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Introduction

Post's correspondence thEOreﬂl is a powerful result in computability
theory; with it many interesting and important problems can be shown
undecidable by simple, elegant proofs. Unfortunately the only published
proof for the correspondence theorem is long, involved, and difficult
to understand. As a result, many workers in the field do not fully
grasp the elegance of Post's result. In this paper we present a simple
proof of the theorem. Qur aim is to set forth a development that makes
pedagopical sense and gives the student an intuitive appreciation for the
meaning of the theorem.

We start discussing how unsolvability of the Imstantaneous Description
Problem for Turing machines follows from the well-known unsolvabilicy of
the halting problem. Om this basis wé prove the main result using a
domine concept{' After reviewlng some important properties of context-
free grammars, we present simple proofs for:

1. Context-frée language intersection problems.

2. Context-free grammar and language ambiguity problems.

Even though these theorems are well-known, they are included here to
demonstrate how powerful a tool Post's result is. An important ambiguity
problem--"does there exist an unaﬁbiguous grammar that generates a given
language?" --has been an open question until recently. Ginsburg and Ullianz,
for example, have a proof which unfortunately is lest amid a flurry of other

results.
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Turing Machines

A Turing machine has a deterministiec finite-state control unit
which controls the action of a readfwrite head on its tape. We imagine
that the tape is oriented horizentally, extending to infinity in either
direction. The tape is divided into squares, each of which contains a

single symbol.

Definition. A Turing machine is a set

M={q T, I, q}

where
Q 1is a finite set of intermal states for M's control wnit;
T is a finite set of tape symbols;

I is a finite set of instructions specifying the behavior

or M's control unit;
q; € Q is the initial state.
There is a special blank tape symbol called sharp (¢ & T).
An instruction in I is of the form
<label>] <(action>
A <clabel» is a pair {q, t) where q € Q -and t € T, An <action> 1s ome of

{left, right, print, halt}. The instructions have the fellowing meanings.
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Move head left one square, obperve
(q, t) ] left, p the symbol u € (T U {#1). The next

instruction 1s labelled {p, u)}.

Move head right one square, observe

(q, :)- 1 riggt, P the symbol u e (TU [#]). The next

instruction is labelled (p, u).

Print eymbol w € T in current square,
(q, t} ) print u, p without moving the head. The next

instruction is tabelled (p, u).

(q, v ] 1t, p Halt, enterimg state p.

We imagine that the tape is initially filled with a special symbol, sharp
(# € T), everywhere except in a finite region which contains a string of
symbols called the initial Eggg. After a single action either.a symbal
has been altered and the head has nof moved, or else the head has moved
and no symbol has been altered. Using this idea we can describe the

action of a Turing machine quite compactly.

Definition. An instantaneous description, or configuration, of a
Turing machine M = {Q, T, I, qI} is a string
ldth

*
where w, gp are (possibly empty) strings in T , q€ Q, ard t € T.

An instanteneous description has the following meaning. M is a state q
scanning symbel t. To the left of the head a string w appears on the tape;

and to the right a string ¢ appears. It is clear that when M executes
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an instruction, there is a simple change in the instantaneous description,

so that the effect of an instruction can also be represented as follows.

Instruction of M Change in Configuration
(q, t) 1 left, p Wuqtey + w p.u t e
(q, t) 1 xight, p wgteg 4 WEPpE
(a, t) ] print u, p wqtgp =+ Wpugp
(q, t) ] haltp w gty =+ WPpte

' It should be clear that these changes in confipuration can be regarded as

a set of context-sensitive rewriting rules, and that a Turing machine
*
computation can be represented by a sequence of applications of such rules .

We shall denote the local change in configuration by the rules X < X', which

are:
Instrucktions of M Local chenge X » X'
(q, ©) I lefe, p ug t » put
(q, £} | right, p . qt 4 top
{q, t) | priot u, p qt + PV
{g, t) ] hBalt, p qt =+ pt

*
To clarify our notation: If C is a configuration and C' is the configuration
resulting from the execution of an instruction, we can describe the change by
the ordered pair (C, C') or equivalently by the "rule" €+ C'.
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There ls one such X-rule for each jinstruction of M. The total change
in configuration is denoted by the infinite set of rules Y < Y', where
Y =wXg, Y =W X' p, wand p are arbitrary strings in T*, and X » X'
is any local change rule.
1t may be the case that © is empty and M's action is to move lefe,

scanning a sharp {#) on the previously unused portion of tape; or that ¢
{s empty and M's action is to move right, scanning a sharp in that unused
portion of tape. g0 two extra Y-rules are needed to "lengthen the tape':

Xgp - # Xop

wX + wX¢
Thig is equivalent to adding the X-rule

qt -+ tp#

to the existing X-rules for each xight {nstruction of M, and the X-rule

gt * P #$ t
to the existing X-rules for each left instruction of M. It should be clear that the
number of X-rules {ordered pairs (x,X') 1 1is finite since M's instruction

set is finite.

M's computation can be represented by a gsequence of configurations

of the form:

where

a = mu qI l:ocpo

is the starting configuratien, and each pair (Yn’Yn+1) is related by a Y-rule

Yn + Yn+l
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The Instantaneous Description Problem
Next we show that it is undecidable whether a given Turing machine M,
starting from a given configuration @, ever enters a specified configuration B.

This-is known as the Instantaneous Description Problem. Let B(M, @, B) be

the proposition:

1 if M ever reaches configuration B

PM, a, B) - when started in g .

0 otherwise

' Theorem_ 1. It is undecidable whether P(M, o, B) = L.

ggggi: We show that a decision procedure for P(M, @, P) can be used to
solve the Halting Problem.

let H be any Turing machine and G én initial configuratinn.for K., The
Halting Prﬁblen is: Does H ever halt when started in C? Tﬁis question is
known to ba undecidablea. |

Suppose a decision procedure for P(M, d, B) exists. The following
sﬁeciali;ed universal Turing machine U can be constructgd. U is presented

initially with an encoded descripfion p(H) of the instructions of H, together

‘with an encoded deseription D(C) of H's initial configuratiom. If, while

simelating H, U finds that H halts, U erases D{H), D(C), and any other records
frph its tape, and enters_a.spe;ial halrcing state q,- That is, U enters
configuration B' = 9, iff ﬂ halts, Letting o' be the known initial configuration
ﬁf 1] (e.g.,_a' = qI 4 D(H) § D(C) ), we have P(H, @', B') =1 iff H halis.

It follows that P(M, a, B) is in general undecidable.

(QED)
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Because this result is widely known, we have omitted the details of
the encodings D(H) and P(C) and consequently how we may be assured that

U ean erase its tape whenever H halts. [see, for example, reference 4].

The Correspondence Problem

Lot V be a finite alphabet., Let A and B be ordered, finite sets of

non-empty strings on V, each having the same number of elements:

A

H

{ul, yseens uh]

B = {8y, Byoeees B)
The Correspondence Problem is this: Does there exist a sequence of subscripts

il’ iZ""’im 1 g_ik_g_n, k =1,2,..., m, such that

An equivalent statement, which we shall use extensively, is this: Let
. A
. {(al ) (az) (Gh)} &y €
B, /s By T NBY B, € B

1s there an ordering of elements of D (chosen with repetition allowed)

such that the upper row is identical to the lower?
* % % er
B ] ﬁ P B,
thy  Th

i + Jlower row
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We regard the elements of D as domino-types, each with a string ui inscribed
on the top and the corresponding string Bi on its bottom. Posing the
Correspondence Problem is the same as agking whether there is a linear
arrangement of dominoes with the top row identical te the beottom. Of
course there must be an infinite supply of dominoes, but only a fimite
nunber of the different types specified by D.

Whenever there is an ordering of D-elements satisfying the Correspondence
Problem, we shall say that D possesses a G-ordering. Ag we will see below,

if D possesses one C-ordering it possesses an infinite number of C-orderings.
Example.

Before proceeding, an example is instructive. Let

b= { (b:) (aizb , (2:), (aﬁ‘ﬁﬁ)} = l4.d,0459,]

The ordering d1 d2 d2 d4 yvieclds these upper and lower strings:

upper: baababaabb
lower: aabbbabbbbbb

which are not the same. However the ordering d2 d3 d4 d1 vields:
upper: abbbaabbba |
lower: abbbaabbba

which are identical. Thus d2 d d4 d1 is a C-ordering. Note also that

3
{¢a, d, 4, ap® |k 2 1)

is an infinite set of C-orderings.
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The Correspondence Theorem

Theorem 2. Given a finikn set D of domino types, it is undecidable whether
)

a C-ordering exists on D.

Proof: We show how a decision procedure for determining the existence of a
C-ordering can be used to decide the instantaneous description problem,

PM, o, B). Suppdse that M, x, B are given. Let

(1) DM, B) - { (:C,), (ﬁ:>}U { . :') }

where * is a special symbol not in (Q ) T), and ¥ + Y' are the Y-rules of M.
q”(M, &, B) has an infinite number of elements because there are an infinite
number of Y-rules each having the form

*
wXp W xT s w, @ € T

That is, even though there are finitely many X - rules, one for each instruction
of M, there are infinitely many possible strings w and ¢p, giving rise Co
infinitely many distinct elements in D (M, o, B). We will show first that

a C-ordering on Dw[M, a, P) exists iff B(M, a, B) = 1. Then we show how each
element of qﬂ(ﬁ, ¢, B) can be generated by a unique sequence of elements

chosen from a finite set D(M, «, B), which will complete the proof.
Suppose M traces the sequemce of configurations

() & ¥, Ypeees Y0 B

Then qn(M, @, B) has the C-ordering
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* Yy ¥ Y, * ) A PN ) B *

(3) % ¥ '/ \F Y. * 7 ! *
1 2 n

To see that (3) is a valid C-ordering, note that the special symbol * appears

exactly (o + 2) times in both rows. Thercfore the substrings caught hetween

successive pairs of * must be identical:

Yl =

i, =1

YB = Yz'
% :

Yn = Yn-l-l

B =Y

Next, note that every C-ordering must begin with the «-element and end with the
p-element, for otherwise the symbols * cammot match. Each pair (Yi,Yi') is related
by the a single action of M, via the rule Yi -+ Yi'. Thus if (3) is a C-ordering,
M traces sequence (2). Therefore the upper row in (3) is identical to the lower
row iff M traces sequence (2). With qm(M, @, B), a procedure that decides the
existence of a C-ordering also decides P(M, o, B).

The final step in the proof is to show how to replace the infinite set
q”(ﬂ, o, B) with a finite set D{M, &, B). Qm(H, a, B} 1s infinite because there
are infinitely many Y-trules . However there are finitely many (say r) X-rules.
If we think of D's elements as dominoes, the solution becomes apparent: add

new domino types to generate the w and ¢ parts of ¥ = w X -
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T e n (.0
o = { (0 0), (0 0), (0, (R0} were cer
sor ={(3), ()}
oo = {10, . G R )

et a8 -5 By (g, ®©)uoe y B

Again, *, A, are special symbols ulnt in (Qu TY. D(x, B) contains elements

for M's initial configuration &, and M's final configuration . For each
t ¢ T, D(t) contains building blocks for the w and g portions of Y. The A - types

aTre used to comstruct ¥, {J- types to comstruct g¢. D(M) contains buillding blocks

for each of the r X-rules of M. D(ﬁ ave elements for empty tape regiouns;

that is, in case w or p is empty. The symbols A and :J insure that no configuration

" ecan be constructed that does not contain a local clunge.

| Each element k* Y.) €D (l‘l, a, By

is generated now by a sequence of elements chosen from (M, a, B):
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Y £, A o Y o
C-C G - G960 B G, ()
\/’Y_‘_/ W—\/

Y w = t1 by won tk X P =y u, uL

It should be clear that each element in QW(M, x, p) is generated by a unique
sequence of elements from D(M, a, B)- Therefore a C-ordering on Dm(M, o, B)
exists iff there is a Cc-ordering on D(M, «, g). Hence a c-ordering on DM, &, £)
exicsts iff POM, o, B) =

The undecidability of & C-ordering on arbitrary D follows at once from

the undecidability of PM, o, B).

(QED)

The proof just given makes use of domino alphabets of arbitrary finite
size. Since any n-symbol alphabet can be coded appropriately into a 2-symbol

alphabet, the theorem is true even in the case that V contains just two symbolsg.

Undecidable Questions Concerning Contextr ~-free Languages

Using the Correspondence Theorem we can prove several important results
about context-free languages, gimply amd elegantly. The problems we consider

are:
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1. Intersection Problems

= 57
A. Is 1.1 N LI2 B
. e ?
B, 1Is L1 n I.2 infinite?
2
c. Is Llij L2 regular?
D. TIs Ll n L2 context-free?

E. Given that L1 N L, is context-free, can a grammar be

constructed to generate Ll f Lz?

2, Ambiguity Problems

A. 1s an arbitrary grammar ambiguous?
B. Is an arbitrary language inherently ambiguous?

[That is, does there exist an unambiguous grammar

for the language?]
Before proving these questions undecidable, we define our terms.

Definitiou. A context-free grammar is a set G = [N, T, P, g}

where N ig a finite, non-terminal alphabet
. NOT=28

T is a finite, terminal alphabet

P is a finite set of ordered pairs (A, w) where
*
AeMyEh,oe @yD . If (A, ») € P we
write A » w, and say that A~ w is a production
of G.

¥ is the sentence symbol, from which each sentence is derived.
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The language L(G) generated by G is the sect of all strings derivable
from 5 in G. With each string @ £ L{G) 1s associated cne or more derivation
trees, whose nodes correspond to applications of productions used to derive
w from v in G. If ecach w ¢ L(G) has a unique derivation tree, G is
unambiguous. If a language has ne unambiguous grammar, it is inherently
ambiguous.

The union of context-free languages is context-free. Let L1 and L2 be
two coutext-free languages, generated by G1 and G2. Relabel non-terminals

so that Nl n N2 = 3. Then

generates L1 U L2. Furthermore, suppose G1 and G2 are unambiguous. Then, if
L(Gl) M L(Gz) =3, G1 i Gzls vnambigeous; if L(Gl) 1 L(GQ) 3, G1 U G2 is
ambiguous since each string in the intersection has two derivations.

From now on the terms “language" and "grammar” always refer to context-free

languages and grammars, unless otherwise stated.

14

For simplicity in the following, take the elements of DM, @, B) of equatien

(5) and recode them using the alphabet {0, 1}. Let these coded elements comprise

the set E:

© o-{C) ) (9
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Each Py igs a coded representation on {o, 1} for <cach upper element of
(M, o, 8), and each oy is the coded representation for the corresponding
lower element. A C-ordering om E exists iff P{M, @, ) = 1. Furthermore,
SUppose

(mn &= Piy Pa, T Pa

is a C-ordering on E; then pil is the coded representation of M's initial
configuration &, and p, is the coded representation of M's final
configurat;on B. Sindemh is deterministic, the C-ordering E is unique;

that is, there is one and only one way for M to reach p from . It follows

that

@ k21
are all the C-prderings om E.

Three of the following theorems (Theorems 5,6,and 7) depend on the fact that
g is the unique shortest C-ordering om E. The others do not depend on this, so
in their proofs E may be regarded as an arbitrary set of domino Lypes set up for
any correspondence problem.

From now on we will use the following notation for the propesition that a

gset E has a C-ordering:

1 if E has a C ufdering
CP(E) = {

0 ctherwise

Theorem 2 tells CP(E) is undecidable for arbitrary E.
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Let R and § be the languages generated by G(R) and G(8) respectively:

C(R): T 4 R G(s): v + S
R + (R Py 5§ » (1) 8 oy
R + (MR oy S 4+ () 8 T
R o+ (L) *p, s 4+ (1) *c¢,
R =+ (n)* Pn S 4+ (n) ¥g_

Strings in R and S are of the form
(m) ... (2) (1) *wlqu res

where ¢p; are upper (lower) elements of E. These strin
of upper (lower) E-elements preceded by the correspond
The symbol * is a special center-marking symbol.

Comparing with equations (7) and {8) we nave

g if there 1s no C-ordering on E
(9 Rn 8§ =

[nk * gk |k > } otherwise

where mn is the subscript sequence corresponding to §.

of R 1 5 depends on the fact that E has a unique short

Theorem 3. For arbitrary languages Ll' L2 it is undecidable whether Ll N L2 =&.

Proof. Let L, = R and L, = §. From equation {9), R

Any decision procedure for determining whether Ll It L2

applied to R 0 S, also decide CP(E), which is impossib

gs consist of a sequence

ing subscript seguence.

[CP(E)

1l

0]

{CP{E) 1]

Note that the form

eskt C-ordering, E.

5 =¢§ iff CP(E) = 0.
is empty would, if

le,

(QED)

16
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Theorem 4. For arbitrary languages Ll, L2 it is undecidable whether L1 n L2

is infinite.

Proof: Let L1 = R and L2 = 8. TFrom equation (9), R S contains infinitely

many strings iff CP(E) = 1. Any decision procedure for determining whether

Lllﬁ L2 is infinite would, if applied to R §, alse decide CP(E) which is

imposszible.

(QED)

Theorem 5. For arbitrary languages Ll’ L2 it is undecidable whethey

L1 n L2 is a regular set.
Proof: From equation (9) we see that R S is regular (= §) iff CP(E} =0,
and is non-regular iff CP(E) = 1. Any decision procedure for determining
whether R A S is regular would, if applied to Rn 8§, also decide CP(E}, which

ia impossible.

(QED)

17
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Let & and ,8 be the languages generated by G(a) and G{ ,8 ) rcospectively:

G(R) s =+ R*Q G(d): 5 4+ T*S
X 4 p, R (D s =+ (1 Sg
R o an(n) 5 <+ (n)Sgn
R o4 py * (1) § « (1) * oy
R = Py * (n) § 4+ (n) ¥ On
Q + p Q T + g, 1T
Q -+ an T » o 7T
Q -+ Py T =+ oy
Q = P T =+ o,

G{ R ) generates strings of the form

@By By T @ s W Ky gy ey

where 0 1];1 arc upper elements of E. Similarly G(_S ) generates strings
¢1*2 ..-.*p*(m] . (2)(1)*@15‘)2 ...Epm
where g, » |, are lower elements of E. Comparing with equations (7) and (8}

we have

§ if CP(E) = 0
(10) Rnd -
{gk *nk x gk |k 21} if CP(E) =1

where n is the subscript sequence corresponding to g.
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Theprem B. For arbitrary languages Ll’ L2 it is undecidable whether

is a context-free language.

Proof: Let Ll = (R, and L2 =)3 . R N 3 is regular (a subset of context-free)
itf there is no C-ordering on E.dEiWJ& is non-context free iff there is a
C-ordering on E. Any decision procedure for determining whether L1 " L2

is context-free would, if applied toﬂtﬂ{& , alsa decide CP(E}, which is

impossible.

(QED)

Although we cannot decide if 1.1 N L2 is context-free, we might ask
this question: Suppose we already know that L1 N [2 is context-free; can
we conskruct a grammar G which generates L1 al LZ? The next Lheorem allays

any suspicions we might have.
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Theecrem 7. Let G1 and G, be grammars and suppose it is known that L(GL) n L{G,)

ig a language. There is no procedure for constructing a grammar that

generates L(Gl)[j L(GZ)'

Proof. Suppose there is a procedure for constructing a grammar G that gencrates
L(Gl) i L(Gz), provided that it is known that L{Gl} n L(GQ) is a languape. Let
Gl = G(R) and G, = G(8); equation (9) tells us that RN S is always a language,
so construct G that gemerates Rpy 5. Now it is known that there is a decision
procedure for determining whether an arbitrary grammar generates any strings

at all, that is, whether L{G) = 3 (See, for example, GinsburgS). Applying this

procedure tells whether or nob R 8 = § and s0 decides CP(E), which is impossible.

(QED)

We turn attention to ambiguity questioms.
g. It is undecidable whether an arbitrary grammar is ambiguous.

roof: The grammars G{R) and G(S) are unambiguous. Form the grammar G(R) U G(S).

IfRN S # 3, any string in R S has two derivations, one in G(R), the other
in G(8): such a string has two derivatioms in G{RY 11 G(8). G(R) U G{s8) is

unambiguous if R 5 = 3. Any decision procedure for determining whether an
arbitrary grammar is ambiguous would, if applied to G{(R) U G{3), also decide

CP{E), which is impossible.

(QED)

Before proving the last theorem, we need a lemma.
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TLemma. Let w be any string not on the alphabetl {a, b, c}. Then the language

%
bk |k = 11

L{w) = { w LI k> 11 U {wa
ig inmherently ambiguous.
Proof: Suppose L(w) is unambiguous. Since L{w)} =w L', where

L' ={akbk c*\kzllu [a*bkck\kg 1]
it follows that L' is unambiguous. But L' is known to be inherently

2
ambiguous [see Cinsburg ]. This establishes a contradiction.

(QED)

Theorem 9. For an arbitrary language L, it is undecidable whether L is

inherently aubiguous. Fquivalently, for am arbitrary grammar G,
it is undecidahle whether there exIsts an unambhiguous grammar
' such that L(G') = L{G).

Propf: From equation (3), RN S #3 iff CP(E) = 1. R and § arc on an alphabet

Vv, so let a, b, ¢, be symbols not in V. Form the set
L(R, 5} = {R A pX " |k > 11 U (s a" b< o |k > 1}.
It is clear that L(R, §) is a language, and if RA S = &, L{R, 8) is unambiguous.
We claim that, if R S # &, L{R, S) is inherently ambiguous. $So suppose RN S # %
For any language X and regular set ¥, X N ¥ ig a language and there iy an
effective procedure for constructing & grammar for X n Y: Further, if X is

unambiguous, so is X Y. [see Ginsburg and Ullianﬁ].
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Suppese L{(B, §) is unambiguocus. ‘Therefore, for any « & (R 5)

wo% W
LR, 53n {wa » ¢}

| % .
( {r ak bk cfr Ik > 1} u {5 a* bk cklk 1} ) niewa v e}

v

*
>11 0 {wa b cklk > 13

]
—
e
&
-
[ ¢
=
v

11

L(w)

where L{w) is defined in the Lemma. Since L(R, §) is assumed unambiguous,
L(R, $) 1 {w a* b* c*] = L{w} is unambiguous. But the lemma shows L(w)

is inherently ambiguous. Therefore, for each w € (Rn §), L{R, 8) is
inherently ambiguous. Any dceision procedure for determining if L is
inherently ambiguous would, if applied te L(R, 8), also decide CP(E), which

is impossible.

(QiD)

-3

1d
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