MA, May 1988.

Barth, P.S. Managing Nondeterministic Access to Shared Resources in a Dataflow System.
Unpublished, MIT Laboratory for Computer Science, Cambridge, MA, June 1988.

Brobst, S.A. Simulation Studies of Distributed Data Access in a Multicomputer Environ-
ment. ACS Memo 88-5, Advanced Commercial Systems Department, Hewlett-Packard Lab-
oratories, Palo Alto, CA, January 1988,

Brobst, S.A. Organization of an Instruction Scheduling and Token Storage Unit in a Tagged-
Token Dataflow Machine. In Proceedings of the 16th International Conference on Parallel
Processing, St. Charles, IL, August 17-21, 1987.

Dennis, J.B. Data Flow Computer Architecture: Final Report. MIT/LCS/TR-385, MIT
Laboratory for Computer Science, Cambridge, MA, November 1987.

Ekanadham, K., Arvind, and Culler, D.E. The Price of Parallelism. To appear in the Pro-
ceedings of CONPAR 88. Also Computation Structures Group Memo 278, MIT Laboratory
for Computer Science, Cambridge, MA, December 1987, the first in a sequence comprised of
CSG Memos 278-281.

19

Ekanadham, K., Arvind. SIMPLE: Part I-An Exercise in Future Scientific Programming. In
Proceedings of the International Conference on Supercomputing, Athens, Greece, July 1987,
Also Computation Structures Group Memo 273, MIT Laboratory for Computer Science,
Cambridge, MA, and IBM T.J. Watson Research Center Report 12686.

Heytens, M.L. and Nikhil, R.S. GESTALT: An Expressive Database Programming System.
MIT CAF project, Department of Electrical Engineering and Computer Science, MIT, Cam-
bridge, MA, December 1987. Submitted to SIGMOD Record.

Hicks, J.E., Jr. A High-level Signal Processing Programming Language. MIT/LCS/TR-414,
MIT Laboratory for Computer Science, Cambridge, MA, June 1988.

Iannucci, R.A. A Dataflow/von Neumann Hybrid Architecture. MIT/LCS/TR-418, MIT
Laboratory for Computer Science, Cambridge, MA, June 1988. (Ph.D. dissertation).

lannucci, R.A. Toward a Dataflow/von Neumann Hybrid Architecture. In Proceedings of
15th Annual Symposium on Computer Architecture, IEEE/ACM, Honolulu, Hawaii, May-

June, 1988.

Maa, G.K. Code-mapping Policies for the MIT Tagged-Token Dataflow Architecture. MIT/
LCS/ TR-425, MIT Laboratory for Computer Science, Cambridge, MA, May 1988,

Nikhil, R.S. The Semantics of Update in a Functional Database Programming Language. In
Proceedings of the Workshop on Database Programming Languages, Roscoff, France, Septem-
ber 1987.

Nikhil, R.S. Id (Version 88.0) Reference Manual. Computation Structures Group Memo 284,
MIT Laboratory for Computer Science, Cambridge, MA, March, 1988.

Papadopoulos, G.M. The Monsocon Processing Element Architecture Reference. Computa-
tion Structures Group Memo 283, MIT Laboratory for Computer Science, Cambridge, MA
02139, MIT Laboratory for Computer Science, Cambridge, MA, March 1988.

Soley, R.M. Implicit Serialization in Dataflow Programs. Computation Structures Group
Memo 277, MIT Laboratory for Computer Science, Cambridge, MA, December 1987.

Traub, K.R. Sequential Implementation of Lenient Programming Languages. MIT/ LCS/
TR-417, MIT Laboratory for Computer Science, Cambridge, MA, June 1988. (Ph.D. Thesis.)

Theses Completed

Chaudhary, V. Implementing Parallel Functional Programming Languages Using Graph Re-
duction on the Dataflow Machine. S.B. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, May 1988.

Hicks, J.E., Jr. A High-level Signal Processing Programming Language. S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge, MA, February
1988.

lannucci, R.A. A Dataflow /von Neumann Hybrid Architecture. Ph.D. dissertation, MIT
Department of Electrical Engineering and Computer Science, Cambridge, MA, May 1988.

20

Lester, R.M. Design of a High-speed Data Link for the Monsoon Dataflow Processor. S.B.
thesis, MIT Department of Electrical Engineering and Computer Science, Cambridge, MA,
May 1988.

Maa, G.K. Code-mapping Policies for the Tagged-token Dataflow Architecture. S.M. thesis,
MIT Department of Electrical Engineering and Computer Science, Cambridge, MA, February
1988.

Rothfuss, E. Query Optimization at the Expression Level. $.B. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, May 1988.

Traub, K.R. Sequential Implementation of Lenient Programming Languages. Ph.D. disser-
tation, MIT Department of Electrical Engineering and Computer Science, Cambridge, MA,
May 1988.

Theses in Progress

Culler, D.E. Effective Dataflow Execution of Scientific Applications. Ph.D. dissertation, MIT
Department of Electrical Engineering and Computer Science, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA. Expected December 1988.

Heller, S.K. Efficient Lazy Structures on a Dataflow Machine. Ph.D. dissertation, MIT
Department of Electrical Engineering and Computer Science, Cambridge, MA. Expected
December 1988.

Iyengar, A. Parallel DNA Sequence Analysis. S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA. Expected August 1988.

Jagannathan, S. A Programming Language Supporting First-class Parallel Environments.
Ph.D. dissertation, MIT Department of Electrical Engineering and Computer Science, Cam-
bridge, MA. Expected December 1988.

Kathail, V. Optimal Evaluators for Lambda-calculus Based Functional Languages. Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer Science, Cambridge,
MA. Expected August 1988.

Onanian, J.S. A Novel Language for Signal Processing Applications. S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge, MA. Expected
August 1988.

Papadopoulos, G.M. Implementation of a General Purpose Dataflow Multiprocessor. Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer Science, Cambridge,
MA. Expected August 1988.

Soley, R.M. On the Efficient Exploitation of Speculation Under the Dataflow Paradigms
of Control. Ph.D. dissertation, MIT Department of Electrical Engineering and Computer
Science, MIT Department of Electrical Engineering and Computer Science, Cambridge, MA.
Expected December 1988.

21

Talks

Arvind. The MIT Dataflow Pro ject. DARPA Principal Investigators Meeting, Washington,
D.C., September 15, 1988,

Arvind. MIT Tagged-Token Dataflow Pro ject. University of California at Berkeley, Berkeley,
CA, November 11, 1987.

Arvind. Project Dataflow. University of Utah, Salt Lake City, UT, January 16, 1988.
Arvind. Id: A Declarative Language for Future Scientific Programming, University of Utah,
Salt Lake City, UT, January 16, 1988,

Arvind. Making it Fun to Program on Parallel Computers. Apple, Cupertino, CA, March
18, 1988.

Arvind. Making it Fun to Program on Parallel Computers. Sun Microsystems , Sunnyvale,
CA, May 14, 1988,

Arvind. Making it Fun to Program on Parallel Computers. Computational Fluid Dynamics
Meeting, MIT, Cambridge, MA, April 19, 1988.

Arvind. Future Scientific Programming. 1988 International Conference on Supercomputing,
Boston, MA, May 19, 1988.

Arvind. Present Status of Dataflow Computers. National Conference on Knowledge-based
Computer Systems, Bangalore, India, June 10, 1988.

Arvind. Making it Fun to Program on Parallel Computers, Computer Centre, Indian Insti-
tute of Technology, Madras, June 5, 1988.

Arvind. Making Highly Programmable Paralle] Computers. Computer Science Research and
Operations Conference, Bilkent University, Ankara, Turkey, June 22-23, 1988.

Brobst,S.A. Evaluation of the MIT Tagged-Token Dataflow Architecture, Hewlett-Packard
Laboratories, Palo Alto, CA, January 7, 1988.

Brobst, S.A. Evaluation of the MIT Tagged-Token Dataflow Architecture. Sandia National
Laboratories, Albuquerque, NM, December 14, 1987.

Brobst, S.A. Evaluation of the MIT Tagged-Toker Dataflow Architecture. Manchester Uni-
versity, Manchester, England, November 18, 1987.

Brobst, S.A. Parallel Processing Architectures for Scientific Computing. Waltham, Mas.
sachusetts, November 4, 1987,

Brobst, S.A. Token Volatility and Resource Management in a Dynamic Dataflow Machine.
Mitsubishi Electric Corporation, Kamakura City, Japan, October 9, 1987.

Brobst, S.A. Token Volatility and Resource Management in a Dynamic Dataflow Machine.
MITI Electrotechnical Laboratory, Tsukuba Science City, Japan, October 6, 1987.

Brobst, S.A. Token Volatility and Resource Management in a Dynamic Dataflow Machine.
NEC Electronics Inc., Kawasaki City, Japan, October 5, 1987.

22

Brobst, S.A. Organization of an Instruction Scheduling and Token Storage Unit in a Tagged-
Token Dataflow Machine. 16th International Conference on Parallel Processing, St. Charles,
Illinois, August 18, 1987.

Brobst, S.A. Program Transformations for Vectorizing Compilers. Systems Software Design
Laboratory, Hewlett-Packard Company, Cupertino, California, August 14, 1987.

Brobst, S.A. Parallel Processing: A Survey of the Impending Revolution. Systems Architec-
ture Laboratory, Hewlett-Packard Company, Cupertino, California, August 11-12, 1987.

Culler, D.E. Controlling Parallelism in Dataflow Programs. Workshop on Packaging Par-
allelism, Sponsored by the Supercomputing Research Center, April 25-27, 1988, Leesburg,
VA,

Culler, D.E. Resource Requirements of Dataflow Computers. 15th Annual Symposium on
Computer Architecture, IEEE/ACM, Honolulu, Hawaii, May 31, 1988.

Heytens, M. GESTALT: An Expressive Database Programming System. Panel on Multi-
database systems, ACM International Conference on Management of Data (SIGMOD), June
2, 1988.

Iannucci, R.A. Towards a Dataflow/von Neumann Hybrid Architecture. -15th Annual Sym-
posium on Computer Architecture, IEEE/ACM, Honoluly, Hawaii, May 31, 1988,

Iannucci, R.A. Towards a Dataflow/von Neumann Hybrid Architecture. IBM T.J. Watson
Research Center, Hawthorne, NY, April 15, 1988.

Nikhil, R.S. Lectures in 6.83s, MIT 1-week summer course on Dataflow Architectures and
Languages, August 1987.

Nikhil, R.S. Lectures in a 1-week course on Dataflow Architectures and Languages, Indian
Institute of Science, Bangalore, India, August 1987.

Nikhil, R.S. Parallel Supercomputers. Frontier Technologies, Hyderabad, India, August 25,
1987. -

Nikhil, R.S. The Semantics of Update in a Functional Database Programming Language.
Workshop on Database Programming Languages, Roscoff, France, September 1987.

Nikhil, R.S. Lectures in a 1-week course on Dataflow Architectures and Languages. Los
Alamos National Laboratories, October 1987.

Nikhil, R.S., Dataflow for Expressive, High-Performance Database Systems. MIT-Siemens
Workshop on Highly Parallel Processing, Munich, W. Germany, November, 1987.

Nikhil, R.S. Id: A Declarative, General Purpose Language with Fine-Grained Parallelism.
Unisys 1988 Parallel Processing Workshop, June 16, 1988.

Papadopoulos, G.M. The Monsoon Dataflow Processor. MIT-Siemens Workshop on Highly
Parallel Processing, Munich, W. Germany, November, 1987.

- Papadopoulos, G.M. The Future of the Engineering Workstation. MIT-IBM Workshop on

Engineering Workstations, Austin, Texas, January, 1988,

Papadopoulos, G.M. Instrumentation for the Monsoon Dataflow Multiprocessor. Instrumen-
tion for Future Parallel Processors Workshop, Santa Fe, New Mexico, May, 1988.

23

Soley, R.M. Lisp Carries its Own Weight. Third Artificial Intelligence Applications Confer-
ence, [EEE, August 1987, Kissimmee, FL.

References

(1] Arvind, M. L. Dertouzos, R. S. Nikhil, and G. M. Papadopoulos. Project Dataflow: A
Parallel Computing System based on the Monsoon Architecture and the Id Program-
ming Language (Extracts from March 1988 DARPA Proposal). Technical Report CSG
Memo 285, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge,
MA 02139, March 25 1988.

(2] Arvind and R. lannucci. Two Fundamental Issues in Multiprocessing. In Proceedings of
DFVLR - Conference 1987 on Parallel Processing in Science and Engineering. Bonn-
Bad Godesberg, June 1987.

[3] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Paralle] Com-
puting. In Proceedings of the Workshop on Graph Reduction, Santa Fe, New Mezico,
USA, (Springer-Verlag LNCS 279)., pages 336-369, September/October 1986. (also
Computation Structures Group Memo 269, MIT Laboratory for Computer Science, 545
Technology Square, Cambridge, MA 02139).

[4] H. Barendregt. The Lambda Calculus: Its Syntaz and Semantics, North-Holland, 1984.

[5] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Program-
ming. Pitman, 1986,

[6] H. F. Jordan. Performance Measurement on HEP - A Pipelined MIMD Computer. In
Proceedings of the 10th Annual International Symposium On Computer Architecture,
pages 207-212, Stockholm, Sweden, June 1983. IEEE Computer Society.

[7) V. Kathail. Optimal Interpreters for A-calculus Based Functional Languages. PhD thesis,
MIT Department of Electrical Engineering and Computer Science, 1988. Expected
August 1988.

(8] J. S. Kowalik. Parallel MIMD Computation: HEP Supercomputer and Its Applications.
Scientific Computation Series. The MIT Press, 1985.

[9] D. J. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence Graphs and
Compiler Optimizations. In Proc. 8th ACM Symp. on Principles of Programming Lan-
guages, pages 207-218, January 1981,

[10] J.-J. Lévy. Optimal Reductions in the Lambda-calculus. In To H. B, Curry: Essays
on Combinatory. Logic, Lambda Calculus and Formalism, pages 160-191, London, 1980.
Academic Press.

(11] R. Milner. A Proposal for Standard ML. In Proceedings of the 1984 ACM Symposium
on Lisp and Functional Programming, pages 184-197, August 1984.

24

[12] S. Nikhil, Rishiyur. Id (Version 88.0) Reference Manual. Technical Report CSG Memo
284, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA
02139, March 25 1988.

{13] G. M. Papadopoulos. Implementation of a General Purpose Dataflow Multiprocessor.

PhD thesis, MIT Department of Electrical Engineering and Computer Science, August
1988 (expected).

(14] J. Rees and W. Clinger. Revised® Report on the Algorithmic Language Scheme. Tech-
nical report, Massachusetts Institute of Technology Artificial Intelligence Laboratory,
Cambridge, MA, 1986.

[15] R. Soley. Implicit Serialization in Dataflow Programs. CSG Memo 277, MIT Laboratory
for Computer Science, CambMA, December 1987.

[16] D. A. Turner. Miranda: A Non-Strict Functional Language with Polymorphic Types. In
Proc. Functional Programming Languages and Computer Architecture, Nancy, France
(Springer-Verlag LNCS 201), pages 1-16, September 1985.

[L7] P. Wadler. Efficient Compilation of Pattern-Matching, 1987. (in The Implementation
of Functional Languages, Simon L. Peyton Jones, Prentice-Hall, Englewood Cliffs, NJ).

25

Contents

1 Introduction and Overview

2 Personnel

3 Work on Programming Languages 7
R
3.2 Haskell, a new “standard” functional programming language . . ., . .
3.3 Other language-related work, e e e e e e

4 Work on Compilers
4.1 Progress on the Id Compller
4.2 Compiling Sequential Code from a Non-strict Language

$5 Work on Architectures
5.1 Monsoon T
5.2 Interconnection Network for Momsoou '

6 Work on Systems Issues
6.1 The price of dataflow paralleliom
o2 Delaydembuation .. T

6.3 Resource PAMAED
6.4 Stream mPMbowtput ...

V% Gemenlpemistence ...
6.6 Controlling "peculative pacalleliom

7 TheId pProgramming environment: Id Werld

26

‘-l-JObChCﬂl\hﬁ

8 Applications 15

8.1 Simulated Amnealing 15
8.2 Sparse-Matrix Techniques 16
83 SignalProcessing 16
8.4 DNA Sequence Algorithms 16
8.5 Computational Fluid Dynamics 17
9 Project Dataflow 17

27

