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Abstract

In non-strict functional languages, a data structure may be read before all its components
are written, and a function may return a value before finishing all its computation or even
before all its arguments have been evaluated. Such flexibility gives expressive power to the
programmer, but makes life difficult for the compiler because it may not be possible to totally
order instructions at compile time; the correct order can vary dramatically with the input
data. Consequently, the compiler must break the program into sequential fragments, or threads,
whose relative ordering is determined at run time. Good compilers employ strictness analysis
and other techniques to make threads as large as possible, to minimize run-time overhead. While
partitioning a program into sequential threads is a crucial issue, existing compilers treat it as
a byproduct of applying some other methodology, such as performing Henderson’s force/delay
transformation or generating intermediate code for an abstract graph reduction machine (e.g.,
the G-machine or Tim).

In this paper, we present a view of functional language compilation that takes partition-
ing a function into sequential threads as the first order of business. The resulting framework
cleanly separates issues of partitioning, of thread scheduling, of environments, and of data type
representation (including first-class functions). Our method sidesteps both the force /delay trans-
formation and abstract machines, going directly from source code to sequential three-address
code. Nevertheless, nearly all of the optimizations proposed for existing approaches are easily
expressed. We consider two non-strict evaluation rules: the familiar lazy evaluation, and le-
nient evaluation as found in the langnage Id. We also consider both uniprocessor and parallel
processor scheduling policies.

1 Introduction

Why is compiling sequential code from functional languages so much harder than from imperative
languages? It is not because functional languages have sophisticated constructs like pattern match-
ing and list comprehensions; these are easily treated as syntactic sugar for more primitive constructs.
Nor is it because functional languages support full use of higher-order functions; so do imperative
languages like Lisp and Scheme, and the required compiler technology is well known [25, 22]. The
crucial difference is that given a functional program, it is often impossible to tell at compile time
the order in which subexpressions are to be evaluated, whereas in an imperative language the pro-
gramimer explicitly declares the ordering via the textual ordering of statements. Consequently, the
functional compiler must break the program into sequential fragments, or threads, whose relative
ordering is determined at run time. Good compilers try to make threads as large as possible, to
minimize the run time overhead of determining this ordering.!

*Funding for the Laboratory for Computer Science is provided in part by the Advanced Research Projects Agency
of the Department of Defense under Office of Naval Research contract N00014-84-K-0099, The author has been
supported in part by a National Science Foundation Fellowship and an A. T, & T. PhD Scholarship.

! Although small threads may be desirable for parallel architectures in order to increase parallelism.



One source of the thread problem is the delaying of computation required by lazy evaluation.
Consider a function:

fxyz= (cons B Ey);

where Ey and E, are large expressions, which may have x , y, and z as free variables. Under lazy
evaluation, E; is not to be evaluated until a t1 operation is performed on the returned cons cell; if
a tl is never performed, F; is never evaluated. This implies the code to compute F; cannot be a
part of the main code for £, but instead must be compiled as a separate piece of code (often called
a thunk), to which control is transfered when the first t1 operation takes place. Notice that even
though E, is executed conditionally, this is a fundamentally different problem from compiling a
conditional construct: it is simply not possible to use a conditional branch to control the evaluation
of Ey, since the decision of whether to evaluate it is taken outside the body of £.
Even without lazy evaluation, the thread problem remains. Consider the function abc:

abc x =

{p

x > 0
a = if p then bb else 3;
b = if p then 4 else aa;
aa = a + 5;

H

(The {... in ...} construct is a mutually recursive equation group, or “letrec” block.) It is
easily shown at compile time that all of abc’s subexpressions are needed to compute ¢, so laziness
(avoiding unnecessary computation) is of no consequence here. Nevertheless, a single sequential
thread cannot be produced for abc, because for some inputs a and aa must be computed before
b and bb, while for other inputs the reverse is true. Again, this is not simply a matter of inserting
conditional branches; this is perhaps more evident if the bindings for a and b are replaced by
a=1f xbbandb = g x aa, so that the ordering between aa and bb depends on what happens
inside of f and g. At least two threads are needed for abc: for example, one for b and bb, and one
for the remainder.

In this paper, we present a view of functional language compilation that takes partitioning a,
function into sequential threads as the first order of business. After partitioning, there are three
areas of design decisions for the code generator:

* How are threads dynamically scheduled at run time, and how do they communicate?

¢ How are threads closed over their environments (i.e., how do they gain access to their free
variables)?

¢ How are data types represented, including data structures and first-class functions?

We will concentrate mainly on partitioning and the issues related to thread scheduling. Issues
of environment representation are adequately discussed elsewhere (25, 22]. We will present some
simple data type representations for purposes of illustration, but none of our discussion will depend
on a particular representation. All functional language compilers face these design decisions in one



form or another; the unique aspect of our work is the extent to which they are treated orthogo-
nally. Furthermore, our method sidesteps both the Henderson force/delay transformation [14] and
abstract graph reduction machines [19].

We point out that the thread problem does not arise for strict functional languages (e.g.,
the functional subset of Scheme), which require that the arguments of a function call or data
constructor be completely evaluated before the function is called or the structure built, and similarly
require that all right-hand sides in a bilock be evaluated independently. Our discussion here is
confined to non-strict languages, which lack this restriction. Non-strictness is a characteristic of
lazy evaluation, and also lenient evaluation as found in the language Id [23). Lenient evaluation
differs from lazy evaluation in that the decision of whether to evaluate a subexpression is governed
only by conditional expressions, not by whether a subexpression is required to produce the answer.
Manipulation of infirite objects such as streams is not possible under lenient evaluation without
the use of annotations [13], but lenient evaluation may lead to larger threads.

We begin in Section 2 by introducing a minimal kernel functional language called functional
quads, along with its operational semantics. The semantics defines the behavior that we wish
our compiled code to achieve, and also serves to describe precisely lazy and lenient evaluation.
In Section 3 we show how to produce object code in which each subexpression is placed in a
separate thread, and discuss various scheduling policies. Creating larger threads for lazy and lenient
evaluation are the topics of Sections 4 and 5, respectively. Section 6 concludes by comparing our
compilation method to existing techniques.

Most of the topics discussed herein are explored in greater depth in [28].

2 Functional Quads

The kernel functional language used in this paper is called functional quads, and its syntax
is given in Figure 1. A point of notation: the syntactic categories Identifier and StructTag are
partitioned into subsets according to arity; Identifier{?) is the set of identifiers of arity 2, for ex-
ample. A State is a complete program; by convention it should contain a binding for the special
identifier ¢{°), whose value is to be considered the result of the program. Like lambda calculus,
functional quads allows full use of higher-order functions and functions as first-class values (through
the Partial syntax). But, functional quads also includes primitive arithmetic, data structures, con-
ditionals, and mutually recursive equation groups (via Block), reflecting the desire to give special
treatment to all of these in compiled code.

To illustrate functional quads, here is a definition for factorial, expressed in Id and in functional
quads:

Id Functional Quads
fact x = factV x©) =
if x <= 0 then {9 = x(® <= o;
1 res(® =
else if p({’) then
x * (fact (x - 1)); {in 1}
elase

{ xx® = ) - 4.
fxx(® = (fact(M) xx(®;
xfxx(® = x(O » £xx©0);
in xfxx(0};
in res(®};



Scalar := Number | true | false

Struct i= < StructTag™ , Identifierl® ... , Identifierd® > n>0
Partial ~ := ( Identified™ [dentified® ... Identifier® ) 0<i<n
Value :=  Scalar | Struct | Partial

Primary = Identifierd® | Value

Simple == Primary | const Value | Primary Op Primary |
if Primary then Block else Block |
sel ti Primary | is_t? Primary |
Primary Identifier®

Op n= o [ = x| /== <) ..

Block 2= { Binding ; Binding ; ... in Identified® }
Binding == Identified® = Simple |
Identifier™ Identifierd® ... Identifier® = Block n>1

n

State u= Binding ; Binding ; ..

e Any identifier appearing on the right hand side of a binding must also appear on the left hand
side of some binding in an enclosing block or in the state.

¢ All identifiers appearing on left hand sides must be pairwise distinct, even across the bound-
aries of blocks.

Figure 1: Syntax of Functional Quads

A functional quads program to compute the factorial of five, therefore, would be:
60 = (fact()y 5; fact(t x(0 = (. .}

Since the arity of an identifier can be inferred by looking at the binding which defines it, we will
henceforth omit most arity superscripts. The restricted syntax for expressions gives programs an
appearance akin to the sequential “three-address,” or “quads,” notation used to describe sequential
object code, where each line describes a single computation, hence the name “functional quads.”
There is a one-to-one correspondence between “bindings,” “subexpressions,” and “left-hand-side
occurences of identifiers.,” It should be emphasized, however, that unlike sequential quads the
semantics of functional quads is declarative rather than imperative; in particular, there is no sig-
nificance to the order of bindings in functional quads.



2.1 Semantics

We give the semantics of functional quads operationally, as an abstract reduction system [16].2 If
a and b are two states, then a |- b (read “a reduces in one step to ¥”) if b is a state obtained by
performing one step of evaluation on a. The relation F is defined through rewrite rules, which
concisely describe the pairs of states such that a - 5. For example, there is the following rewrite
rule:

X=Y; Y=V = X=V; Y=V

Each binding on the left hand side of the rule is to be matched against a separate binding of a
state a. If such a match is found, then a b b where b is the state constructed by replacing the
matched bindings of @ with the bindings given by the right hand side of the rule. The bindings
that match the left hand side need not appear in the same order as in the rule, nor need they be
consecutive, and the bindings which replace them may be added to the state in any order and at
any position. For example, the rule above implies that + holds for the following pairs of states
(among others):

¢=1; j=i+5;1i=38; F $=3;i=3;j=1i¢+5;

Here we have matched ¢ with X, i with ¥, and 3 with V.

Below we present the complete set of rewrite rules, with explanations. Throughout, V denotes
any value, X@, Y(©® and Z(® any identifier of arity 0 (omitting the superscript when apparent
from context), F™ any identifier of arity n > 0, P any primary, and B any binding,.

X=Y;, Y=V, = X=V; Y=V, (Rla)
X=YOpP; Y=V, = X=VOpP;Y=V; (R1b)
X=POpY; Y=V, = X=POpV;Y =V; (Rlc)
1)5:11;’ Y then {...} else {...}; — ;{::;f. V then {...} else {...}; (R1d)
X =s0ldiY,; Y =V; = Xs=388ltiV;Y=V; (Rle)
X =1is81? Y; Y=V, = X=14ist? V; Y =V; (R1f)
X=YZ;Y=V = X=VZ;Y=V (Rlg)

Collectively, these rules allow an identifier to be substituted by the value to which it is bound,
for all contexts where a value is needed for some other rule to apply. Because only values
are substituted, the computation which reduces an identifier to a value is shared among all
references to that identifier.

?The reduction system presented here is a slight variation on the system presented in [3]. The mathematical
properties are explored in great detail in [28], which includes a confluence proof.



Fin)

const V = X =V (R2)
The const statement and this rewrite rule do not give functional quads any additional ex-
pressive or computational power, but are included as a technical convenience for Section 3.1.

= Y,
if true then {B;3;...;B:n in Yi} else {...}; == X ¢ (R3)
Biii-.. i Bins
There is also an analogous rule for if false .... After execution of this rule, the selected

arm becomes part of the state, and so its bindings become subject to execution. The identifiers
bound in the new bindings added to the state cannot conflict with bindings already there,
because of the pairwise distinctness restriction.

i+Vy = X = Vi (R4)
where V3 = V + V3. There are similar rules for -, *, >=, efc.

selt: <t,Y1,....%,...,.Y>; = X =V (R5)
ist? <t,Y1,...,Y,>; = X = true; (R6a)
ist? V; = X = false; (R6b)

for any V' which is not a Struct with tag t.

(FP Y, YD Y = X=@FEWY, ... Vi, ¥ (R7)
where 1 < ¢ < n.

X = Zp;
(F™) Zy . Znsn) Zys FM Y L Y= {0}
Yi ... Yo = {Bpyi...;Bp, in Zp};  Blys...Bp

1 n F1. y Dy, FrI, F1 Fm

Y{ = Z1;...;Y = Z;
where the primes indicate consistent a-renaming of all identifiers appearing on left hand sides
within the body of F{"}, together with the formals, such that they are given unique names not
appearing anywhere else in the state, at any level of nesting. (By “all identifiers appearing
on left hand sides” we are including formals of internal definitions and the binding lists of all
enclosed blocks, so that the only identifiers unaffected by the renaming are free variables of
the function F.)

(R8)

All of these rules have the effect of replacing all or part of an expression which occurs on the
right hand side of a binding. By analogy to term rewriting systems, we call the subexpression that
is replaced a redez; in Rules Rla through Rlg, the redex is the occurence of Y on the right hand
side of the binding for X, while in Rules R2 through R8 the redex is the entire right hand side of
the binding for X.

Executing a program cousists of successive application of rewrite rules to an initial state until
the answer, {, becomes a value. Here is an example, in which the selected redex is underlined at
each step:



$ =3sel_cons_1b; b=(f) a; a=3+4; fx= {y = <cons,x,y>; in y};

" {$ = sel_cons_1 b; b = yy: a = 3+ 4; tx=AH..%; Y¥ = <cons,xx,yy>; xx = a;

" ¢ = sel_cons_1 b; b = <cons,xx,yy>; a =3+ 4; £ x=1{..1}; yy = <cons,xx,yy>; ...
" { = sel_cons_1 <cons,xx,yy>; b = <cons,xx,yy>;: a=3 +4; £ x={._..}; ...

" ¢ = xx; b = <cons,xx,yy>; a=3+4; fx={.} yy= <cons,XX,yy>; XX = a;

" ¢ =xx; b = <cons,xx,yy>; a=7; £x=4{.3} yy= <cons,Xx,yy>; XX = a;

" ¢ = xx; b = <cons,xx,yy>; a=7; £ x={..}; y¥Y = <cons,xx,yy>; Xx = T;

-

¢ =7T; b= <cons,xx,yy>; a=7; £ x={..}; yy = <cons,xx,yy>; xx = T;

Notice that the call to procedure £ is executed before the argument a is reduced to a value, illus-
trating how non-strictness is achieved through the use of identifiers. Data structures are similarly
non-strict because they can be manipulated as values even when they contain identifiers that are
not yet reduced to values.

The strategy for choosing which redex to reduce next does not affect the value of the answer
obtained from a given initial state, although it may affect whether an answer is obtained at all. As
we will see, the strategy also has an effect on the efficiency of compiled sequential code designed to
mimic the strategy. We will consider two strategies here.

Under the lazy stretegy, the next redex to reduce is chosen by the following function:

LIO = E; ...] = NIEJO = E; ...]

N[VI[S] = [Terminate]
NIEJS] = E, if E is a redex, otherwise:
NMXOJL..; X©@ =E; ...] = N[E}H...; X© =E; ...]

Nvi + PJIS] = N[EILS]
NP + B][S] NAJEST
N[if P then ...J[S] NIP][S]
NP X]JIS] = NTPIIST
Nseliti PJ[S] = N[P][S]
NTistz PI[S] = WNPILS]

H

L basically traces its way back from the answer until it finds a redex required to make further
progress (a “needed” redex [17]). It can be shown that this strategy always reduces the answer to
a value when it is possible to do so [28].

The other strategy we consider is the lenient strategy, which simply says that at each step any
redex in the state may be reduced. This is not quite as anarchic as it sounds, as it does guarantee
that nothing in an arm of a conditional is executed until the predicate is known: only after the
predicate is known do redexes in the arms of a conditional become part of the state, and therefore
subject to reduction. Though we have the freedom to choose any redex at each step, in general
it is not possible at compile time to determine in what order the subexpressions of a function will



become redexes. Thus the lenient strategy does not eliminate the difficulty of generating sequential
code,

Because the lazy strategy always finds an answer when it is possible to do so, it is strictly
more powerful than the lenient strategy. From the programmer’s point of view, both strategies
have the property that arms of a conditional are not executed until the predicates are known. The
programmer can rely on conditionals to terminate recursion. The lazy strategy gives the additional
guarantee that no subexpression is executed unless known to contribute to the answer. This allows
a recursion in the producer of a data structure to be terminated by the consumers of that data
structure; especially, a producer which appears to construct an “infinite” list only performs a finite
amount of computation if only a finite prefix of the list is read. This power can be recovered in the
lenient strategy to some extent by introducing explicit “delay” annotations [13]. Even without such
annotations, however, there appear a large number of applications which require non-strictness but
not laziness, and so the lenient strategy will suffice (see, for example, the “circular programs” of
Bird [5], and the array programs in [3]). As we will see, the advantage of the lenient strategy is
that it leads to larger sequential threads, and therefore less run-time overhead.

We note that if “fair scheduling” is enforced, then the lenient strategy always finds an answer
when the lazy strategy does, though possibly with a finite amount of extra work. We will not,
however, guarantee fair scheduling in all of the lenient implementations we present.

3 Sequential Quads and Singleton Threads

We now show how to compile sequential code which mimics the behavior of the functional quads
reduction system. There will be a one-to-one correspondence between identifiers bound in the state
of the reduction system and memory locations in the compiled implementation. The components
of Struct values, too, will be reflected as memory locations. Now when a function is invoked in
functional quads (rule R8), a copy of its body is added to the state with new identifiers created
for its local variables. In the compiled implementation, we will have “pure” code for each function
which is shared among all its invocations, but each time the function is invoked we allocate new
memory locations corresponding to the new identifiers added to the functional quads state. The
pure code, operating on a particular set of newly allocated locations, will perform computations
corresponding to the reductions performed on the bindings added to the state by rule RS.

Because the order in which reductions are performed cannot, in general, be determined at
cotupile time, the code for a function will actually be a collection of several sequential threads, each
mimicking a subset of the reductions performed for a complete invocation. Within each thread the
relative order of reductions is fixed, but the total order for all the function’s reductions can vary
through different interleavings of the function’s threads. In particular, different invocations of the
same function may have different interleavings. The actual order resulting for a given invocation
depends both on the sequential order within each thread and on the scheduling mechanism which
interleaves them; thus, the combination of both of these determines which redex selection strategy
we mimic.

In the remainder of this section, we consider code in which there is a one-to-one correspondence
between bindings (i.e., subexpressions) in a function definition and the threads produced from
it. Partitionings which assign more than one binding to a thread are the sub Jject of the next two
sections.



3.1 Sequential Code From Bindings

What code do we generate for a binding? Consider a binding of the form X = ¥ + Z in the state.
Three reductions affect this binding. The first two are Rule R1b and Rule Rlc, which substitute
values for ¥ and Z, yielding the binding X = V; + V. Following that, Rule R4 transforms the
binding to X = V3, at which point no further reduction is possible. The life of all bindings follow
a similar pattern: some R1 rules may bring values into its right hand side (depending on the type
of expression), after which one of the rules R2 through RS transforms it to the form X = V, with
no further reduction possible on that binding.

Given the foregoing, the sequential thread generated for each binding consists of code which
mimics any R1 rules needed according to the expression type, followed by code which mimics
the R2, R3, ..., or R8 rule, as appropriate. Remember that each time a function is invoked we
intend to allocate memory locations for each of the local variables. We can therefore mimic the
execution of an R1 rule which substitutes the value of X as fetching from the location corresponding
to X. Similarly, a R2 through R8 rule acts by computing some value and storing it in the location
corresponding to the left hand side identifier. The situation is slightly more complex because the
relative order in which threads execute is not known at compile time: code for an R1 rule must
wait until a value has actually been stored in the location before fetching, and code for the other
rules must indicate that values have been stored. This is accomplished by adding presence bits to
memory locations that indicate whether they are “empty” or “full.” A location with a presence bit
is called a tagged location.

The sequential code generated for each type of binding (excluding constructs for higher-order
functions) is given in Figure 2; for simplicity, we have assumed that the const statement is used
whenever a value is to be included in a function definition. The notation for sequential code is
the standard “quads” notation [1], to which we have added five primitives for manipulating tagged
locations:

‘TaggedLoc :=, Expression’ Computes the value of Expression, and stores it in TaggedLoc with
the presence bit set,

‘force TaggedLoc’  Suspends execution of the current thread until the presence bit of TaggedLoc
is set,

‘val(TaggedLoc)’  Valid only when the presence bit of TaggedLoc is set, retrieves the value stored
there. Used as an operand, not as a statement.

‘TaggedLoc; :=, TaggedLoc,” Makes TaggedLoc; be a “copy” of TaggedLocs, so that any force
or val operation subsequently performed on TaggedLoc, behaves as if performed on Tagged-
Locy. This is more than simply copying the contents of TaggedLoc, into TaggedLocy; it
implies some sort of indirection is stored in TaggedLocy.

‘TaggedLoc :=, Closure’ Resets the presence bit of TaggedLoc. This construct does not appear
in Figure 2 because it is only used in initialization code. The right hand side can be used to
indicate what thread will ultimately do a :=, store into TaggedLoc; we discuss this later.

One advantage of this notation is that it abstracts away from the details of how presence bits are
implemented, and also from the scheduling policy. The scheduling policy is primarily determined
by the implementation of the force operator, as that operator interrupts the execution of a thread.
Another advantage is that it clearly distinguishes between locations with presence bits (tagged
locations) and those without (“untagged” locations, such as temp in Figure 2). Any use of tagged



Y force Y

X =, val(Y)
Y1 + Y, force Yy

Jorce Ys

X =, val(Y) + val(Y3)
const X =, C
const <t,Y7,...,¥.> temp :=  qllocate n+1

temp[0] :=, ¢
temp[1] :=. 1

temp[n] :=. ¥,
X 1=, temp

sel il : Y Jorce Y
temp := wal(Y)
force temp[i]
X =, val(temp{i])

ist? Y force Y
templ := wpai(Y)
temp2 := wval(temp1[0])
X 1=, temp2 ==
(F) Y, ...Y..1) Y. begincall £
Arg; :=. Y;
Arg, :=. Y,
invoke
X :=, val(Res)
endcall £

if Y then {B;3;...;B;n; in Y} force Y
else {B.1;...;B.m; in Y.} if val(Y) goto L1
forece Y,
X =, val(Y.)
goto L2
Li: forece Y,
X =y val(Yy)

L2: ...
+ conditional branches around code for

Bt,ls ey Bt,n and Be,ls ey Be,m

Figure 2: Basic Code Generation Schemata
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X =YY, force Y

ap = wval(Y) Representation of
entry = wval(ap[0]) (F™ vy, ... YD)
rem = wval(ap[1])
chn = val(ap[2]) f_hof_entry n—i
rdy 1= rem == I |
if rdy goto L1 R
n._ap :=  allocate 3
n.ap[0} :=, entry [
n.rem = rem - 1 Y,| 4 .- Y
n.apl1] :=, nrem
n_chn 1= allocate 2
n.chn[0] :=; Y5
n_chn[1] :=, chn H.O.F. entry code for F(®)
n_apf2] :=, n_chn
X :=, n_ap function f_hof entry (chn, last)
goto L2 begincall £

Li: begincall (entry) Arg, = last
Arg, :=, chn temp = wpai(chn)
Arg, =, Y, Arg, 1 :=. temp[O]
invoke (entry) temp = val(temp{1])
X :=, val(Res) Argn, 2 :=; temp[0]
endcall (entry) temp = val(temp[1])

L2: “es

Argy 1=, temp[0]
X = const (F(") temp :=  gllocate 3 tnvoke £

temp[0] :=, F_hof_entry temp := wval(Res)
templ1] :=, n endcall £
temp[2] :=, nil O i=, temp
X i=, temp

Figure 3: Basic Code Generation Schemata for Higher Order Functions

locations will always entail some overhead relative to untagged locations; one of the chief benefits
of creating larger threads will be the reduced use of tagged locations.

It is important to understand how non-strictness is achieved in our sequential code. In the func-
tional quads reduction system, non-strictness arises because function application and data structure
manipulation can take place even when the argument identifiers or data structure components have
not been reduced to values. In the sequential code, this is reflected by the use of the :=, operator,
which effectively “copies” a location even if it does not yet contain a value.

Missing from Figure 2 are the schemata for handling higher-order functions. There are many
ways of compiling such code; we will describe a method which employs a direct representation of
partial application values, patterned after [27]. The form of a partial application ob ject is depicted
in the upper right corner of Figure 3. Applying it to an argument does one of two things depending
on whether the arity is satisfied. If it is not, then a new partial application is constructed with
a decremented arity count and the new argument added to the head of the argument list. If it
is, the function is invoked by sending the chain and the final argument to a special entry point

11



created for the function, which unpacks the chain and performs an ordinary call to the function.
Having a separate piece of entry code for each function allows the first-order calling convention to
be customized on a per-procedure basis, while still presenting a uniform interface to the general
apply in which the identity of the function is not known at compile time.

3.2 Threads

The complete code for a function consists of the threads for each binding plus an initialization
thread. Here is a small function:

fxy={w=x+1; z=w/ x; a=const <cons,z,y>; in a}

And here is the sequential code produced for it, assuming one binding per thread:

function £ (x, y) thread 2 of £ thread 4 of £
{Allocate w, z, a) force w temp :=  allocate 3
templ := (Close thread 2 over x, w, z) force x temp[0] :=, cons
temp2 := (Close thread 3 over x, ¥) z =, val(w) / val(x)} temp[l] :=, =z
temp3 := {Close thread 4 overz, y, a) stop temp[2] :=, ¥y

z :=p templ a 1=y temp
v 1=, temp2 thread 3 of £ stop

a 1=, temp3 foree x

force a w o=, val(x) + 1

& 1=, val(a) stop

stop

(¢ stands for whatever location is used to return results, according to the calling convention chosen
for £. Similarly, x and y stand for the locations used to pass arguments.) By convention, the caller
always transfers control to thread 1, whose job it is to initialize the other threads and return the
result. The first steps of initialization allocate storage for the local variables w, z, and a, and close
the other three threads over their free variables. We take no position on how the environments for
the threads are represented, whether they are shared, or whether they are allocated in registers,
stack, or heap; all of these issues are adequately discussed elsewhere [22, 25]. The :=, assignments
reset the presence bits for w, z, and a. For certain scheduling policies discussed below, they also
record pointers to the thread closures, so that they can be invoked on demand.

Not all initialization need be done at the beginning of thread 1. In particular, the initialization
of threads and locations contained in an arm of a conditional is best done after the predicate is com-
puted, so that no effort is wasted initializing threads and locations for the branch not taken. This
also eliminates the need to surround those threads with conditional branches (see the conditional
schema in Figure 2).

3.3 Implementing Tagged Locations on Uniprocessors

An explanation of how to implement tagged locations completes the description of code generation.
Many variations are possible, but we will illustrate in detail a scheme appropriate for a conventional
von Neumann machine, which can only execute one thread at a time and has no special hardware
support for switching among threads. Threads are switched explicitly at the force operator: forcing
a location which does not yet contain a value transfers control to the thread which is to compute that
value, with the forcing thread regaining control when the other thread reaches its stop statement.
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(a) (b)

Figure 4: A Uniprocessor Demand-Driven Tagged Location Scheme

The force operator is thus a kind of procedure call, where the procedure to be called is indicated
by the closure stored in the forced location. The resulting scheduling is termed demand-driven, as
a thread is not executed until another thread needs one of the values it computes. Demand-driven
scheduling should not be confused with lazy evaluation; lazy evaluation requires both demand-
driven scheduling and a suitable partitioning.

The simplest scheme uses three tags (i.e., three possible combinations of presence bits per
tagged location) corresponding to the three types of assignment operator. To illustrate, Figure 4a
shows four tagged locations after the following code sequence is executed:

:=, closure
=, W
1=, X
t=. X

N < M =

The dotted line from the closure to w indicates that the closure will have a pointer to w in its
environment. Part (b) shows the same four locations after one of them is forced, and the thread
has stored a value in w and terminated.

The definition of the five tagged location operations is given below. To avoid being tied to
any particular instruction set, we will use a “pseudo-algol” notation to describe these procedures.
Brackets indicate indirection, so that [loc] means the location to which loc points. The contents of a
tagged location are indicated as tag.data, so that the statement [loc] «— V .value stores tag V in the
tag part of the location to which loc points, and value in the data part. If the target architecture
has hardware support for tagged locations this might be a single instruction, otherwise it might
require some shifting and masking operations. Of course, the “procedures” below are procedures
for illustrative purposes only; we intend that the code for each operator replaces each appearence
of that operator in the abstract object code.
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procedure loc : =, value function val(loc)

[loc] — V.value a « followindir(loc)
if [4] = V.value then

procedure loc :=, closure return value

[loc] — P.closure else error
procedure loc, :=_loc, procedure force(loc)

if [locy} = C.addr then a + followindir(loc)

[loc1] « [loey] if [a] = P.closure then
else call closure

[loc1] — C.locy

(The error check in wal is not really necessary, since the code we generate always forces a location
before applying val to it.} The implementation of :=, is designed so that an indirection never
points to another indirection, and the subroutine followindir follows any indirection that might be
present (again, followindir is a “subroutine” only for illustrative purposes):

function followindir(loc)
if [loc] = C.addr then
return addr
else
return loc

There are many variations on this scheme possible which optimize various cases; for example,
it is possible to make val faster at the expense of :=, and :=, It is also possible to devise schemes
with only two possible tags, thus requiring one presence bit instead of two. See [28] for details.

With one binding per thread, this scheme implements lazy evaluation, as the reader can verify
by comparing the lazy evaluation redex selection rule from Section 2 to the appearences of force in
Figures 2 and 3.

3.4 Implementing Tagged Locations on Parallel Processors

Without going into too much detail, we note that parallel schemes are easily obtained by redefining
the force operator to fork off a concurrent task to evaluate the closure, rather than calling the closure
as a subroutine. Some sort of locking mechanism is also needed to prevent additional initiations
of a thread between the time it is first forced and the time it completes its :=, stores. Additional
parallelism can be obtained by inserting spark statements into the threads, where spark is a variant
of the parallel force that initiates the concurrent task but does not wait for the location to contain
a value (the term “spark” is due to [11]). If demand-driven behavior is to be preserved, spark
statements cannot be inserted indiscriminantly; a location should only be sparked if it eventually
will be forced. With sparks inserted in this way, parallel scheduling selects the same set of threads
for execution as does uniprocessor scheduling, and so it mimics the same redex selection strategy
(for a given partitioning).

An alternative way of obtaining parallelism is to initiate the concurrent execution of every
thread closure as soon as it is created; this is called eager scheduling. Since a thread is always
running by the time it is forced, the job of force is considerably simplified under this policy; in
dataflow architectures {24, 2] and in Iannucci’s hybrid architecture [18] this simplified force and
the val operator are combined into a single instruction—essentially it is just a blocking read which
waits for the presence bit to turn on. Because eager scheduling may result in executing threads
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none of whose values are forced, it cannot mimic the lazy strategy no matter what partitioning is
chosen. But because conditional branches are included in threads to prevent prematire execution
of code taken from the arms of conditionals, it does mimic the lenient strategy. We stress this
because the term “eager” is sometimes used to refer to a strategy of evaluating both arms of a
conditional simultaneously [26], which is not the case here.

4 Partitioning for Lazy Evaluation

We now describe larger threads that still retain the same behavior as one-binding-per-thread under
demand-driven evaluation, and therefore still mimic the lazy strategy. Such threads are constructed
by starting with one-binding-per-thread code, and applying the following rule to combine threads:

¢ If, among all a function’s threads, there is a single statement of the form force x for some
variable x, that statement can be replaced by the body of the thread which computes x (has
a statement of the form x :=, ...).

Taking the code from Section 3.2 as an example, thread 3 can be merged into thread 2, and
thread 4 into thread 1, yielding:

function £ (x, y) thread 2 of £
(Allocate z) force x

templ  := (Close thread 2 over x, z) W= owal(x) + 1
z 1=; templ Jorce x

temp :=2  allocate 3 z =, w / val(x)
temp(0] :=, cons stop

temp[1] :=, =z
temp[2] :=, y

a = temp
& 1=, a
stop

Notice that as a result of merging there are tagged locations that only appear in one thread, ex-
cluding initialization. These can be converted to less expensive untagged locations; this is reflected
in the example by the absence of initialization, val, and :=, for the variables w and a.

All of the other techniques for creating larger threads are Just ways of exposing opportunities to
apply the replacement rule above. Flow analysis and code motion can reduce the number of forces
of a particular location, by noting that a second force of a location has no effect whatever. For
example, in thread 2 above the first force x statement dominates (in the flow-control sense [1]) the
second force x, so the latter may be eliminated. Another example: force statements which appear
in both sides of a conditional branch can often be moved to a point before the branch, where they
can be combined. Path analysis {6] may allow similar transformations by recognizing domination
relationships between threads, rather than within them. Eliminating force statements may expose
opportunities for combining threads, if after eliminating them there is only one force of a given
local variable. Of course, eliminating needless force statements is beneficial even when it creates
no opportunities for combining threads.

Strictness analysis [10] also exposes opportunities for combining threads, not by eliminating
force statements, but by inserting them. If a function is strict in an argument, then a caller can
force the corresponding actual parameter before making the call. For example, here is the code for
a = (f x y z), assuming f is strict in its second argument:
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force y

begincall £

Argy =, x

Arg, =, ¥

Args =, =z
invoke £

a :=, val(res)

The force y may now be a candidate for replacement. Even if it is not, inserting the force may be
beneficial. If strict arguments are uniformly forced in all first-order calls to a function, including
the first-order call that is part of higher-order entry code (Figure 3), strict arguments may be
passed in untagged locations, and all forces of those formals may be eliminated from the code for
the function. (Passing strict arguments as values and the entry code method for making it work in
the presence of higher-order functions are due to [71.)

The use of strictness analysis is not limited to first-order calls: higher-order strictness analy-
sis [8] can insert force statements into code for general applications, and strictness analysis of data
structures [30, 12] can insert them into constructor code.

Despite the simplicity of these transformations, they actually cover all of the cases needed to
achieve threads as large as those produced by the ALFL and G-machine compilers.

5 Partitioning for Lenient Evaluation

The lenient strategy allows much more freedom in choosing a redex, and correspondingly allows
much more freedom in the composition of threads. In lazy evaluation, code for a function must
be partitioned so that computations not required to produce the final result are isolated from
computations that are, for every possible invocation of the function. In lenjent evaluation, we need
only guard against placing two subexpressions in a thread in an order which contradicts what is
actually required for some invocation. In other words, we need only avoid deadlock, not extra
computation.
To illustrate how this leads to larger threads, consider the following fragment:

a=...
c=f ahb;

d

g a;

Assume that f is strict in its first argument; then the thread containing the code for ¢ can have
a force a statement. Now under lazy evaluation, the code for a cannot be included in the thread
for c, as a reference to a appears in the thread for d. (If a and c were combined, and computing d
forces a, then ¢ would be evaluated whether needed for the final answer or not.) Under lenient
evaluation, however, the code for a and ¢ can be merged, since it is acceptable to compute ¢
regardless of whether it is needed (remember that a conditional branch will be included, however,
if the binding for c is within the scope of a conditional).

Another example: suppose the binding for d did not exist in the above example, but that f is
not strict in its first argument. Even though there is only one reference to a, under lazy evaluation
it is still not acceptable to merge the threads for a and ¢, since a might not be needed to compute
the value of ¢. Under lenient evaluation, however, the threads can be merged, as long as we can
determine which should be computed first. If a does not require the value of ¢, then computing a
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Figure 5: (a) Dependence Graph for abc; (b) Separation Graph; (c) Ordering Constraint
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Figure 6: Partitioning Constraints Implied by Dependence Graph Paths

before ¢ will always work. On the other hand, f could turn out to be the cons function, and
a could be (t1 ¢) + S, in which case a would have to appear after c. In still other situations,
both orderings might be possible, and the threads could not be safely merged.

Partitioning for lenient evaluation involves the construction of dependence graphs to trace the
precedence relationships that hold between subexpressions for various invocations. To illustrate
dependence graphs, the dependence graph for Section 1’s abc function is shown in F igure 5a. Each
vertex corresponds to an identifier. A solid edge from a vertex u to another vertex v means that
the value of » must be computed before the value of v can, for all invocations of the function. A
dashed edge, on the other hand, means u must be computed before v for some, but not necessarily
all, invocations. Any analysis technique may be used to derive this dependence information, but
it is often useful to phrase the questions in terms of strictness: given a binding a = £ x, if £ is
provably strict in x a solid edge may be drawn from x to a, if £ provably ignores x no edge is
needed, and otherwise a dashed edge must be drawn.

The constraints on partitioning are derived by considering paths in the dependence graph;
specificaily, between each pair of vertices, in each direction, there might be a completely solid
path, a path that includes at least one dashed edge, or no path at all. This totals six possible
configurations (plus three symmetric variations), illustrated in Figure 6. In Cases 1 and 2 we
conclude that u must appear before v if assigned to the same thread, since for at least some
invocations u must be computed before v, Case 3 implies a deadlock for all inputs, resulting from
an erroneous program such asa = b + 1; b = a + 1. Case 4 could mean the function deadlocks
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in some, but not all, invocations, or perhaps the dashed path resulted from imprecise dependence
analysis. In any event, the appropriate action is to treat it like Clases 1 and 2. Case 5 indicates
no constraint at all. Case 6 is the most interesting, as it says that for some invocations u must
precede v, while for others the reverse is true. To allow for both possibilities, « and v must be
assigned to separate threads.

The results of the case analysis are summarized in two other graphs, which have the same
vertex set as the dependence graph. The separation graph has an undirected edge between pairs
of vertices that fall into Case 6. The ordering constraint has a directed edge between vertices
falling into Cases 1, 2, or 4. These graphs are illustrated for abe in F igures 5b and 5c, respectively
(transitive edges have been omitted from the ordering constraint, for clarity}. Any k-coloring of
the separation graph is therefore a legal assignment of subexpressions to threads. Once assigned
to threads, the ordering within each thread is computed by topologically sorting with respect to
the ordering constraint.®> One legal coloring of Figure 5b assigns b and bb to one thread and the
remainder to another; because the chromatic number of the graph is two, at least two threads are
required.

Dependence graphs and their use in partitioning for lenient evaluation is discussed in much
greater detail in [28], but it is worth pointing out one or two other aspects of dependence graphs.
Identifiers representing other than scalar data types require more than one vertex in the dependence
graph, as a vertex must be included for each independent value. For example, if a variable holds
a two-tuple of integers, then three vertices are needed: one for each component, and one for the
tuple itself.* Now for recursive types this means an infinite set of vertices is required, but there is a
theorem which shows that vertices can be coalesced, at the expense of converting some solid edges
to dashed. Thus, the vertices for any given type can be coalesced into a finite set—for example, one
vertex for the “top level” and one for all subcomponents, sub-subcomponents, etc.——with the choice
of set determining the precision with which depedence through data structures is to be tracked.
In practice, the set used will largely be determined by the dependence analysis technique used (cf.
Hall’s strictness patterns [12]).

The other point warth making is that in general it will be necessary to include dashed edges from
the vertex representing the result of a function to the vertices representing the arguments, reflecting
the possibility that the function may be called from a context in which the resuit is fed back to the
arguments. This introduces many cycles into the dependence graph, and therefore many separation
constraints, implying many small threads. Here, then, is the price of non-strictness: the potential
for feedback is precisely why non-strict languages are more expressive than strict languages [5, 3],
but it also precisely what makes the order of subexpression evaluation so hard to predict. This
suggests that analyzing when feedback actually takes place could have a significant impact on the
quality of compiled code.

6 Conclusion

We have presented a framework for compiling non-strict functional languages which views parti-
tioning of a program into threads as the central problem. Once threads are partitioned, separate

3A technicality: care must be taken if two vertices in Case 5 are assigned o the same thread, for when they are
ordered within that thread an edge is effectively added to the dependence graph. Algorithms which correctly deal
with this issue are discussed in [28].

*Three vertices are needed regardless of whether the denotational semantics uses a lifted domain for two-tuples.
If the domain is not lifted, it only means that a 1 and (4, 1) cannot be distinguished within the language. Even if
this is the case, the implementation will be able to distinguish them: one corresponds to an uncomputed location,
while the other corresponds to a location containing a two-tuple, each of whose components is uncomputed.
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decisions can be taken regarding how those threads are scheduled and communicate with one an-
other, how they are closed over their environments, and how data types are represented. We added
tagged locations to the well-known quads notation for sequential code to accomodate the synchro-
nization and inter-thread communication requirements of multi-thread code. The notation concisely
exposes all of the issues of partitioning and the optimization of thread overhead while abstract-
ing away from the scheduling mechanism and environment representation. We then considered
three scheduling mechanisms—uniprocessor demand-driven, parallel demand-driven, and parallel
eager—and showed how they are reflected as implementations of the tagged location primitives.
While we began by considering threads no larger than a single subexpression, we showed how larger
threads could be constructed for both lazy and lenient evaluation, noting that lazy evaluation also
requires a demand-driven scheduling mechanism. The benefits of large threads were reflected in
the sequential code by the decreased use of tagged locations. We saw that the more flexible lenient
evaluation order allowed larger threads to be created, though at the expense of some expressive
power for the programmer.

How does our approach compare io existing compilation techniques? One of the two popular
methods is the abstract machine approach, typified by the LML compiler [4]. The idea there is
to compile the program into code for an abstract machine, the G-machine [19], and thence into
target code [21). The G-machine performs supercombinator graph reduction [29], with a feature
that allows the “short-circuiting” of graph reduction by directly evaluating arithmetic expressions.
The equivalent of partitioning comes about when chunks of a function are “wrapped up” in a
subroutine so that they can be compiled into this efficient, short-circuited code. Each such chunk
therefore yields a sequential thread (a G-code sequence), closed over its environment through the
lambda-lifting transformation [20]. The decisions regarding environment and data type represen-
tation as well as presence bits and scheduling policy are all tied up in the graph reduction model.
Optimizing these aspects therefore requires extensions to the G-machine; thus there have recently
proliferated such enhancements as the “spineless” G-machine, the “tagless” G-machine, ete. Par-
ticularly noteworthy is the “spineless” G-machine [9], which limits updating to locations that are
shared (“shared application nodes”); there is a strong correpondence bhetween shared application
nodes and our tagged locations. The G-machine has the advantage of dealing with partial appli-
cations in a highly optimized way, especially in the case where an unshared partial application is
returned from a procedure where it is immediately applied to more arguments by the caller.

The other popular method is represented by the ALFL compiler [15], in which a highly optimized
version of the Henderson force/delay transformation [14] is used to convert a lazy program into
a form acceptable to the Orbit compiler for Scheme [22]. This method is very much in the sprit
of Section 4, as each “delay” expression is nothing more or less than a sequential thread, and
equivalent techniques are used to produce them. Like our method, partitioning is isolated from
the decisions relating to scheduling, environments, and data types; specifically, these decisions are
left up to the Orbit compiler. Tagged location code generated by the ALFL compiler effectively
has the property that local variables always contain promises or values (:=p and :=, assignments),
while arguments and structure locations always contain copies (:=, assignments), so that only one
presence bit is needed (see [28]). Interestingly, the storing of a value in a tagged location is the
responsibility of the forcing thread, rather than the forced thread. While this rules out a thread
computing more than one tagged location as is allowed in our scheme, it permits the forcer to omit
the storing altogether when it can be shown that no subsequent forces will be done [7].

The LML and ALFL compilers both implement lazy evaluation. Iannucci gives a partitioning
algorithm for lenient evaluation [18], which is a greatly simplified version of the methods outlined
in Section 5. Data is not yet available on how the performance of our method (in terms of thread
size) compares to Jannucei’s, or even to lazy partitioning algorithms.
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The compilation-as-partitioning view seems to lead to a much cleaner of separation of issues in
compiling non-strict functional languages, whether for lazy or lenient evaluation, for sequential or
parallel execution. More work is needed to put these ideas into practice.
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