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Abstract

The aim of this paper is to explore the question: “What can a von Neumann processor
borrow from dataflow in order to make it more suitable for use in a multiprocessor?”
We start with a simple, “RISC-like” instruction set, and show how to change the
underlying processor organization to make it multi-threaded. We then extend it with
three instructions that give it a fine-grained, dataflow capability. We call the result
P-RISC, for “Parallel RISC”. Finally, we discuss memory support for multiproces-
sors. We compare our approach to existing MIMD machines, and to other dataflow
machines.

Keywords and phrases: parallelism, MIMD, dataflow, multiprocessors, multi-
threaded processors

1 Introduction

The aim of this paper is to explore the question: “What can a von Neumann processor borrow
from dataflow in order to make it more suitable for use in a multiprocessor?” For many
years, it has been argued that dataflow architectures are better building blocks for scalable
multiprocessors because they have mechanisms that can (a) tolerate increased latencies and
(b) handle greater synchronization requirements {2]. Unfortunately, dataflow architectures
have generally been so different from von Neumann architectures that it has been difficult to
compare them objectively in order to substantiate or refute this claim. In [18], Papadopoulos
designed the Monsoon dataflow processor. By using directly-addressed instead of associative
wait-match memory, and frames for local storage, similarities with von Neumann machines
began to emerge. In [13, 14], Tannucci explored a dataflow/von Neumann hybrid architecture
in which the similarities were more striking.

In this paper, we take this evolution a step further. First, in Section 2, we describe
the runtime storage model and the simple, “RISC-like” instructions on which we base our
work. By “RISC-like”, our primary implication is there are two categories of instructions—
three-address instructions that operate entirely locally, i.e., within a processing element, and
load/store instructions to move data in and out of the processing element, without arith-
metic 21, 19, 10]. Further, the instructions are simple and regular, suitable for pipelining.
Nevertheless, our storage model is an unusual one.
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In Section 3, we change the underlying processor organization to make it multi-threaded
(a la HEP), which, in itself, is an improvement for multiprocessors. In Section 4, we extend
it with three instructions that give it a fine-grained, dataflow capability, making it an even
better building block for multiprocessors. The resulting processor architecture, which we
call P-RISC (for “Parallel RISC”), can exploit compiling technology both from conventional
multiprocessors as well as from dataflow processors. In Section 5, we discuss memory support
for multiprocessors.

This paper should not be read as an engineering proposal for a specific instruction set
and /or processor organization— many serious engineering issues remain, which we discuss in
the conclusion (Section 6). Rather, it is a preliminary exploration of a synthesis of dataflow
and von Neumann architectures.

To set things in context: we are concerned here only with asynchronous, MIMD models.
This covers most current and proposed parallel machines, such as the HEP [26], BBN But-
terfly [22], Intel Hypercube [24, 15], IBM RP3 [5, 21, 20}, Sequent [25], Encore [6], etc., and
excludes machines like the Connection Machine [11], Warp [1], and VLIW machines [7].

2 The runtime model

2.1 Storage: trees of frames, and heaps

Consider a typical sequential implementation of the following program:

procedure h(x) ... ;
procedure g(y) ... h(e) ... ;

procedure main ... g(el) ... h{e2) ... ;

There is a stack of frames (activation records) which may go through the configurations
shown in Figure 1 (our stack grows upward). At any given time, only the code for the
topmost frame is active—Ilower frames are dormant.
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Figure 1: Stacks of frames in sequential implementations

In a parallel implementation, however, it is possible for main to call g and n concurrently,
and g can call n concurrently as well. Thus, all frames can exist concurrently, so that we
have to generalize our runtime structure to a free of frames, as shown in Figure 2. Further,
at any given time, the code for any of the frames can be active, not just at the leaves.
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Figure 2: Tree of frames in parallel implementations

Another difference arises in loops. In a sequential implementation, a loop is typically
implemented with a single frame. In a parallel implementation, however, we need many
frames if we are to allow multiple iterations to run concurrently. Still, we have a tree
structure: all frames for iterations of a loop have the same parent, and any procedure calls
from the loop body are subtrees above the iteration frames.

The set of paths to the root frame, in the parallel implementation’s tree of frames,
corresponds to the states of the sequential implementation’s stack.

Of course, frames are not enough. In most modern programming languages (e.g., Lisp,
CLU, Id), it is possible for the lifetimes of data structures to differ from the the lifetimes of
frames. Thus, data structures must be allocated on global heap.

A pair of frames can share values in two ways—either they can both refer to a common
ancestor frame (by lexical scoping), or they can both refer to a data structure in the heap.
In this paper, we will only consider the latter mechanism, as lexical scoping of scalars can
always be eliminated by a technique called “lambda-lifting” [16]. (We have a few more
comments about this in the conclusion.)

To summarize: our runtime model of storage is this: a tree of frames and a global heap
memory, with frames containing pointers into the heap.

2.2 Processing Elements, Continuations and sequential “RISC”
code

How is this abstract storage model mapped to a multiprocessor machine? We assume that
a multiprocessor is an interconnection of Processing Elements (PEs) and Heap Mermory
Elements (see Figure 3). Each PE has local memory for code and frames. Even though
the memories may be physically distributed, we assume a single, global address space for all
memories.

At each instant, a Processing Element runs a thread of computation. A thread is com-
pletely described by an instruction pointer 1P, and a frame pointer Fp. The former points
into the code in the PE, and the latter points at a frame in the PE (see Figure 4). We can
regard this pair of pointers as a continuation, or “flyweight” process descriptor, and we use
the notation <Fp.IP> for continuations. Continuations correspond exactly to the “tag” part
of a token in the terminology of tagged-token dataflow. It is usually convenient to have the
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Figure 3: P-RISC multiprocessor organization

size of a continuation the same as the size of other values (such as integers and floating-point
numbers), so that continuations themselves can be manipulated as values
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Figure 4: A continuation

As a running example, we will use the following procedure that computes the inner-
product of two vectors A and B of size n:
def vip AB={ 8 =0
In
{for i <- 1 to n do
next s = s + A[i] * B[i]
finally s}}

The value of s is zero for the first iteration of the loop. For each subsequent iteration, = has
the value from the previous iteration plus the product of two vector components. The value
of the entire expression is the value of s in the final iteration. The example happens to be
written in the language Id [17], but other parallel languages are equally acceptable.

Every instruction is executed with respect to a current FP and I1P. All arithmetic/logic
operations are 3-address frame-to-frame operations. For example, the instruction:

plus srcl src2 dest

!For example, in procedure calls, a “return continuation” is passed as an argument.



reads the contents of frame locations FP+srci and FP+src2, computes the sum, and stores the
result in frame location FP+dest. The compare s1 s2 d instruction compares the contents of
frame locations FP+s1 and FpP+s2 and stores a condition code in the frame location FP+d. A
jcond instruction:

jeond src newIP

(for various conditions cond) treats the contents of frame location FP+src as a condition code,
and changes IP to IP+1 or newIP accordingly.

The 1ocad a x and store x a instructions move data between the frame location FP+x and
the heap location whose address is in the frame at Fp+a.

The instruction set is “RISC-like” in the following sense. All arithmetic operations are
local to the PE. The 1oad and store instructions are the only ones for moving data in and out
of the PE, and do not involve any arithmetic. Thus, instruction-fetches and frame accesses
involve local PE memory only, and no network traffic. Further, the arithmetic instructions
should be simple and regular, so that they can be pipelined.

Here is a straightforward compilation of the body of vip into sequential code, with the
frame shown on the right (for expository reasons, we have used more frame slots than are
really necessary):

load-immediate O 3 Frame

LOOP: 8
compare i n b i
jgt b DONE n
plus A i addra b
load addrA Ai A
plus B i addrB addra
load addrB Bi Ai
mult Ai Bi prodi B
plus s prodi s addrB
incr i i Bi
Jjump Loop prodi

DOKE:

2.3 Frames as register sets

In most RISC machines [21, 19, 10}, the PE contains high-speed registers that allow two
reads and a write on every cycle. Frames and the heap are not distinguished— both are on
the other side of the interconnection network. Thus, 3-address instructions work on registers,
and load/stores move data between registers and frames/heap. One of the registers is often
interpreted as a frame pointer. To reduce network traffic, the size of the register set is
increased, and the compiler tries its best to fit the entire frame (all local variables), into the
register set.

Our model tries to formalize the view that a frame is the register set for a continuation.
It is natural to ask whether this is realistic— can the register set be large enough to be
regarded as local frame memory?



We assume that current technology allows thousands of registers in the PE (the HEP had
over two thousand). Thus, even if all frames cannot be accommodated within the PE, it is
certainly possible to compile code that provides that abstraction. Frames can be allocated
in the heap, and the compiler and hardware can arrange to keep some current subset of them
in the register set (a similar strategy is used in the Berkeley RISC [19]).

Another possibility is this. Let us assume that frames are of a fixed size, say 32 words
(which, of course, can complicate life a little for the compiler). The PE contains an ade-
quately large frame memory fronted by a cache for as many frames as is feasible. When
an attempt is made to execute a continuation with an FP that names a missing frame, it’s
entire frame is loaded automatically, and the instruction is retried. Thus, loading a frame
will involve a loss of many cycles. To avoid thrashing, the compiler/hardware would have
to arrange it so that preference is given to continuations whose frames are currently in the
cache.

With this much said, we ask the reader to bear with us, and we will return to this issue
in Section 6.

2.4 Problems: memory latency and distributed memory

A major problem with our sequential code for vip is the latency of the two 1loads. Going
out and back across the network to heap memory takes significant time relative to processor
speeds, even on a uniprocessor; the problem is worse in a multiprocessor. It is alleviated
somewhat by using a cache, but even this solution is less effective in multiprocessors. Thus,
a processor may have to idle during a load, thereby reducing overall performance. In bus-
or circuit-switched networks, long-latency 1loads can also interfere with each other, further.
degrading performance.

Ideally, we would like the following behavior for loads:

1. They should be split-phase transactions (request and response) so that the path
to memory is not occupied during the entire transaction.

2. We would like the processor to be able to issue multiple loads into the network
before receiving a response, i.e., the network should behave like a pipeline for
memory requests and responses.

3. We would like to be able to accept responses in a different order from that in
which the requests were issued. This is especially true in a multiprocessor, where
distances to memories may vary.

4. In the worst case, we would like the processor to be able to switch to some other
thread of computation rather than idle.

Many previous processor designs address this issue, to varying degrees. The Encore
Multimax has split-phase bus transactions so that the bus is not occupied during a load,
but a particular PE can have only one outstanding load— loads cannot be pipelined. The
CDC 6600 [27], the Cray 23], and some RISC processors, can pipeline memory requests, but
requests must come back in the same order. The 360/91 could pipeline memory requests,
and receive them out of order, but there was a small limit to the number of such outstanding
Tequests. In general, all these solutions add significant complexity to the processor circuits.
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A more detailed discussion of this issue may be found in [2].

An alternative is to go to a multi-threaded processor organization, similar to the HEP
[26], and we follow this course in the next section.

3 Multi-threaded RISC: a dataflow implementation
of the instruction set

In this section, we maintain the instruction set and its semantics, but change the underlying
processor organization to support fine-grained interleaving of multiple threads.

In most high-performance machines (including RISC machines), the instruction pipeline
is single-threaded, i.e., consecutive entities travelling through the pipe are consecutive in-
structions from the same thread, from addresses IP, IP+1, IP+2, and so on. Such an
implementation introduces some extra complexity in the detection and resolution of inter-
instruction hazards. Further, long latency instructions (such as loads) disrupt the pipeline
and are an additional source of complexity.

The HEP [26] had a different pipeline implementation—it was time-multiplexed among
several threads. On each clock, a different thread descriptor was inserted into the pipe. As
thread descriptors emerged from the end of the pipe, they were recirculated via a queue
to the start of the pipe. Thus, there was no hazard between consecutive instructions in a
particular thread. Further, when a thread encountered a load instruction, the thread was
taken aside into a separate pool of threads waiting for memory responses; thus, threads did
not block execution of other threads during loads. Unfortunately, the number of threads
that could be interleaved in the pipe and the number of threads that could be waiting for
loads was limited.

In our multi-threaded RISC, we generalize the HEP’s approach to allow an aerbitrary
number of threads to be interleaved. Recall that our thread descriptors, or continuations,
are <FP,IP> pairs. The organization of the PE is shown in Figure 5. Since continuations are
circulated in the processor, we also refer to them as tokens.

Tokens exist in the token queue (analogous to the HEP’s PSW queue). On each clock,
a token <FP,IP> is extracted from the token queue and sent through the pipeline, fetching
and executing the instruction at IP, relative to the frame at Fp. The pipeline consists of the
traditional instruction fetch, operand fetch, execution and operand store stages. At the end
of the pipe, tokens are produced specifying the continuation of the thread; these tokens are
simply inserted into the token queue.

For Arithmetic/Logic instructions, the continuation is simply <FP.1P+1>. For the jump
instruction, the continuation is simply <FP.1P’>. For jcond instructions, the continuation is
either <FP,IP+1> or <FP,IP'>, depending on the condition code in Fp+x.

The first interesting difference arises in the load instruction. A heap address a is fetched
from frame location FP+a, and the following message is sent out into the network:

<READ,a ,FP.IP+1,x>



PE organization:

code # Instruction Fetch
E‘ Operand Fetch
3
b ¥
Token K Load/Store
queus
'3 frames Function Units | » Messages to/from
E §---" memory and other PEs
Start
]
¥
Operand Store
I
Instruction set summary:
Format | Frame operations { Continuations | Outgoing messages
Ordinary RISC.like instructions:
op abec [FP+al op [FP+b] — FP+c | <FP.IP+1> —
jump IP’ — <FP.IP’> —
jcond x IP? [FP+x] — <FP.IP’> or <FP.IP+i> | —
{(depending on [FP+x])
load a x [FP+a] — none <READ, [FP+a],
FP.IP+1,
>
store x a [FP+x],[FP+a] — <FP.IP+1> <WRITE, [FP+a],
[FP+x]>
Incoming messages (from memory, other PEs):
<START,v,FP.IP,y> | v — FP+y [<FP.1P> [—
P-RISC instructions (extensions for fine-grained parallelism )
fork IP’ — <FP.IP+1>, <FP.IP'> —
join x toggle [FP+x] if [FP+x]: none —
if = [FP+x]: <FP.IP+1i>
start v c d [Fe+v], [FP+c], [FP+d] — | none <START, [FP+v],
[FP+c]l,
[FP+d]>

Figure 5: P-RISC Processing Element (PE) organization and instruction set summary



Note: no continuation is inserted into the token queue! Meanwhile, the pipeline is free to
process other tokens extracted from the token queue. Some of those, in turn, may be 1oad
instructions, thus pumping more READ messages into the network.

The READ messages are processed by Heap Memory Elements, which respond with START
messages:

<START,v,FP.IP,x>

When such a message enters the PE, the value v is written into the location FP+x, and the
token <FP.IP> is inserted into the token queue. Thus, the thread descriptor travels to the
heap and back.

A store instruction simply fetches a heap address a from frame location Fp+a, and a value
v from frame location FP+x, and sends the message:

<WRITE,a,z>

into the network. A Heap Memory Element receives this, and writes the value. Meanwhile,
the token <Fp.IP+1> emerges from the pipe and is inserted into the token queue.

3.1 Discussion

Notice that we have achieved our goals:

loads are split-phase transactions,

any number of loads can be pipelined into the communication network,

responses can come back in any order

The processor interleaves threads on a per-instruction basis, and is not blocked during
loads. The number of threads it can support is the size of the token queue. Assuming
enough tokens in the token queue, the pipeline can be kept full during memory loads—
the processor never has to idle.

Contrast our PE organization with that of the HEP {26]. In the HEP, too, each thread could
issue a load. The main difference is that the HEP had a limited number of threads, and that
was also a limit on the number of loads that could be outstanding.

The HEP had another limitation which is shared by our multi-threaded PE: even though
there can be many outstanding loads from multiple threads, a particular thread can have no
more than one outstanding load. We correct this situation in the next section.

4 P-RISC: An extension for fine-grained parallelism

In any multi-threaded system, there must be some way of initiating new threads, and to
synchronize two threads. In most conventional architectures, these involve operating system
calls, or traps, or pseudo-instructions or some such mechanisms. It is difficult to make such
mechanisms very cheap, and so, one tends to avoid fine-grained parallelism, which, in turn,
reduces the exploitable parallelism in programs.



We extend the multi-threaded RISC to P-RISC by adding two instructions to perform
thread initiation and synchronization. It is important to realize that these are simple instruc-

tions— not operating system calls— that are executed entirely within the normal processor
pipeline (again, please refer to Figure 5.):

® Fork IP’ is just like a jump instruction, except that it produces both <Fp,1p'> and <FP,IP+1>
tokens as continuations.

e Join x toggles the contents of frame location Fp+x. If it was zero (“empty”) it produces
no continuation. If it was one (“full”) it produces the continuation <Fp,Ip+1>.

4.1 Inner-product revisited

Figure 6 shows, in outline, the change we need in the control flow of the inner-product
program in order to do the two loads concurrently.

: :
¥ ¥
Al fork
i T Ty
Bl —I> Al Bl
v oy
* join
i '
\J ¥
*
i
\{
Figure 6: Sequential and parallel control flows two loads.

Here is our revised code for the inner-product procedure, where we have marked the new
instructions with “#” labels:
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load-immediate 0 s Frame

load-immediate 0 w (%) 8
LOCP: w
compare i n b i
gt b DONE n
fork LOADBi (%) b
A
LOADAL: |LOADBi: addra
plus A i addra I plus B i addrB Ai
load addra Ai ] load addrB Bi B
| jump SYNCH (%) addrB
SYNCH: Bi
join w (») _ prodi

mult Ai Bi prodi
plus s prod s
iner i i
jump LOOP
DONE:
The frame, shown on the right, is identical to the previous one except that it has one
additional location w used by the join instruction for synchronization. It is initialized to zero

(“empty”) in the second statement.

The fork instruction inserts tokens <FP.L0ADAi> and <FP.LOADBi> into the token queue.
The two resulting threads are shown above in two columns, for convenience. Both address
calculations and loads can be executed concurrently.

When the 1ocad in the LOADAL sequence is executed, it sends the continuation <FP.LOADAi+2>
(i.e., <FP.SYNCH>) in its message to heap memory. Thus, when the response arrives, the value
is written into frame location ai and join w is executed.

When the LoADBi sequence is executed, it sends the continuation <FP.LOADBi+2> in its
message to heap memory. Thus, when the response arrives, the value is written into frame-
location Bi and jump SYNCH is executed, causing join w to be executed.

Thus, join w is executed twice, once after the completion of each 10ad. The first time, it
toggles the location FP+v from “empty” to “full” and nothing further happens. The second
time, it toggles it from “full” to “empty”, and execution continues at the next instruction
(the mult).

Note that the order in which the loads complete does not matter. Also, note that the
location FP+w is ready for the next iteration as it has been reset to the “empty” state.

4.2 Simulating fine-grained dataflow

With such lightweight fork and join instructions, it is possible to think about simulating
the fine-grained asynchronous parallelism of pure dataflow. For example, the left-hand side
in Figure 7 shows a classical dataflow dyadic “+” instruction (at address IPQ). It receives
tokens ¢; and ¢, carrying values on its input arcs. When both tokens have arrived, it “fires”,
L.e., it consumes the tokens, adds the values, and produces tokens carrying the sum on each
of its output arcs, destined for instructions at IP1 and IP2.
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Y IPO: join w

Y
jump IP1 1P2 l’\_’l lug 1 r o

ork IP2
! jump 1IP1

13—

Figure 7: Simulating the dyadic dataflow “+” instruction in P-RISC

The P-RISC control graph that simulates the dataflow “+” instruction is shown in the
middle of the figure, and the corresponding P-RISC code and frame are shown on the right.
The slots 1 and r are used to hold the left and right input values, respectively; the slot o is
used to hold the output value, and the slot w is used for synchronization.

Corresponding to the dataflow graph that produced token ¢;, there would be P-RISC
code that stores the left input value in 1 and inserts a token <FP.IP0> in the token queue.
Similarly, corresponding to the dataflow graph that produced token t,, there would be P-
RISC code that stores the right input value in r and inserts an identical token <FP.TP0> in the
token queue. Thus, getting through the join instruction is a guarantee that both inputs are
available. The effect of the last two instructions is simply to place the two tokens <FP.IP1>
and <FP.IP2> in the token queue.

4.3 More parallelism

Here is a version of the inner-product program written using recursion instead of a loop:

def vip A B = vip_aux A B 1 ;

def vip_aux A B i = if i > n then 0
else A[i1#B[i] + (vip_aux A B (i+1)) ;

In the else clause, not only the two loads, but also the recursive call can be done concurrently.
Further, the multiplication can be done as soon as both loads have completed, even if the
recursive call has not. This is summarized in the control flow graph in Figure 8.

Here is the code for vip_aux:

12
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1
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¥
Ali] Bli] vip_aux A B (i+1)
i
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I
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Figure 8: P-RISC control graph for doing loads and a call concurrently

VIP_AUX: Frame
load-immediate O w ; reset to empty L]
load-immediate O v ; reset to empty v
compare i n b i
jgt b TRIVIAL n

b
fork REC-CALL A
fork LOADBI addri
Ai
B
addrB
Bi
prodi
8

LOADAT: |LDADBI: IREC_CALL:
plus A& i addra | plus B i addrB | call VIP_AUX A4 B (i+1)
load addrA Ai | load addrB Bi | value is returned in s ...

I jump SYNCH1 I jump SYNCH2

SYNCH1: |

join w [
[

mult Ai Bi prodi
SYNCH2:

join v

plus s prodi s

jump DONE
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TRIVIAL:
load-immediate 0 s

DOKRE:

In this version, the two forks result in three separate threads (shown, for convenience, in
three columns)— one to load Alil, one to load B[il, and one to compute the value of the
recursive call. The first two threads join at syNcEi, and the multiplication is performed to
compute the product term. This thread then joins with the third thread after it has returned
from the recursive call, at syncrz. Finally, the addition is performed.

In this version of the inner-product computation, we can see that all the loads for the
entire inner-product computation can be issued in parallel, the responses can come back
in any order, and the multiplies are performed in arbitrary order, automatically scheduling
themselves in the order in which the load responses arrive.

Of course, the additions in our inner-product program must still proceed sequentially.
It would be just as easy to write a divide-and-conquer version where this was not so, but
this program dramatically illustrates the following point: even in a program that appears
sequential at the algorithmic level, there is much parallelism that can be exploited by our
architecture— all the index calculations and the loads can be done in parallel.

4.4 Procedure-call/return linkage

When a procedure g calls a procedure n, we need to:

e allocate a frame Fph for n;

¢ communicate argument values from g’s frame FPg tO FPh;

¢ initiate a thread of computation in n, using FPh;

¢ communicate result(s) from FPh to FPg;

o when h has completed (all its threads have stopped), deallocate the frame Fph.

In a sequential implementation, allocating and deallocating FPr just involves incrementing
and decrementing a stack pointer. In a paraliel implementation, there is a tree of frames,
and so allocation and deallocation needs a more general storage management mechanism.

To communicate arguments and results, and to initiate a thread for the callee, we dis-
tinguish two cases: (1) both frames are on the same PE, and (2) the frames are on different
PEs. The former could be handled by instructions that move data between local frames.
However, we will discuss only the latter case, as it is more general.

When the two frames are on different PEs, there is a synchronization issue. Transferring
arguments and initiating a thread both involve sending messages to the remote PE; however,
the remote thread should not start until the argument has been written there. Thus, we
tie these two together. We have already seen the START message which, when it arrives

at a processor, writes a value and initiates a thread there (memory responses were START
messages). Now, we allow such messages to be generated explicitly by an instruction:

start dv dfpip dd
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This reads a value v from Fp+dv, an <FP.IP> continuation from FP+dtpip and an offset a from
FP+dd, and sends the message:
<START,v,FP.IP,d>

out of the PE, and no continuation is placed in the token queue. The caller executes a start
instruction for each argument, writing a value into the callee’s frame and initiating a thread
there. Since each argument initiates a thread, the callee can begin processing each argurment
as it arrives, independent of the order of arrival. When synchronization/sequentialization
is necessary, the callee executes join instructions. Similarly, to return a value, the callee

executes a start instruction that writes a value into the caller’s frame and initiates a thread
in the caller.

4.5 Discussion

Note that every join instruction is fetched and executed twice. On the first attempt, it
introduces a bubble into the pipe because the thread dies. These bubbles correspond to
the bubbles in the pipe of a Tagged-Token Dataflow Architecture when the Wait-match
operation fails (first token to arrive for a dyadic operator) [3, 8, 12].

Similar bubbles also occur in other pipelined machines. For example, in RISC machines,
even though compilers try very hard to avoid it, the pipeline may have to stall when a
required operand is not available (e.g., the register is busy). In the multi-threaded HEP, an
instruction was automatically converted into a no-op and recirculated if it tried to access a
busy register.

Our “continuations/threads” are really “flyweight” processes, and we interleave processes
at the granularity of individual instructions.

5 Memory support for fine-grained multiprocessor par-
allelism

So far, we have seen that a Heap Memory Element in our model has the following behavior.
1t receives two kinds of messages and responds with one kind of message. On receiving:

<READ,a,FP.IP,d>

it reads value v from location a and responds with:
<START,v,FP.IP,d>

On receiving;:
<WRITE,a,v>
it writes the value v into address a.

However, this is inadequate, because it is not provide any synchronization— what hap-
pens if a READ message for a location arrives from PEQ before the corresponding WRITE message
from PE1? To solve this problem, we extend the behavior of Heap Memory Elements in the
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direction of the “I-Structures” of dataflow architectures [3]. Every location has additional
“presence bits” that encode a state for that location.

For producer-consumer situations, we introduce two new types of messages. On receiv-
ing:
<I-READ,a,FP.IP,d>

if the location a is in the “full” state, it behaves like an ordinary READ. If it is in the “empty”
state, the location contains a “deferred-list” (initially empty). Each element of the list
contains the (FP’.IP’,d’) information of a pending read. The information in the current
I-READ message is added to the list. On receiving:

<I-WRITE,a,v>

if the location a is “empty”, then, for each (FP.1IP,d) in the deferred list, the memory sends
out a message:

<START,v,FP.IP,d>

and, finally, the value v is written into the location a. Thus, 1-rREADs can safely arrive before
the corresponding 1-WwRITEs. Of course, this assumes that the location is written only once:
it may be possible to guarantee this from the language semantics and/or compiler analysis
(for example, this is easy in functional and logic languages).

There are, of course, other useful messages that can be processed by Heap Memory
Elements, such as exchanges, test-and-sets, etc.

6 Future directions

To develop P-RISC, we went through the following steps:

e Start with a RISC.like instruction set, i.e., a load/store instruction set in which most
nstructions are simple, regular, 3-address frame-to-frame operations. We have invented
an instruction set for this paper, but mmany variations are possible.

¢ Make it multi-threaded, using a token queue and by circulating <FP.IP> tokens (thread
descriptors) through the processor pipeline and token queue. Loads are split into two
phases— request to memory and response, so that the processor pipeline and the in-
terconnection network are not blocked in the interim. Request and response messages
are identified by the full continuation, so that the synchronization namespace is the full
address space, network traffic can be pipelined, and responses may arrive in any order.

¢ Introduce fork and join instructions that are executed in the processor pipe, and a start
instruction to communicate between frames on different PEs.

e Introduce synchronization in the Heap Memory Elements using “I-structure” semantics.

One of the attractive aspects of P-RISC is that it can leverage existing compiling technology,
both conventional and dataflow. Being a superset of a regular RISC instruction set, existing
compiling techniques for single- or multiprocessor FORTRAN should carry over directly. As
alluded to in the section on simulating fine-grained dataflow, we also know how to compile
a high-level language such as Id [17] for this machine [28, 29].
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Thus, P-RISC appears to be an attractive synthesis of dataflow and von Neumann ar-
chitectures. However, much work remains to be done to evaluate its potential.

6.1 Some implementation issues

Frames as register sets:

Perhaps the most important question about P-RISC that requires investigation is whether
it is realistic to view frames as register sets. The HEP had over two thousand registers in
the PE in order to support multiple, concurrent threads, and had a base pointer in each
circulating PSW (Process Status Word) to offset into the space of registers; this corresponds
exactly to our FP. Note that in P-RISC (and, to some extent, in the HEP), a small number
of frames can support a much larger number of concurrent threads, because it can have
fine-grained concurrency within a procedure activation or loop iteration.

In Section 2.3 we suggested a caching scheme if frame memory is too large to be treated
as high-speed registers— frames are of fixed size; frame memory is fronted by cache of
frames; a frame is automatically loaded into the cache when the PE attempts to execute
a continuation that refers to a missing frame, and priority should be given to those tokens
referring to currently cached frames. We need to study both the compiler and hardware
engineering problems in implementing such a scheme.

Instruction scheduling:

As we described it, on each clock we pick up an <FpP.1P> pair from the token queue and
insert it into the processor pipeline. Similarly, on each clock, zero, one or two tokens are
produced at the output of the pipeline and are inserted back into the token queue. An
alternative would be the following: as long as a thread does not die (due to a 1oad or join),
continue executing the same thread, using the normal “1p+1” scheduling of a von Neumann
processor; extract a token from the token queue only when a thread dies. This solution
reintroduces the complexity of inter-instruction hazard detection and resolution, but it does
allow adjacent instructions in a thread to communicate via named high-speed registers. Also,
it would improve locality for a cache-based frame memory, as discussed in Section 2.3.

Frame and heap synchronization:

In our model, synchronization occurs in two places— in frames during a join instruction,
and in heap memory with I-structure operations. The former is more efficient because it needs
no queueing— exactly two threads come together. In I-structure operations, an arbitrary
number of threads can come together (a producer and any number of consumers). Thus,
data structures that have many consumers are allocated in the heap. If it is known that a
data structure has only one consumer, it may be allocated in a frame, and a variant of the
join mechanism can be used to read it. The details are beyond the scope of this paper.

Lexically scoped variables may also have a variable number of consumers. There are
various ways of dealing with this. One possibility is to transform the program using lambda-
lifting [16], essentially converting a lexically scoped variable into an extra argument that is
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passed down into nested procedures explicitly. Thus, we are left with a flat environment
structure which is captured nicely by our Fp.

An alternative is to keep a heirarchical environment structure, implying two things. First,
accessing variables from superior frames must begin relative to the current frame’s FP, and
thus will involve more indirections, Second, since synchronization in frames does not have
queuing, the compiler must ensure that such variables have their values before they are
accessed, by inserting suitable control dependencies.

6.2 Comparison with other work

Buehrer and Ekanadham studied ways to incorporate split-phase memory transactions into
von Neumann architectures [4]. Halstead and Fujita proposed an multi-threaded processor
architecture [9].

Papadopoulos’ Monsoon architecture [18] is a pure dataflow architecture in the sense that
tokens are not only a means to schedule instructions, but also carry data. Inter-processor
tokens are identical to intra-processor tokens. Since tokens carries data, only one frame
operation is required in each pass through the pipe, unlike P-RISC’s three frame operations.
While it is clear how to use dataflow compiling techniques for Monsoon, it is not clear how
to use compiling techniques from conventional processors. Further, unlike P-RISC, it is not
easy to imagine an implementation that uses the conventional “FP+1” instruction scheduling,

The work that is closest to P-RISC is lannucci’s dataflow/von Neumann hybrid archi-
tecture [13, 14]. Every frame location had “presence bits” indicating whether it was full or
empty. A lead instruction simply sent a request to memory along with the address of the
destination frame location, and execution continued at the next instruction. An operation
that tried to read an empty frame location could trap, storing its process descriptor in that
location and marking it “pending”, and execution resumed at some other thread. When a
response comes back from memory to a “pending” frame location, the value is exchanged
with the process descriptor residing there, and the process is re-enabled. Thus, lannucci’s
architecture had split-phase loads, loads could be pipelined, responses could come in any
order, and the namespace for waiting threads was the address space of memory.

The primary difference between Iannucd’s machine and P-RISC is that Iannucci had
presence bits on every location in frame memory, and synchronization could occur in any
instruction by using a synchronizing frame access operation. In P-RISC, frame memory does
not have presence bits; instead, some locations are interpreted as “full/empty” synchroniza-
tion locations. Synchronization occurs only at join instructions.

These comparisons with other work are by no means exhaustive— much more detailed
design and experimentation is required to evaluate P-RISC. We hope this paper will stimulate
research in this direction.
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