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1 Functions

NIU is the connection between the local bus of the Monsoon! processor and the network. This
network is built of Packet Routing Chips? (PaRC), which are interconnected by ECL links and
coaxial cable. PaRC is a 4 by 4 routing chip with buffers for max. 16 packets. Each packet consists
of 12 16-bit words. The first word contains the routing information together with bits that signal
the beginning of a new packet and qualify circuit switched packets. In this case, PaRC and NIU
have to send an acknowledgement back to the sending processor when the packet has arrived at its
destination. The next 9 16-bit words are data; in the case of the Monsoon processor 72 bits Tag
‘and 72 bits of Value. The last 2 16-bit words are for CRC checking. The input and output port
to the network run at 50 MHz; the input port receives the clock together with data from the link.
NIU has to deliver a clock signal together with data going out to the network. For this purpose,
NIU receives an auxiliary clock signal from the link. The output port to the network runs on this
clock and gives it together with the data to the link. On the other side, NIU is connected to the
local bus of the Monsoon processor. This bidirectional bus operates at 25-32 MHz. So the local
bus interface of the input port and output port run at this clock.

The NIU input port is able to buffer up to 8 incoming packets. It also performs the CRC check,
verifies the Processing Element (PE) number and generates handshake signals to the network and
local bus.

The NIU output port implements two independent queues for outgoing packets. One is for normal
packets, one for circuit switched packets. There is common buffer memory for 15 packets, It can be
used for both types. The output port keeps track if a circuit switched packet was sent out. In that
case no further circuit switched packet will be sent out until the acknowledgement for this packet
is received. If there are circuit switched and normal packets in the queues and NIU is not waiting
for a circuit switched acknowledgement, a circuit switched packet will be sent out next. NIU also
generates the routing header (by a 8-bit lookup on the most significant bits of the PE number) and
the two CRC words which are sent last. Idle patterns will be sent out, if no packets can be sent.

There is also an asynchronous diagnostic port, which allows a service processor to write the status
register, load the RAM for lookup and read and reset the counters for statistics. There are counters
for each type of error, outgoing packets of both types, cycles while waiting for circuit switched
acknowledgement, cycles while input buffer is full, cycles while NIU is blocked to send out packets
and clock cycles as a time basis.

2 The Input Port

The input port receives packets like PaRC as 16-bit words together with a clock signal. As data
is only valid at the rising edge of the clock, there are edge triggered FFs which store data coming
directly from the input pads (module REG16). The output of this register provides stable data
words for the checkers (module CHECK) and the memory for incoming packets (module MEM).
Bit 15 and 14 are used in the module WORDCNT. Bit 15 of the header is the startbit. It marks
the header of a new packet (idlewords have bit 15 = '0’) and is used as a start signal for a shift
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register in WORDCNT. This shift register of 12 bit provides the write signals for the 9 data words
to memory (WORDSEL). Bit 15 of the header is also used to generate a reset signal for the CRC
checker (RESCRC) and a signal for the idle check (IDLE). Bit 14 signals that this is a circuit
switched packet and that NIU has to generate an acknowledgement which is handed back by the
links and PaRC to the sending processor. There is also a block (WPACCNT) within WORDCNT
that counts incoming packets modulo 8 and produces the packet select signal for the 8 packet
locations in MEM. This counter is incremented by word 11, which is (as word 12) not written to
memory. These two words are just used for CRC checking. So a slow asynchronous counter is used.

As incoming 16-bit words arrive at 50 MHz, it was not possible to write them directly into memory
(MEM). Instead, these words are alternatingly stored in two parallel, edge triggered registers. Now,
there are two input buses (ABUS and BBUS) to each location for a packet (module PACMEM)
and every bus is stable for two clock cycles. This gives enough time to use RAM1 cells for memory,
which have a low gate count per bit (4). They also have a tristate output. As data are read out
as 72-bit words, it was not possible to use one of LSI's hardwired RAMs. This soft-RAM also has
the advantage that its shape is variable, which could be important for the layout process, because
a large part of the output port consists of similar RAM, too.

There are three checkers parailel to the memory (module CHECK). CRCHK performs the CRC
check on incoming data. This module is identical to PaRC’s CRC checker. CRC checking is enabled
by one input line (USECRC) from the status register. The module IDLECHK is also enabled by
a signal from the status register (USEIDLE). There are only two allowed idlewords: 5555’ or
"2AAA’. All other words received during idle produce an idle error if enabled. PEVERIF compares
the PE number contained in the Tag (bits 47-38) with a reference number which can be loaded
from the diagnostic port. A mask register in that module allows the checker to disregard some bits
(mask bit = 0’ means don’t care). Like for the other checkers, there is an enable bit in the status
register (USEPE). As PE number and mask are 10 bits each, 3 locations are necessary for the 8
bit wide diagnostic port. These locations can be written or read; the write strobes are generated
in the module INSTRUMENTATION. All error signals go to INSTRUMENTATION, where they
are counted. This module also notifies the processor of the faults.

Whenever a packet is written to memory, the Jocal bus interface must be informed that anew packet
has arrived. As this signal (inverted writestrobe N 0) goes from one clock domain (received network
clock XCLK) to another (local bus clock LCLK), this signal has to be synchronized. This is done
by the module SYNC_XL. Its output goes high for just one clock cycle. It has an additional output
(WAITING), which is high whenever an event is waiting to be synchronized. This is important
if LCLK is much slower than XCLK because there could be more than one event before the first
is synchronized. In that case, one event (packet) would be lost. This WAITING signal is used in
the module GENWAIT together with a SLOW_MODE bit of the status register to stop incoming
packets until the event has been synchronized.

The synchronized signal (UP) is used in GENWAIT to increment a synchronous 4 bit counter. This
counter keeps track of the number of packets in memory. It produces both handshake signals for the
local bus interface (INRDY) and the network interface (WAIT). INRDY is high if there is at least
one packet in memory and goes low as soon as the tag (first half) of the last packet is being read.
The timing of the signal WAIT is very critical, as it has to be transmitted over links and cable to
the sending PaRC chip. There it has to arrive about 3 clock cycles before the first word of a packet
is being sent out to prevent the packet from being sent. This could not be guaranteed by deriving
this signal from counter state ’8’, which means that all buffers are already full. Instead, WAIT goes
high when the seventh packet is being written into memory. This may result in the fact that only



7 of 8 available buffer locations are being used (especially in the case of short connections). On
the other hand, as WAIT goes high while the seventh packet is received, there is plenty of timing
security. So WAIT becomes active if the 4 bit up-down counter in GENWAIT is in the state 7 or
8. As glitches on the WAIT signal must be avoided, this counter changes from '7’ to °F’ and back,
instead of from °7’ to °8’. So it is sufficient, just to derive WAIT from the 3 least significant bits.

When the processor is notified by the INRDY signal that there is one or more packets in the buffer,
it will sooner or later start to read from NIU. To do this, NREAD is activated. This enables the
output drivers of the bidirectional pads to the local bus, so that the tag of the first packet can be
latched in by the processor on the next rising edge of the clock. NREAD is also used to change
the state of the module RHPSEL(Read Half Packet SELect). This module produces output enable
signals for the memory (NOEHP - Qutput Enable Half Packet; active low). There are always two
output enable lines active; one for each output bus of the memory. They derive from two counters
and decoders in RHPSEL, which are alternatingly incremented if NREAD is low. RHPSEL also
produces a signal (CDOWN), which is always active when the tag of a packet is being read. This
signal is used for two purposes:

¢ as the decrement signal for the up-down counter in GENWAIT, which keeps track of the
number of packets in memory

¢ as a select signal for one of the two output buses in memory.

As mentioned before, there are always two output enable lines (NOEHP) from RHPSEL active to
enable one driver for each bus of MEM. This was necessary, because the tristate outputs of the
RAMI cells were not fast enough to provide sufficient setup time for the local bus directly. So
they are always enabled one cycle before their output is used to drive the output pads. This is
possible, as packets are always read in the same order in which they arrive (FIFO). So the setup
time for data to local bus could be reduced to the time to invert a FF and a driver and switch a
2tol multiplexer in addition to the time to drive an output pad.

3 The Output Port

This part of NIU is more complex than the input port. The reason is that there are two independent
output queues - one for circuit switched packets and one for normal packets. As it is not yet clear
what percentage of outgoing packets will be circuit switched packets, it was not optimal to give
each queue a fixed number of buffers. Instead, both queues share one memory with a capacity of
15 packets. As it is necessary for both queues to establish FIFO behavior, there must be two real
FIFOs for the addresses of the packets. When a packet is sent out, its memory location is free
again and must be made available for new packets. It would have been possible to use a FIFO for
the addresses of free locations, too. In fact, absolutely the same FIFQ as for the two queues could
have been used. But there were two ob Jjections against that:

* The FIFO with free addresses must be loaded with all 15 avajlable addresses during every
HW reset. This is nearly impossible if (gatesaving) RAMs are used for the FIFOs.

¢ A FIFO contains more information than needed, because it is not necessary that free memory
blocks are used in the same order in which they get free.



Therefore a solution with just one FREEBIT per memory location and a fixed priority for occupying
blocks was more adequate, as less gates are needed to implement that.

Whenever the processor wants to send out a packet, it first checks the signal QUTRDY. This signal
is high as long as there is at least one free location in memory and is generated by the module
FREE_BL. FREE_BL also gives out the address (4 bits) of a free location (WBLOCKADR) and
the decoded select signal (WB LOCKSEL, 15 bits) for the memory. The next step for the processor
is to activate LWR and - if this packet should be a circuit switched packet - CSW. They are used
in the module LBCTL (Local Bus ConTroL) to produce the following signals: OCC (OCCupy a
location) goes to the module FREE_BL. It causes the FREEBIT assigned to the current address to
change to 0’ and the address and select signals to stay stable for two clock cycles. Either IN.NO
or IN_CS are active for the first clock cycle after LWR, depending on CSW. These signals store
the current address either to the circuit switched or to the normal address FIFO. LBCTL also
generates iwo write strobes, WFH and WLH which are active for the high part of the clock during
the first (WFH) or the second (WLH) clock cycle after LWR became active. There is also a set
of edge triggered FFs to store data from the local bus. Strong drivers generate the data input to
all memory locations in parallel. Bits 47:40 also go to D inputs of an address latch for the 256X 8
lookup RAM and are stored there with the first write strobe (WFH). The output of the RAM is
stored to the current memory location with the second write strobe (WLH). So all the information
needed to construct the header for this packet is ready. There is a second address latch, which can
be written from the diagnostic port. A line from the status register (LOADRAM) selects one of
the two address latches either for normal operation (low) or to load or read the RAM (LOADRAM
high).

Both queues for circuit switched and normal packets are implemented as identical modules (ADR_FIFO).
The structure of this module is similar to the input port. An address is written to the FIFO by
asserting IN for one clock cycle. IN is used as a write sirobe for the 16X4 RAM. One clock cycle
delayed, it is used as an enable signal for a 4 bit counter (CN T4S), which creates the write address.
In order to inform the output side of the FIFO that there is an address in the next memory lo-
cation, IN has to be synchronized to the output clock domain (OCLK). During normal operation,
IN is directly used. But if the processor works at a much lower clock frequency than the network,
it might happen that the second half (Value) of a packet is not yet written to memory while the
output port already reads that location. Therefore SLOW_MODE, a line from the status register,
selects the one cycle delayed version of IN to be synchronized. On the output side of the FIFO,
there are two synchronous 4 bit counters. One of them is incremented by the synchronized IN
signal. This counter keeps track of the incoming packets. The other counter s incremented each
time a packet of this queue is sent ont. This counter provides the read address for the FIFO RAM,
which contains the address of the next packet of this queue. There is a comparator, too, which
produces an EMPTY (and inverted N EMP) signal for this FIFQ. As there are only 15 memory
locations for packets and each queue is able to store all available 15 addresses, no handshake signal
to input side of the FIFOQ is necessary.

The EMPTY signals of the two queues are used in the module QUTCTL (OUTput ConTroL).
This module implements the following scheduling strategy: circuit switched packets are sent out
whenever possible. That means, when the circuit switched queue is not empty, the receiving PaRC
chip is not asserting WAIT and the acknowledgement for the last sent circuit switched packet has
been received (WFACK low). Otherwise, if the normal queue is not empty and WAIT is not active,
a normal packet is being sent out. If no packets can be sent out, idle patterns are sent (alternating
"2AAA’ and '55557).



As the arriving WAITIN signal is not synchronous to OCLK, it has to be synchronized. There
is a status bit NO_PAC_OUT which is treated like WAITIN. This way, NIU can be stopped from
sending out packets. The state of OUTCTL is changed in two steps. First, either the normal or the
circuit switched queue is chosen according to the scheduling strategy. A FF for one of the cases is
set. Dependent on the selection, ENB goes high. This selects the address from the circuit switched
queue to be decoded and applied to memory and FREE BL. In that case, the signal WFACK
in OUTCTL is set to indicate that NIU is now waiting for the acknowledgement for this circuit
switched packet. When it is received at its destination, a circuit switched acknowledge signal is
passed back by all PaRC and link chips. As this signal (CSWACKIN) arrives asynchronously, it is
synchronized to OCLK. Then it is used to reset WFACK.

In the second step, after either an address from the circuit switched or normal queue has been
selected, START is set, unless the internal wait signal (WAITINT) goes high on the same cycle or
NWAITSINT is active. This signal is derived from WAIT.SYN C which is active if SLOW_MODE
is asserted and an event is waiting to be synchronized from OCLK to LCLK in F REE_BL. This
is done to keep the address stable until the corresponding FREEBIT in FREE_BL is set by the
synchronized signal.

START goes to two modules: RWSET, (Read Word SELect) and O_.MEM. RWSEL consists princi-
pally of two alternatingly enabled shift registers. They provide the output enable signals to memory
(RWOE - Read Word Output Enable) for the 10 first words of an outgoing packet. There are always
2 enable signals active, one for each of the two output buses of the memory. Bit 4 of RWOE also
goes to FREE_BL. There it is synchronized and used to set the corresponding FREEBIT. RWSEL
also produces WORDS, a signal that is active for just one clock cycle when the last word is read
out of memory. It is used to reset OUTCTL. There is also the signal WORD1011, which selects
the CRC words for output. Finally, a signal WORD2468 is generated that determines, which of
the two output buses is to be selected. In O_MEM, START is used to switch to idlewords if no
packet can be sent and to reset the CRC generator after each packet.

O.MEM contains memory for 15 packets, each 144 bits of data and 14 bits for the header (lookup).
It was not possible to connect all tristate outputs to just two 16 bit buses, as the load would have
been 15 x 5 plus wireload. Even with an enable line one cycle ahead this was not fast enough.
So there are 5 groups of 3 locations each. Their outputs are internally connected via two tristate
buses. There were two ways to connect the 5 x 2 buses:

¢ tristate drivers for each group and only one multiplexer to chose one of the two buses.

¢ two 5-to-1 multiplexers and one multiplexer for the output bus.

The first version had the advantage that the total of wiring is rather low. But there is the problem
of high power consumption and noise on the bus if drivers overlap for a short time on the bus. And
as there is already a decoded select signal (RBLOCKSEL) available, it seemed apropriate to use
AND-OR gates instead of a multiplexer or tristate driver. There is one more multiplexer to select
either the first (ABUS) or the second (BBUS) or an idleword to go to the output register. The scan
inputs of the output register are used to feed the CRC words back to the output. The enable line
SELCRC is connected to WORD1011 of the module RWSEL. If START from OUTCTL is low, the
idleword is selected. One clock cycle delayed, it is also used to reset the module that generates the
CRC words (CRC32F). This module is directly taken from PaRC.



4 Instrumentation

This module contains the status register, counters for errors and statistics and most of the logic
for the diagnostic port.

The status register contains the following bits:

USECRC: enables CRC checking

USEIDLE: enables checking of idlewords
USEPE: enables PE number verification
SLOW_MODE: must be set if LCLK < 22M Hz

CNT_ENA: enables counting of statistics; this signal is synchronized to the apropriate clock domain
before being used as an enable signal

NO_PACN: sets WAIT and therefore stops incoming packets
NO_PAC_OUT: is treated like WAITIN ; no packets are sent out

NO.CSACK: inhibits sending an acknowledgement for a circuit switched packet (this can be done
by PaRC)

CHKACK: if set, an arriving circuit switched acknowledgement is treated as error if NIU js not
waiting for it

LOADRAM: address for RAM 256X8 is taken from latch which is loadable from diagnostic port

TESTMODE: selects the lower 8 bits of LBDATA as address for the lookup RAM256X8. This bit
also changes the input of every 8(4) bit portion of the event counters to TESTANC, which
can be enabled by a write on the diagnostic port.

The status register can be written and read via the diagnostic port.
The following 8 kinds of errors are possible;

EXTERR: external error from a link chip that should be passed to the processor
PERR: PE number wrong

IDLERR: wrong idleword

CRCERR: CRC error

NW_SPACERR: packet written to full input buffer

RD_SPACERR: processor read packet from empty input buffer

WR_SPACERR: processor wrote packet to full output buffer

CSACKERR: circuit switch acknowledgement received, although not waiting for it



There is a 2 bit Gray Counter for every type of error in the module ERRCNT. The counters stick
to "10’ when more errors arrive (transitions: 00-01-11-10- 10-10...). These 16 bits can be read out on
two locations of the diagnostic port and the counters can be reset by a write to one location. They
are also reset by the general reset NRES. Read location 06’ consists of (bits 7:0): IDLERR(1:0),
PERR(1:0), CSACKERR(1:0), NW_SPACERR(1:0). WR_SPACERR(1:0), RD_SPACERR(1:0),
EXTERR(1:0), CRCERR(1:0) can be read as bits (7:0) of location "07. To reset all error counters
any value can be written to '09".

INSTRUMENTATION also contains 6 counters for statistics:

COUNT_NO: number of outgoing normal packets (24 bits)

COUNT-CS: number of outgoing circuit switched packets (24 bits)
OCYC.BLOCKED_SEND: NIU could send packets, but WAITIN blocks (28 bits)
LCYCINBUF_FULL: NIU can’t receive packets from net (28 bits)
OCYC_WFACK: NIU waits for ack of a circuit switched packet (28 bits)

OCLK: clock cycles as a time basis {28 bits)

These counters are asynchronous and there can be no overflow of the counters for at least 4.02 sec.
In order to read the contents, the CNT_ENA bit in the status register must first be set to ’0’. There
are 20 locations which can be read via the diagnostic port. To test these counters, TESTMODE
must be set and the counters should be reset. Now, every 8(4) bit portion of these counters can
be incremented by the falling edge of TEST_INC. A write to address "0A’ of the diagnostic port
activates TEST_INC. So it is possible to set all bits of these counters with just 255 write operations.
And resetting TESTMODE won’t destroy the contents of the counters, so that subsequent normal
operation can generate a carry signal changing the state of the whole counter.

The following locations are reachable by the diagnostic port:

READ

00’ status register low

'02’ status register high(11:8) : status register high(11:8)

04 RAM output

06" error cnt low (NW_SPACERR, CSACKERR, PERR, IDLERR)
'07 error cnt high (CRCERR, EXTERR, RD_SPACERR, WR_SPACERR)
08’ COUNT_NO(7:0)

'0A” COUNT NO(15:8)

'0C* COUNT_NO(23:16)

'0E’ COUNT_CS(7:0)

"10° COUNT_CS(15:8)

122 COUNT_CS(23:16)

'14 OCYCBLOCKED.SEND(7:0)

'16> CCYC_BLOCKED.SEND(15:8)

’18° OCYC_BLOCKED_SEND(23:16)

"1A” LCYCINBUF_FULL(7:0)

"1C’ LCYC.INBUF_FULL(15:8)



1E’ LCYCINBUF_FULL(23:16)

20’ LCYCJNBUF_FULL(27:24):OCYC_BLOCKED_SEND(27:24)
22" OCYC_WFACK(7:0)

24’ OCYC_WFACK(15:8)

’26’ OCYC_WFACK(23:16)

28" OCLCK(7:0)

"2A° OCLCK(15:8)

'2C’ OCLCK(23:16)

2E’ OCLK(27:24) : OCYC_WFACK(27:24)

’30’ PE reference reg low

'31’ mask reg low
’32’ PE reg high(9:8=3:2) : mask reg high(9:8=1:0)

WRITE

00" status register low
’01 status register high(3:0)

02" address latch for RAM

03’ RAM

04’ PE reference reg low

05" mask reg low

06’ PE reg high(9:8=3:2) : mask reg high(9:8=1.0)
07" global reset for NIU (NRES)

'08’ reset all event counters

09’ reset error cnt

'0A’ TESTINC increments all 8(4) bit portions of the event counters

5 Timing Specification

All delay times given here are worst case commercial (weecom) and a load of 50 pF is assumed
for all signals on the local bus. It is important to realize that these specifications derive from
delay estimates based only on the number of receivers. No physical layout or floorplan is regarded.
Therefore the whole timing has to be revised after the floorplan has been developed.

5.1 Network Interface
All timing behaviour of NIU to network-side is identical to PaRC. Only WAIT, the outgoing
handshake signal for incoming packets, differs. It gets active while word 9 of the seventh packet

is being received. Therefore, the whole transmission time of packet 8 is available to stop PaRC
sending a ninth packet.

5.2 Local Bus Interface

OUTRDY_P stable 25.5 nsec after rising edge of ext. clock
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Figure 1: Write to NIU on local bus
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Figure 2: Read from NIU on local bus

INRDY_P  stable 20.6 nsec after rising edge of ext. clock

LWR.P requires 11.3 nsec setup time before rising edge of ext. clock (12.8 nsec before int. clock)
CSW_Pp requires 4.4 nsec setup time before rising edge of ext. clock (5.9 nsec before int. clock)
NREAD.P requires 13.5 nsec setup time before rising edge of ext. clock (15 nsec before int. clock)
LBDATA_P output enabled 11.1 nsec after NREAD; new data stable 20.3 nsec after rising ext. clock
LBDATA_P requires 1.5 nsec setup time before rising edge of ext. clock (3 nsec before int. clock)

LCLE_P 10.8 nsec < pulsewidth < 21.9 nsec at 32 MHz.
Worst case/typical process parameters (factor 1.5) were considered.

5.3 Diagnostic Port

WRITE

DIAGADR Tsetup 10 nsec; Thold 0 nsec
DIAGDAT Tsetup 0 nsec; Thold 10 nsec
DIAGWN Twidth 28 nsec

READ

DIAGADR Tsetup 0 nsec; Thold 10 nsec

10
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Figure 3: Write on diagnostic port
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Figure 4: Read from diagnostic port

DIAGRN to DIAGDAT_P: 26.4 nsec

6 Functional Tests

6.1 Submodules

In order to shorten the the time to debug the whole design, all critical submodules were simulated
before they were used in the chip. This also results in a short cycle time for changes and resimu-
lation, as the time to link a circuit depends very much on the complexity. The following modules
were functionally tested.

WORDCNT

Initialization: NRES active; ENA and CSW low {2 clock cycles)

ldle: NRES high (inactive); ENA low; CSW don’t care = WORDSEL remains '000°, IDLE and
RESCRC stay high and CSWACK is low. WPACSEL stays at 01’
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Normal packet: ENA high; CSW low => IDLE and RESCRC change to low (same cycle); WORD-
SEL takes the values 001-002-...-800-000; CSWACK remains low; RESCRC goes back to high
with ’400’ (word 10) and IDLE with 800’ (word 11); WPACSEL changes to 02’ with '800’.

CS_packet: ENA and CSW high = IDLE and RESCRC change to low; CSWACK is high for one
clock cycle (together with ’001’); WORDSEL takes the values 001-002-...-800-000; WPACSEL

changes to 04’

Inhibit acknowledgement: NO_CSACK changed to high; circuit switched packet = CSWACK
remains low; WPACSEL changes to 08’

Directly following packets: ENA is already high when the first packet finishes (’800%) = WORDSEL
changes from '800 to *001’; IDLE doesn’t go high; RESCRC is active for one cycle ( '800%).

Sync_signal NO goes low with the first word of each packet for one cycle

The behaviour of all signals is examined by this simulation with the exception of WPACSEL. This
will require more packets (at least 8) and will therefore be handled in the final simulation for the

whole chip.
GENWAIT
Initialization: NRES active; UP and DOWN low; WAITING, SLOW_MODE and NO_PACLIN low

(2 cycles).

Idle: NRES inactive; UP and DOWN low; WAITING, SLOW_MODE and NO_PAC.IN low = no
changes.

Packet arrived: UP high for one cycle = INRDY goes high (counter 1%)
More packets: UP high for 3 cycles = counter ’4’

Packet while read: UP and DOWN active for one cycle = counter 4’

Read: DOWN active for two cycles = counter '2’; INRDY still active

Read and arriving packets: UP and DOWN active for 2 cycles = counter ’2’

More packets: UP high for 6 cycles = counter '8’; WAIT got active after 5 cycles (counter ’7°) and
is still high; LCYCINBUF.FULL is high while LCLK is low and WAIT is high;

Idle: UP and DOWN low; no changes besides LCYC_INBUF_FULL.

Read: DOWN active for one cycle = counter ’7’; WAIT still high

Packet arrived: UP high for one cycle = counter *8’; WAIT still high

Read: DOWN active for two cycles = counter *6’; WAIT low; LCYC_INBUF_FULL remains low.

Too_many pack arrived: UP high for 3 cycles = NW_SPACERR gets high and nonconsistent status
(must be reset).

Reset: NRES active for two cycles = counter 0’
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Read from empty buffer: DOWN active for one cycle = RD.SPACERR is high for one cycle and
nonconsistent status (must be reset).

Asynchronous components of WAIT overlapped with the former simulation is the test that WAIT
must be additionally high if WAITING and SLOW_MODE or NO_PAC.IN is high.

This simulation covers all combinations for idle, UP, DOWN and both as well as the two possible
errorcases. It also proves that WAIT is high (and remains high without spikes) at states '7’ and 8’
and transitions between them. It also checks the additional components of WAIT and the statistics

signal.

RHPSEL

Initialization: NRES and READ are low for two clock cycles = CDOWN is low and NOEHP
'FFFC’ (bits 0 and 1 active).

Idle: NRES inactive; READ low = no changes

Read: READ active for two clock cycles (Tag and Value) = CDOWN goes immediately high and
down after the first rising edge of the clock. There is a spike after the second clock, but
CDOWN is only used synchronously. NOEHP changes from 'FFFC’ to 'FFF9’ (bits 1 and 2
active) and to 'FFF3’ (bits 2 and 3 active)

Idle: READ low = no changes

Read_4: READ active for 8 cycles (4 packets) = CDOWN high immediately and then on every
second cycle (and spike at the end). NOEHP changes 'FFF3"-..-'F3FF’ (always two bits

enabled)
Idle: READ low = no changes

Read_3: READ active for 6 cycles (3 packets) = NOEHP changes 'F3FF’-.. - 'FFF(’ (initial status;
8 packets read)

Idle and read: like after initialization
IGLECHK

Check.enabled ENA high; '5555°2AAA’ = ok; TAAAA”, '5554°, "2A8A”, ’5D55” = IDLERR. high;
Check_disabled ENA low; 'FFFF’ and ’0000° = IDLERR remains low.
Check.enabled "2AAA’ and '5555’ = ok; '"AAAA’ = IDLERR high.

PEVERIF

Initialization: set reference '3FF’ and mask '3FF’ (no don’t care bits) DIAGADR is set to 0%, 1’
and ’2’ to verify the written reference and mask

Right PEnumber: DIN *3FF’ and SELPE high = PERR low.
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Disabled: DIN '000’ and SELPE low = PERR low.
Enabled and error: DIN "2FF’ and SELPE high = PERR high.

Error masked: set mask to ’300° (lower 8 bits don’t care); *3F0’ = PERR low; "30F’ = PERR low;
'0FF' = PERR high.

This functional test contains all principially different cases: PE equal reference, PE mnot equal
reference, PERR not enabled, error masked out, load and verify the registers. There is not a
complete test of all possible bitwise error combinations. But as the checker is drawn with buses, it
is not possible that some bits are right connected and some wrong.

LBCTL

Initialization: NRES active; LWR, CSW and CSWACKIN low for two cycles => all output signals

low,
Idle: LWR, CSW and CSWACKIN low = all output signals low.

Write: LWR high for two cycles (Tag and Value) = OCC goes immediately high; IN.NO goes high
for the next cycle and WFH is high for the first positive pulse of LCLK. WLH is high for the
next positive pulse of LCLK. There is also a spike on OCC at the end of LWR, but OCC is

only used synchronously.

CSWACK: CSWACKIN goes high for a short time; synchronized = CSWACK goes high for one
cycle.

Write cspacket: LWR is high for two cycles; CSW only for the first = IN_CS is high for the next
cycle and WFIH and WLH like before.

Idle: LWR, CSW and CSWACKIN low = all output signals low.

Consecutive writes: LWR is active for several cycles = OCC is going high immediately and then
on every second cycle; INNO or IN_CS go high depending on CSW: WFH and WLH are
high alternatingly for the positive pulses of LCLK.

This simulation contains all transitions of the circuit. However, there are certain timing constraints
especially for LWR and CSWACKIN, which are not covered by this functional test.

ADRFIFO

Initialization: NRES active; SLOW_MODE, IN, OUT low = EMPTY goes high

Adrdn: ADRIN set to 0" and IN high for one cycle (ADRIN is stable for the next cycle too) =
ADROUT gets the value '0’ and EMPTY goes low.

Filling Buffer: 15 more addresses are written into ADR_FIFO. Each address is applied to ADRIN
for two cycles; IN is active for each first cycle.

Read: while filling buffer, the first address '0’ is taken out of ADR.FIFO. Then ADROUT takes
the value of the next address in the queue "F”.
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Read until empty: There are still 15 addresses in the queue. They are read out on following cycles
by setting OUT high for 15 cycles. The addresses appear after each rising edge of QCLK in
the order in which they were written. EMPTY goes high after the last address (’8") has been
taken out of the fifo.

SLOW_MODE is set. Then ADR_FIFOQ is reset and one address '8’ written into the fifo. EMPTY
goes low like before, but one LCLK cycle later.

The final simultation of the whole chip contains more than only one cycle of filling and reading
out. But the boundary conditions like queue full (15 packets), queue empty and SLOW_MODE are
covered by this.

FREE_BL

Initialization: NRES active for 2 clock cycles. OCC, SLOW_MODE and REL are low; RBLOCK-
ADR is undefined. = WBLOCKADR and WBLOCKSEL are also undefined. OUTRDY,
WR_SPACERR and WAIT_SYNC are low.

Occupy one address: OCC is active for one clock cycle; on the next rising edge WBLOCKSEL
takes the value 0001’ and WBLOCKADR 0.

Idle: OCC and REL remain low = all outputs unchanged
Consecutive occupying: 15 more locations are occupied on every second clock cycle

Release while occupying: one address RBLOCKSEL "0001 is released and re-occupied on the next _
cycle

OUTRDY: changes to low after 12 locations were occupied, one released and 4 more occupied.
Release location 4000’ = QUTRDY high

Occupy block (*4000%); QOUTRDY low

Release location '0800° = OUTRDY high

Release location 0001’

Occupy two loacations = QUTRDY low

Occupy next loacation = WR_.SPACERR goes high for one cycle (no location free)
SLOW.MODE = WAIT.SYNC is high whenever a signal is waiting to be synchronized

OUTCTL

Initialization: NRES active for 3 clock cycles.

Normal packet: NO_EMP low; CSP_EMP high; WAITIN, WAITSYNC and NO_PACOUT low
= ENB remains low, START goes high after the second cycle, WFACK remains low and
COUNT.NO changes to high
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Termination WORDO releases ENB and on the next cycle START; COUNTNO changes to low
and NORM_OUT is high for one cycle.

Suppressed CSACKERR: CHKACK low and CSWACKIN while WFACK low

CS_packet: CSP_EMP low (also NO_EMP) = ENB is set and START on the next cycle; WFACK
and COUNT_CS go also high

CSWACKIN releases WFACK together with WORDY; no acknowledgement error
WORD9 terminates ENB, START and COUNT.CS and activates CSP_OUT.

Waiting normal packet is selected immediately after former selection is released. START goes high
after one cycle

CSWACKIN results in a CSACKERR, because WFACK is low.
WAITIN is synchronized (2 cycles) and inhibits the selection of a waiting normal packet
NO_PAC_OUT has the same effect as WAITIN.,

WAITSYNC also inhibits the selection of a new packet, but delays NORM_OUT until the falling
edge of WAIT SYNC; START terminates as usual with WORD9

WAITIN even suppresses START if applied two cycles ahead; the selection cs/normal packet is
fixed then. That means, if a cs packet gets available while waiting and & normal packet was
selected, the normal packet will be sent out.

RWSEL

Initialization: START is low for 3 cycles = WORD2468 is high, WORDY, WORD1011 are low and
RWOE is 003’ 7

Idle: as long as START is low, no changes in the outputs.

START goes high = WQORD2468 toggles with every clock, RWOE takes the values 003-006-00C-
---300-201-003. WORDS is high with '201’; WORDI1011 for the next two cycles. START is
supposed to change to low for the second half of WORDI1011.

Idle: START remains low for one cycle; no changes.

Consecutive START: there is always one low cycle between two packets. This does not mean that
there are idle patterns sent out!

ERRCNT

Initialization by NRES and then by ERRES = ERRCNT(ADRO low} = "00" (single counters 00);
ERRCNT(ADRO high) = 00’

Events on the lower half of ERRCNT = ERRCN T(ADRO low) = ’55” (single counters 01); ER-
RCNT(ADRO high) = 00’
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Events on the upper half of ERRCNT = ERRCNT(ADRO low) = ’55% ERRCNT(ADRD high)
:1553

Events on the lower half of ERRCNT = ERRCNT(ADRO low) = "FF” (single counters 11); ER-
RCNT(ADRO high) = 55’

Events on the upper half of ERRCNT = ERRCNT(ADRO low) = 'FF’; ERRCNT(ADRO high)
=!FF!

Events on the lower half of ERRCNT = ERRCNT(ADRO low) = "AA’ (single counters 10); ER-
RCNT{ADRO high) = 'FF"

Events on the upper half of ERRCNT = ERRCNT(ADRO low) = ’AA", ERRCNT(ADRO high)
=’AA’

Events on the lower half of ERRCNT = ERRCNT(ADRO low) = *AA’ (single counters 10); ER-
RCNT(ADRO high) = *AA’ counters stick

Events on the upper half of ERRCNT = ERRCNT(ADRO low) = *AA’; ERRCNT(ADRS high)
= !AA’

CNT8A

Initialization: NRESCNT is low; EAN is high and CNT is low. TESTMODE is not selected. =
DOUT is *00’ and NCY is low.

Counting: four events happen, then ENA changes to low and DOUT doesn’t change anymore.
Then ENA goes high again and counting starts.

Disabled again and the counters are reset.
Normal counting again; NCY goes high.

TESTMODE is set after CNT stops. Now TEST_INC increments the counter 5 times and TEST-
MODE is reset afterwards.

Counting starts again. Finally, DOUT changes to '00’ and NCY falls, This would increment the
following counter (type CNTSB ).

Some more pulses are counted.

6.2 Functional Test of the Complete Chip

Extensive simulation for the complete circuit is necessary, because a lot of the possible problems
derive from the interaction of the modules. There are also a number of less critical modules, which
were not simulated independently. But their correct behaviour must also be proved. The period
of LCLK was chosen to be 30 nsec (33 MHz), XCLK and OCLK 20 nsec (50 MHz). There may
be new problems when LCLK is only 22 MHz (cycle 46 nsec; no SLOW_MODE) or when LCLK is

below that (SLOW_MODE set). These cases are treated in independent simulations.
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Initialization: prepare NIU for normal operation: all checkers enabled, counters enabled and reset,
load (here only one location 33’) lookup RAM; set reference for PE verification and mask
(no don’t care bits). HW reset for at least 3 clock cycles.

Verification: the values written before are read back.

In the following, the functional tests of the input buffer and the output buffer as well as the
instrumentation are described independently. Nevertheless, in the simulation of the complete NIU

chip they are overlapped.

6.2.1 Stimuli for the Output Port

Idle: LWR_P low; no packets in the output queue = no changesin state; idle patterns (alternatingly
'9555" and "2AAA’) sent out to network and OUTRDY_P is high.

Normal packet from processor: first Tag and then Value applied to the bus and LWR._P high for
two cycles; CSW_P low. OUTRDY_P remains high. WBLOCKADR 0’ is occupied and Tag
and Value stored in there. IN.NO stores the address "0’ to the ADR_FIFO for normal packets.
NORM_EMP changes to low. RBLOCKSEL takes the value ’0001° and START changes to
high. Then RWOE takes the values 003-006-...201-003. So the two buses ABUS and BBUS in
O-MEM are driven alternatingly and take the (inverted) values of the 16 bit words contained
in the packet. The header is first taken from ABUS. WORD2468 selects the bus; in case
of high ABUS. After word 9 SELCRC goes high for two cycles of OCLK. This selects the
CRC words to be sent out. After word 9, NORM_OUT switches the ADR_FIFO to the next
address. REL goes high and causes the current address 0’ to be released in FREE_BL.

4.normal packets from processor directly following each other. WBLOCKADR 0’ is re-used for
the first packet; °1’, ’2’, ’3’ for the other three. The packets are sent out in the order of their
arrival and with no idlewords between them. The addresses '0°,°1%, ’2’, "3 are released in this
order. NORM_EMP goes back to high after address ’3’ has been taken out of the FIFO and
RBLOCKSEL is undefined again. '

Disable counting of statistics: 07’ is written into location "00” of the diagnostic port (status register
low) = ENA_CNT = 0; This is an important test, because it must be possible to disable
counting during normal operation without changing the contents of the counters. As the
diagnostic port is asynchronous, ENA_CNT is synchronized to both clock domains in which
events are counted. The transitions must not be at the same time als the rising edges of the
counted events.

CS_packet from processor stored in location '0’; CSP_LEMP goes low; ENB changes to high and the
packet is sent out to the network. NIU is now waiting for the acknowledgement for this cs
packet.

Normal packet from processor stored in '1% NORM_EMP goes low. After the c¢s packet has been
sent out, the transmission of this normal packet starts immediately with no idle pattern
between them. Then location "1’ is released again and ’1” is taken out of the queue for normal
packets. RBLOCKSEL is undefined again and idle patterns are sent out now.

Enable counting of statistics: *17’ is written into location *00° of the diagnostic port (status register
low) = ENA_CNT = 1; Disabling and enabling of the counters is done several times during
simulation.
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Sequence of packets from processor: 2 normal packets (location 0 and 1), 1 cs packet (2), 10 normal
packets (locations 3, 4, O(free again), 5, 6, 7, 1, 8,9, A), 1 cs packet (3), 4 normal packets
(stored in B, C, D and 4) and 1 cs packet (location E}. Now, all locations are occupied and
OUTRDY_P changes to low after the Tag of the last packet was written to NIU.

Transmission: The packets are sent out in the following order (locations): 0- 1 - 3 ("2’ is a cs
packet and WFACK is still high) - 4 (CSWACKIN_P is high for a short time; resets WFACK)
- 0 (was selected before WFACK was reset; after *0” is released, there is a free location again
and OUTRDY_P goes back to high) - 2 (cs packet; CSWACKIN_P received immediately) - 3
(another cs packet) - 5 (CSWACKIN_P received again) - E (last cs packet; CSP_LEMP changes
to high) - 6 - 7- 1 (WAITIN_P changes to high 2 cycles before START would go high for '8’
START is suppressed, but the selection of '8’ for RBLOCKSEL (’0100°) remains).

WAITIN_P changes to low and the earlier initiated transmission of the packet stored in ’8’ starts.
Next, the packets from *9’, A’ and "B’ are sent out to the network. While 'B’ is sent,

WAITIN_P is set high again. Transmission of B’ is completed, then the next packet from the
normal queue (location 'C’) is selected, but START remains low. When WAITIN_P returns
to low, START comes up and the before selected packet is sent out. Then D’ and 4’ are sent

out.

Processor writes two packets in a row; the second is a cs packet. Both are sent out to the network
in the same order; WFACK is set again and both addresses 0’ and *1° are releaseq.

Processor writes 15 normal packets into the output port. As WAITIN_P is low, packets are sent out
immediately and locations are re-used (0, 1, 2). OUTRDY_P remains high. While the third
packet is being sent, WAITIN_P goes high and delays sending of the next packet. WAITIN_P
goes high at the end of the transmission of the 7th packet and suppresses START.

WAITIN_P changes back to low and the remaining 8 packets are sent out in the same order in which
they were written to the buffer (they are all normal packets). NORM_EMP and CSP_EMP

are both high (the output buffer is again empty); idle patterns are sent.
HW_reset because of the input buffer (constant *5555’ is sent out as idleword).

WAITIN is set and the processor writes first 8 ¢s packets in a row. As WAITINT s active, no
packets are sent out. 8 of the 15 locations are now occupied (0,1,2,3,4,5,6,7).

Processor writes 8 more packets out to NIU: one cs packet, one normal and 6 more cs packets. For
the first 7 packets the available locations '8...F’ are used. After writing the Tag of the seventh
packet to NIU, OUTRDY_P changes to low. But as the processor writes one more packet,
WR.SPACERR goes high and increments the according error counter. FREE_BL delivers
WBLOCKADR = 0’ and WBLOCKSEL = ’0000° if no location is free. Therefore none of
the former packets is overwritten, because no block in memory is selected. But the EMPTY
signal of the FIFQ would change to high if there are 16 addresses in one queue. Therefore
and because the 16th packet is lost, NIU has to be reset.

But here NIU was not reset and starts to send the first cs packet after WAITIN goes back
to low. Then WFACK is active and the only normal packet (location 9) is sent. Then the
normal queue is empty. As no CSWACKIN_P was received since the last cs packet was sent
out, WFACK is still high and only idle patterns can be sent.

Stop of the clocks to go to TESTMODE (see instrumentation ).
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6.2.2 Stimuli for the Input Port

Idle: idle patterns received = no change in internal signals; nothing stored.

CS._packet received from network: WWORDSEL takes the values '000-001-002-...-400-800-000° as
the 16 bit words are stored in memory; WPACSEL changes from ’01° to ’02 on 800’ of
WWORDSEL. UP causes INRDY_P to go high. WAIT_P stays low (buffer not yet full).
As the CRC words are wrong (self-made ') and USECRC is set, CRCERR goes high and

increments the according error counter.

Normal_packet from network: written into location '02’; WPACSEL switches to the next location;
no errors - CRC words right

Read one packet: NREAD_P low for two cycles; LBDATA P drives bus; NOEHP changes twice =
Tag (first cycle) and Value (second cycle) of the first packet are given out to the bus. DOWN
is active for one cycle; INRDY_P remains high (still one packet in buffer). There is a short
pulse on DOWN after the second cycle, but this has no effect, because DOWN is only used
synchronously.

Wrong idle pattern from network: *555D°. As USEIDLE is set, IDLERR is high for the whole time
’555D" is received.

CS_packet received from network. CSWACKNET.P is produced; WPACSEL changes to 08’ and a
CRC error is produced for the wrong CRC words. As the PE number was also wrong, PERR
also goes high for one cycle.

CS_packet again received from network; new WPACSEL is ’10’. There are now 3 packets in the
input buffer.

Packets are received from the network: One normal, then one idle pattern, then one cs packet
followed by two idle patterns, and two more normal packets without idle patterns between.
Then WAIT_P changes to high (there are now 7 packets in the input buffer) while the first
CRC word of the 7th packet is received, but (assuming WAIT arrives too late on the sending
side to stop the next transmission) one more packet is received. WPACSEL changed ’10-20-
40-80-01°.

Processor reads 4 packetsin a row: NOEHP changes 'FFF3-FFE7-FFCF-FF9F-FF3F.FETF-FCFF-
FIFF-F3FF’ on every cycle of LCLK. WAIT.P returns to low after the Tag of the first packet
is read, because the 8th packet is not yet completely received. So the counter changes from 7
to 6. Two cycles later, the 8th packet increments the counter. But as the processor continues
to read, UP and DOWN are active at the same cycle = WAIT.P remains low.

Packet received from network; 5 packets in the buffer.
Processor reads two more packets from input buffer
Packet received from network; 4 packets in the buffer.
Processor reads one more packet from input buffer

Packet received from network
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Processor reads seperately 3 packets; INRDY_P remains high, WAIT_P low. One packet is left in
the input buffer.

3_packets are received from the network; the second is a cs packet and produces an acknowledge-
ment, WAIT_P remains low; 4 packets are in the buffer.

3-packets are received from the network; the second is a cs packet and produces an acknowledge-
ment. WAIT_P goes high at the end of the last packet; the buffer contains 7 packets.

Processor reads one packet; WAIT_P goes low as there are now 6 packets in the buffer.

2_packets are received from the network; the second is a cs packet and produces an acknowledge-
ment. WAIT_P goes high at the end of the first packet; the buffer contains 8 packets now.

Processor reads 9 (1) packets from input buffer. After the Tag of the second packet is read, WAIT.P
changes to low. Then six more packets are read normally from the input buffer. After the Tag
of the last packet, INRDY_P goes low. Normally, the processor should stop reading now, but
one more packet is read. This procuces a RD_.SPACERR and the controller gets confused:
INRDY_P and WAIT_P go high.

HW _reset is necessary after reading from the empty input buffer.

Clocks stopped to simulate TESTMODE for Instrumentation.

6.2.3 Stimuli for the Instrumentation

Initialization as described in the beginning.

Errors are detected during operation: CRCERR causes ERR_P to go high, but there is no imme-
diate reaction. Then a CSACKERR, and an IDLERR occur. There is also an EXTERR P
coming from a link. Then a PERR and 4 more CRCERR happen before the errorcounters
are read and reset, ‘

Counting of statistics is enabled during the initialization. But it is very important that the counter
can be disabled while NIU performs normal operation whithout destroying the contents. So
'07’ (disable) and 17’ (enable) were written to status register low (°00) alternatingly during
the simulation.

Read error counters: First, counting is disabled (write ’07°~>'00"). Then, error count low and high
are read (06" ’54’, 07’ '06°). 0101 0100’ = 1 idle error, 1 PE error, 1 cs acknowledgement
error and 0 network space error. 0000 0110° = 0 write space error, ( read space error, 1
external error and 3 or more CRC errors. Then the ertor counters are reset.

Read statistics counters: addresses '0A’, ’0C"... "2E’ give the contents of the 20 counter portions.
For example, "0C"’0A ™08’ give the number of normal packets sent out, = ’000013° = 19
packets. Then counting is enabled again.

NRES resets the error counters and ERR_P changes to low.

CS_ACKERR happens and sets ERR_P shortly before the error counters are reset by a write to
the diagnostic port.
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WR _SPACERR occurres and causes ERR.P to go high again.
Stop all clocks to do a test increment for al] counter portions

TESTMODE is set (’09'— '01’) to split up the counters into 8 or 4 bit portions. This increments
some of the counter portions, depending on their input lines. Therefore the counters should
normally be reset after changing to test mode (but it isn’t done here).

TEST_INC is activated some times by writing don’t-care-values to address '0A’. The counter por-
tions are incremented by each falling edge of TEST_INC (4 bit portions in their upper and

lower parts independently).

TESTMODE is reset again. Important: there are no changes on the states of all counters. So it is
possible to bring the counters into a defined state using TESTMODE, disable TESTMODE

and use this state for further sampling. This is a possible way to test these long counters.
Disable counting, read address 06’ (error count low; no errors here) and reset the error counters.

Read all counter locations from the diagnostic port.

6.2.4 Slow Processor Clock

I LCLK_P is below 22 MHz, the FREE_BIT according to every location in O_.MEM may not be
released again after a packet has been sent out. The reason is that RBLOCKSEL has already
changed before the release signal is synchronized to LCLK and combined with RBLOCKSEL.
Therefore, SLOW_MODE must be set. Now OUTCTL waits with deselecting RBLOCKSEL until
REL is synchronized. Also WAITP is activated whenever one packet has arrived to stop PaRC
from sending another packet before the count signal for the first one has been synchronized. To
show the correct behaviour, version 'S’ of the simulation was performed.

Initialization is done like in the main simulation with the exception that SLOW_MODE is set
(11F5__>7003)

Processor writes one packet into the output buffer. A free memory location is occupied (°0°)
and Tag and Value are writien there. The address js written to the normal queuve. Then
NORM_EMP changes to low and QUTCTL starts the transmission of the packet. In order
to release the FREE_BIT of the memory location, the signal REL is synchronized to LCLK.
This may take some time as LCLK is slow. Therefore the signal WAIT_SYNC is active
whenever SLOW_MODE is set and REL is being synchrionized. WAIT_SYNC has the effect
that START goes back to low after the transmission of a packet but RBLOCKSEL is kept
stable. This is done by delaying the signals NORM.OUT, CSP.OUT urtil WAITSYNC
goes back to low. Also ENB (selects address from cs or normal queue) is kept stable until
WAITSYNC changes to low.

Packet is received from network. CSWACKNET._P is high, because the packet was circuit switched.
WAIT_P goes high while word 2 is received. In SLOW_MODE, WAIT_P must come early
enough after every packet to stop PaRC from sending the next packet immediately after the
first, because the count signal for the packet must be synchronized to LCLK (UP) before
that.
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Processor writes 3 packets in a row to NIU. As WAIT_SYNC is still active from the last sent
packet, the first of the new packets is not sent immediately. Only after the falling edge of
WAIT_SYNC START comes up again and one packet is sent. WAIT_SYNC changes to high
again and delays the next START until FBL/RELINT has set the matching FREE_BIT.
Then the next packet is sent and the same happens. Meanwhile, the processor writes one
more

cs_packet. This packet is available to be sent out when WAIT_.SYNC of the former normal packet
goes back to low. Therefore, not the last normal packet, but this cs packet is transmitted
next. WAIT_SYNC again goes high until the synchronisation is done. F inally, the last normal
packet is sent. Then both queues are empty. In parallel, another

packet is received from the network. Again, WAIT_P goes high while word 2 is received and idle
patterns are received then. The processor reads the first packet from the queue and INRDY_P

is low until the next packet is received.

Processor writes 6 packets in a row to NIU. The first and the 5th are cs packets. As WFACK is
still active, the second packet is first sent out, then the third. There are always gaps between
the packets, because the REL signal must always first be synchronized. After the four normal
packets are sent out, no more packets can be sent because the acknowledgement for the first

cs packet has not yet been received.

CSWACKIN_P resets WFACK. In the meantime, WAITIN_P is high and inhibits sending of pack-
ets. Then WAITIN_P goes low and allows the next cs packet to be sent out. Again,
WAIT.SYNC goes high and keeps RBLOCKSEL constant until REL is synchronized.

5.more packets are received from the network. After the first 3 packets there are always idle
patterns as long as WAIT_P is active or longer. All these packets are counted as usual. But
the fifth packet starts too early and the signal that is synchronized to the LCLK domain is
reset together with that of the fourth packet. This causes the input counter running on LCLK
to be lower than that on XCLK side = packets are lost!

The simulation is carried on, but normally a HW reset must be performed. There is no HW error
detected in that case - NW_SPACERR is only signaled if the buffer is full and a packet arrives.
But here the buffer is not full - only sychronisation is too slow.

6.2.5 Lower Clock Boundary

If the frequency of LCLK is below 22 MHz, SLOW_MODE must be set and the controllers for input
and output behave in a different way. But there is still to prove that NIU operates correctly at 22
MHz for LCLK without SLOW.MODE, as main simulation uses 33 MHz for LCLK. This is done
in simulation version 'C’. There is just one central point: the synchronized RELease signal must
be used together with the RBLOCKSEL (OCLK domain) signal to set the according FREE_BIT.
Only after this is done RBLOCKSEL may change. But it was easier to change a large part of the
main simulation to the slower clock rate than to construct just this worst case.

RBLOCKSEL and (FBL)RELINT are used to manipulate the D input of an edge triggered FF,
which is clocked by LCLK. Therefore RBLOCKSEL must not change before (FBL)RELINT is high
and a rising edge of LCLK occurres (plus hold time). The most tight case during this simulation
(in total 31 packets sent out) was at timestep 56178: RBLOCKSEL changed 7.9 nsec after the
according rising edge of the clock.
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7 Floorplan

All timing behaviour described up to here is based on calculations that only consider the number
of receivers. The length of wires is not yet known, as none of the cells nor the 1/0 pads are placed.
Therefore it is also not yet sure if the proposed design will fit on the planned 75k master. LSI Logic’s
program ’lpace’ provides this kind of information. It allows to place functional blocks on the chip
and checks the resulting routability. There is also an "autoplace’ function, but it showed that the
results are not satisfying. Also the pad and pin connections had first to be established. This is not
quite trivial, as there are 72 8mA output drivers for the local bus. One pair of VSS/VDD pads can
only drive 5 of these BDAT cells. So they were spread around the lower left side, the lower side and
the lower right side. Additional VDD /VSS pairs were established compared to PaRC between the
corners and the centers of a side. Important: as there was not much time left to do the pinout and
the floorplan and especially as the ’check’ command of the program ‘lbond’ did not work, pinout
and floorplan should be checked carefully again to make sure that no design rules are hurt.

Network input and output pads were placed in the upper left and right corner. There are not as
many critical drivers, so the VDD/VSS configuration looks like PaRC in these areas.

The strategy for placing the modules on the chip was as follows: output memory {instance name
OM) in the upper right corner next to the network output pads; the input memory (IM) in the
lower left corner near to the local bus pads. The controllers and smaller modules of the output
and input port below and left of OM; especially LBCTL (instance name LBC) in the center of the
lower side, because it contains the input register from the local bus. The input register from the
network is placed togeter with the checkers in the upper left corner next to the input pads. Below
that INSTRUMENTATION and on the left hand side the RAM for lookup and the pads for the
diagnostic port. The network clocks were placed next to the according data pads. The pad cells
for LCLK and NREAD (output enable for the 72 bidirectional pads to the local processor bus)
were placed in the middle of the lower side. So the maximal skew on NREAD is only 2 nsec - even
without being specified as a clock signal. It showed that the path from the network ocutput register
to the CRC generator and back to the output register is too long if this submodule (U10) of OM
is not placed. So all submodules of OM had to be placed, but then all signals were fast enough.
Despite this overspecification, routability shown by ‘Ipace’ is 98 and that means that there should
be no problems at all with layout. But this number is a bit doubtfull, because a routability of just
85 was shown in an earlier session with a quite similar placement. In general, it was often hard to
understand why this program sometimes complained and sometimes not.

Based on this placement, new delay times were calculated and the simulations were repeated, There
were 1o more problems after (OM)U10 - the output register to the network and the CRC generator
- had been placed seperately. Most internal signals even became faster. The following timing
specifications are based on the current floorplan {only the critical ones are listed):

Local Bus

OUTRDY_P stable 24.5 nsec after rising edge of ext. clock

INRDY_P  stable 21.7 nsec after rising edge of ext. clock

LWR_P requires 9.0 nsec setup time before rising edge of ext. clock (10.5 nsec before int. clock)

NREAD_P requires 12.0 nsec setup time before rising edge of ext. clock (10.5 nsec before int. clock)
LBDATA_P output enabled 13.0 nsec after NREAD; new data stable 21.0 nsec after rising ext. clock
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Especially both times of LBDATA_P could be improved. The relatively long output enable time is
due to the high fanout (long wiring and high load on the driver). Both effects could be minimized
be introducing a second pin and driver for the NREAD signal. These two inputs should then be
placed in the lower left and lower right corner. Also the time to change from one output data to the
other on LCLK_P can be brought down by placing the DRVSI drivers IM /U3 and IM /U4 nearer to
IM (at the moment they are on the other side - Just because there is not enough time left to move

them).

8 Test Strategies

As most parts of NIU consist of memory (soft RAM), most stuck-at faults should be found just by
sending packets with random data to and from NIU. Most of the controllers are tested by this too,
as the right select and output enable signals are essential for the correct transmission of even just

one packet.

More critical are the modules which generate the handshake signals: GENWAIT and FREE_BL. In
order to check these, the input and output buffers have to be filled and emptied again. Even more
critical are the address FIFQs, They contain smal] hardwired 16X4 RAMSs. LSI Logic provides
testpattern for those macro cells, but only if they are directly accessable. At the moment, NIU
does not provide this. It should be possible to test these RAMs nearly completely by filling and
emptying the output buffer once only with normal and once only with ¢s packets. This procedure
will have to be repeated several times to write some different addresses to all locations in the RAM.
In general, faultgrading would be a very useful tool, because it is likely that the fault coverage after
this kind of test is already very high - with the exception of two blocks: The large lookup RAM
256X8 and the counters for statistics (24 or 28 bits long). There is a way to connect all inputs
and outputs of the RAM to external pins: TESTMODE (in status register) must be set. This
connects the address input of the RAM to LBDATA_P(7:0). Data input of the RAM is connected
to DIAGDAT_P anyway and WRN of the RAM can be activated by writing to address °03’. The
output can be read from location '04’ of the diagnostic port. For testing the statistics counters,
there is even more HW support: if TESTMODE is set, the counters are broken up into portions
of 8 {or 4) bits. Each of these portions can be incremented independently by a write to location
"0A’ of the diagnostic port. So it is possible to bring all 28 bits of these counters with just 255
write operations in the state 'FFF FFFF". If NIU returns to normal operation afterwards and some
events happen, the right function of all carry signals within a counter can be proved by reading the
contents later (it must be in the state 000 00XX").

As there are still some pad cells and pins available, it would also be possible to define some more
test pins for signals which are not easy to watch during normal operation. As the gate count is not
too high at the moment, it seems also possible to spend additional HW for the two RAMs in the
FIFOs to make them accessable from external pins and use LSI Logics testvectors for them.

9 File Structure

This documentation can be found in the directory ’/jj/hutner/doc’ in the file ’niu.tex’. All files
for the design itself are in the directory ’/jj/hutner/chip’. There are all the files *.def’, which
contain the schematics . The toplevel block of the design is "CHIP’, so there are a lot of files
with that name, most of them for the different versions of simulation. There are also the cross
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reference listing "CHIP.WXRFLST’ (contains the delay times based on the current floorplan), the
.SYSLOAD'’ file that contains the assumed load on the output pins. In 'CHIP.OPTSPEC, clock
signals are specified and 'CHIP.BLOCKS’ contains the block structure (output of ’Ipace’). There
are also the '0000BD.*’ files. They are the output and input files of bond’ and "Ipace’. Finally,
there are the libraries "NIU.*’ and the simulation files for the submodules.
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