MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

P-TAC: A Parallel Intermediate Language

Computation Structures Group Memo 295
June 1989

Zena M. Ariola
Arvind

To appear in Preceedings of the Functional Programming Languages and Computer
Architectures, September 1989, London, UK.

Funding for this work has been provided in part by the Advanced Research Projects
Agency of the Department of Defense under the Office of Naval Research contract

| N00014-84-K-0099 (MIT) and N0039-88-C-0163 (Harvard). ‘

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

P-TAC: A Parallel Intermediate Language

. Zena Aricla
Aiken Computational Laboratory
Harvard University
Cambridge MA, 02138

Abstract

P-TAC is an intermediate-level language designed to cap-
ture the sharing of computation. It is a more suitable in-
ternal language for functional language compilers than the
A-calculus or combinators, especially for compiler optimiza-
tions, - Using P-TAC, a proof for the confluence of Id, a
higher-order functional langnage augmented with I-structures,
is given. Using the notion of observational congruence the
correctness of some compiler optimizations is shown.

1 Introduction

We present P-TAC (for Parallel Three Address Code), a sim-
ple and powerful declarative langnage, to study the conflu-
ence of the higher-level language Id and the correctness and
confluence of the optimizations used in the Id-to-dataflow-
graph compiler [16]. Id is a modern, higher-order, strongly-
typed declarative language with L-structures {1, 12, arrays
whose elements get “refined” during the course of compu-
tation [4). l-structures have the flavor of variables in logic
languages because it is possible to create an -structure with-
out giving a definition for each of ite elements. (In a purely
functional language a variable is given exactly one binding
or definition at creation time.) All Id programs produce
unique results, but a formal proof of the confluence of Id
had eluded us until now.

A formalism that can express unambiguously the oper-
ational semantics of Id or compiler optimizations must be
able to capture the sharing of computations. For example,
the formalism must distinguish between the following two
programs

{(Fa),(Fe)) and {z = Fa; in (z,z)}}

which may arise as a consequence of evaluating G (F a),
where G ¢ = (z,z) and %" is the pairing operation. (The
expressions that appear before the keyword “in” are bind-
ings, while the expression that follows the keyword “in” is
the main expression.) P-TAC captures such distinctions.
In order to model accurately the implementation of a func-
tional language, the sharing of computation is important.
Moreover, it becomes a necessity when the language is ex-
tended with I-structures. So, one way to giv¢ an operational

Arvind
Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge MA, 02139

semantics for Id is to give a translation of Id into P-TAC,
and a well-defined operational semantics for P-TAC. The
advantage of this approach is that P-TAC, unlike other for-
malisms such as th- A-calculus or the combinatory calculus,
leaves no room for choice in the sharing of subexpressions.

There are many intermediate languages, such as IF1[15],
FLIC[14] and Term Graph Rewriting Systems[6, 7], that
have been used to model functional language implementa-
tions. P-TAC is related to Traub’s Functional Quads [17],
which is a formalization of the datafiow-inspired model for
the sharing of computation presented in [4, 13]. Traub pro-
vided the “three address” syntax for dataflow graphs and
proved the confluence of functional Id using an Abstract
Reduction System (ARS). However, we believe that P-TAC
models data structures and locations in a novel way.

We begin the paper by giving the syntax of P-TAC (Sec-
tion 2} and introduce the reader to the concept of I-struc-
tures. In Section 3, we give the operational semantics of
P-TAC in terms of a set of rewrite rules, Rp_-r4c, and in
Section 4 we show that P-TAC is confiluent. A notion of
observable behavior and program equivalence is introduced
in Section 5. In Section 6, the optimizations used in the Id
compiler are described in terms of some additional rewrite
rules; in particular, some interesting optimizations which
only approximate the behavior of the original program are
discussed (Section 6.4). Furthermore, the confluence and
strong normalization properties of some of these optimiza-
tions are proven. In Section T the correctness of the opti-
mizations is proven. We end the paper with some possible
directions for future work.

2 Syntax of P-TAC

The syntax of P-TAC is described by the grammar of Fig-
ure 1, whose start symbols are Program and Definition. For
better readability, we will take some liberties with the con-
crete syntax. For example, instead of writing “+ z ¥”, we
will use the familiar infix notation and write “z 4+ y». A
program M in P-TAC is evaluated with respect to D, a set
of user-defined functions Fy...F, which are generated by
the syntactic category Definition. As an example of I, con-
sider the following set of function definitions which may be
mutually recursive:

Fl rr... z,.,l =bl

Fn X1 ...

Tm, = by

Legend:
PFi wmeons Primitive Function with i arguments
UDF means User Defined Functions
SE means Simple Expression
Integer = llzil[‘l_l
Boolean i= True|False .
Variable = xlylzl---lalb{--f{fl-- Qo }---
PF1 = Nil? | Allocate | Length
PF2 = +}—f=]|--.]Less|Equal?|
Make-tuple | Select | Apply
FF3 = Cond
UDF = Fmr|Gna ... _
SE = Variable | UDF | Integer | Boolean | Nil
Ezpression u= SE|Block | PFI SE | PF2 SE SE |
PF3 SE SE 5E
Block = {[Statemeni;]* in Expression}
Statement == Hinding | Command
Command = Store SE $F SE
Binding 1= Variable = Expression
Definition 1= UDF® l’ariablc - - Variable = Block
n
Program = Block

Figure 1. The Grammar of Initial-Terms of P-TAC.

The user-defined functions F - .. F,, are treated as combina-
tors, that is, FV(bi) C {z1...zm,} for any i. (FV(b) stands
for the set of free variables of b). As usual, a program M
must be a “closed expression.” It is customary in the imple-
mentation of functional languages to consider combinatory
normal forms with respect to {F, ... F,).

We begin with a discussion of the pure functional subset
of P-TAC, which simply amounts to disallowing the user to
write Allocate and Store. However, it is important to em-
phasize that the implementation (the operational sem~xntics)
of functional P-TAC will make use of these primitives,

2.1 P-TAC as a Mininal Functional Language

P-TAC has higher-order functions, currying and tuples, and
a block structure with the usual lexical scoping rules. As is
usually the case in functional languages, the variables on the
left-hand-side (LHS) of bindings in a block must be pairwise
distinct. Bindings may be recursive or mutually recursive,
and their order in a block is not significant. The main re-
striction in P-TAC is that all subexpressions must have a
name. Thus, one writes the expression F (a +3) (c+d) as
follows:
{r=a+1

y=c+4 d;

{=Apply F z;

in Apply f y)

The other restrictior is that primitive functions, e.g., +, *,
Cond, etc., are not curried. This restriction does not cause
any loss of expressive power since the curried version of prim-
itive operators can be obtained by giving a user definition,
e.g.,
Pluszy={in z 4y}

50 one can use {Apply Plus e) instead of ((+) ¢).

" In P-TAC, nested function definitions are not permitted.
This restriction does not cause any loss of expressive power

because it is always possible to eliminate all nested func-
tion definitions by “lambda lifting,” i.e., by passing all free
variables of a function as parameters to the function [9].

The only data structure constructor in functional P-TAC
is Make-tuple, the non-strict pairing operator. The non-
strictness of Make-tuple allows the specification of infinite
lists, such as: {z = Make-tuple 1 z; in z}.

Even though we believe that the translation of Id into P-
TAC is quite straightforward, particular care has to be de-
voted to conditional expressions because, in I1d and dataflow
{3, 18], conditionals behave diffezently than in other func-
tional languages. For example, the following Id expression

(if p then e; else €z)
is not equivalent to

{$ =€,
y = e
in (if p then z else)}

If we restrict our attention to functional Id (Id without I-
structures), the above two expressions do indeed denote the
same value; the semantic distinction shows up only when Id
with I-structures is considered. Yet even in functional Id,
the two expressions behave differently. In the first expression
either e; or ez gets evaluated, while in the second expression
both e, and e; get evaluated. In fact, (if p then e; else e;)
is equivalent to

{Def F z = ¢y z & FV(e1)
Def Gy = ey; ¥ € FV(ez)
h = (if p then F else G);

in k 0}

where “0” represents a dummy argument. Embedding the
terms e; and e; inside function definitions prevents their
evaination because a function body gets evaluated only when
the function is applied to the number of arguments specified
in its definition. It is straightforward to translate the above
Id expression into P-TAC because the if-expression becomes
the P-TAC Cond and definitions for £ and G can be lambda.
lifted to the top level. .

22 lstructures

Implementation of any functional data structure constructor
requires allocation of storage and binding an expression to
each location of the allocated storage. To compute the i*h
element of a data structure, the expression associated to
the i** location is evaluated. Thus, an implementation of
“Make-tuple z y* can be written as follows:

{z = Allocate 2; Store z 1 z; Store 2 2 ¥; in z}

It is not legal for the user to write the above term in func-
tional P-TAC, because it contains Allocate and Store. It is
a legal term in full P-TAC.

Normally, these details of data structure operations are
not included explicitly in the operational semantics of func-
tional languages. Moreover, P-TAC departs from other func-
tional languages by giving users direct access to Allocate and
Store primitives. Data structures defined using these prim-
itives are called I-structures. P-TAC places the so-called
“single-assignment” restriction that no more than one store
operation can be performed in any location. In general, this

restriction cannot be checked at compile time. In spite of
this drawback, P-TAC programs have a clear “declarative
meaning” in a manner similar to logic programs.

We go back to the example given in the introduction to
show how to define the operational semantics of I-structures
correctly. Suppose we evaluate

{z = Allocate 2; in Apply G x}
where the function G is defined as
G z = { in Make-tuple = z}
P-TAC dictates that the answer is
{z = Allocate 2; in Make-tuple z 2}

(callit N1) and not the Id expression (Allocate 2, Allocate 2)
which may be written in P-TAC as follows:

N; = {z = Allocate 2; y = Allocate 2; in Make-tuple z y}

This distinction is important because N, and N3y are not
equivalent. Since “Allocate 2” allocates storage, we can say
intuitively that N; returns a pair containing two references
to the same I-structure, while N; represents a pair of two dif-
ferent I-structures. The following program can distinguish
between N; and N;:

Fa= {b=Select1aq;
c = Select 2 a;
Store b 1 100;
Store ¢ 1 200;

in 0}

Note that (F M) # (F N2). Intuitively, the above pro-
gram stores the value 100 in the first I-structure (named
“b”) and the value 200 in the second [-structure (named
“c?), of the pair “a”. The program (F N:) violates the
single-assignment restriction, because both b and ¢ refer
to the same I-structure. As will be clarified in the suc-
cessive sections, (F Ni) will enter a “contradictory” state,
while (F N;) will terminate successfully. 'Thus, we have:
(F N;) 7‘: (F Nz) = N # Nz.

We illustrate the advantage of angmenting a functional
language with I-strnctures by considering the problem of
“flattening” a list-of-lists. A list in P-TAC can be defined
inductively as follows:

o Nil is a list.
o If zsis a list, then so is (Make-tuple z zs) ! for any x.

Flattening a list-of-lists requires the repeated appending
of two lists. In order to append two lists, in functional P-
TAC one ends up making a copy of the first list and replac-
ing the Nil by the second list. Using I-structures, however,
one can define an “open”™ list [2] along the lines of a “dif-
ference list” in logic programming. An open list is a list of
I-structures where each I-structure has two components and
is referred to as a pair. The first slot of the first pair and
the second slot of the last pair are always empty; an empty
open list can be represented by a pair with two empty slots.
More precisely:

YThis definition of list is not quite correct in Id because Id is
a strongly-typed language with Milner-atyle type deduction scheme.
Thus, in Id, a list is an algebraic type with two disjuncts, while Make-
tuple has the type T1 x T2. In this paper we have iznored type issues
in P-TAC.

¢ {Allocate 2} is an open list.

¢ If s is an open list then so is (cons-open z zs) for
any z, where cons-open is defined as follows:
consopen z s = {z= Allocate 2; Store z 2 zs;
Store zs 1 x; in 2}

The head of the list is contained in the second slot of the
first pair. Appending two open lists only requires storing the
head of the second list in the second component of the pair
at the end of the first list! The use of open lists can avoid
unnecessary copying, as well as expose more parallelism in
the flattening operation. A fuller discussion of the advan-
tages of I-structures is beyond the scope of this paper; the
interested reader is referred to [4].

3 Operational Semantics for P-TAC

The operational s :nantics is given in terms of an Abstract
Reduction System [10], which is a structure {A, — r) where
Ais a set of terms and — 5 is a binary relation on A. The
relation —— g is derived from the set of rewrite rules, R,
on terms of A. For our purposes, A contains all closed P-
TAC terms, i.e., terms without free variables, generated by
the grammar of Figure 1, with Program as start symbol,
plus all terms that can appear during a program evaluation.
Therefore, we need to extend the grammar of Figure 1 with
new syntactic categories, such as Locations, I-siructures
and Closures, in order to name all the different objects
that can appear at run time. The meaning of Yocations and
closures is informally explained in the next section. The
grammar that generates all elements of A is described in
Figure 2. We will designate the terms generated by Figure 1
a8 Instial-Terms of P-TAC., The ground values of A cannot
be reduced any further and correspond to the values of P-
TAC, which are integers, booleans, closures and I-structures.

Though the user-defined functions are constants, their
operational meaning, in contrast to the operational mean-
ing of the primitive functions, is given by the user via the
set [). Thus, the abstract reduction system is actually pa-
rameterized by D and therefore, when D is not clear from
the context, we will write (A, —R. ... }p-

3.1 Llocations

The most novel aspect of P-TAC is the way it models data
structure operations using a special class of identifiers called
Locations. An I-structure of n elements is represented by
n Locations. The only permissible operations on locations
are “l-fetch I*, for reading the contents of location I, and
“l-store ! v”, for storing v, some ground value, in location
1. Confluence of P-TAC crucially depends upon the “write-
once” restriction, that is, only one store operation is permit-
ted on a location.

Unlike variables, which are names for expressible values,
locations are merely names of memory locations and cannot
appear in a left-hand side of a Binding or in the formal list
of a Definition. Furthermore, locations are globally unigue,
that is, the scope of a location identifier is the entire pro-
gram. Therefore, unlike a variable with a binding in a black,
a location cannot be a-renamed locally within a block. P-
TAC also does not permit two different location identifiers
Lo refer to the same location. The syntax and the associ-
ated rewrile rules (to be described in the next section) do

Legend:
PFi means Primitive Function with i arguments
. UDF means User Defined Functions
SE means Simple Expressions
GV means Ground Values
L means Locationa
C means Faat call, see Section 6.2

Integer = 1|2]|---]n]...

Boolean ;= True | False

Variable == zlylzl...Ialb‘...l_fi...lzlI.-.

L = ofh)--.

FF1 = Nil? | Allocate | Length | FC

FF2 t= +{—~|%]|.-.|Less|Equal? |
Make-tuple | Select | Apply | Make-closure

PF3 = Cond

UDF = F7F |Ghe |...

SE i= Variable | UDF | GV .

e’ = Integer | Boolean | Closure | I-structure)

Error | T

{t-structure,n, L, L,.-- L} | Nit

I-structure

n

Closure = (Closure, UDF", m, I-structure) {m < n}
Ezpression := SE|Block | PF1 SE | PF2 SE SE |

PF3 SE SE SE | I-fetch L
Block = {[Statement;]* in Expression}
Statement = Binding | Command | Store-Error
Command 1= Store SE SE SE | |-store L SE
Binding = Varioble = Expression

Figure 2. The Grammar of Terms of P-TAC.

not allow any confusion between the name of a location and
its contents. Thus, while a binding like “¢ = y” has the
meaning that the variables x and y are names for the same
value, the corresponding binding for locations “I; = I;” does
not make sense because two location identifiers can never
be the same. No equality-test on locations is permitted, but
equality on location contents can be expressed by writing:
“{ z=\fetch I;; y=Ifetchi,; in (Equal?zy)}".

Locations are also used to implement Closures (partial
applications of functions) as described next. We denote the
number of arguments specified in the definition of a user-
defined function F by ny and often write F*F for clarity.
In almost all implementations of functional languages, sub-
stitutions inside the body of F are not performed until all
the arguments for F have been specified. Thus, when F?
is applied to e, instead of performing a substitution, a data
structure known as a Closure is built. A closure contains
an I-structure to remember the arguments specified so far.
It also contains the number of arguments siill missing (the
m).

3.2 Canonical Representation of Terms

Consider the following terms:

L {z=8in{y=1x; inz+y}}

2 {z=8 y=12; inz+y}

8 {z=8;inz+z}

4. {in8+8}

Although these terms are syntactically distinct from each
other, they all behave the same operationally. For example,
the Id compiler would represent all these terms using the

same dataflow graph, i.e., 8+ 8. Thercfore, in our reduction
system terms that have the same graph, up to isomorphism,
are equivalent. We define then a canonicalization procedure
in order to select a representative of each equivalence class,
i.e., the canonical form of a term. Reductions will be per-
formed only on canonical terms.

Deflnition 3.1 The canonical form of a term M is ob-
tained as follows:
1. Flatten all blocks according to the following two rules:

{B1; By; - {B1; By; ---
x = {BB,; BBy; --- r = EE';
in EE} — BB!; BB}; -..
biky
e Bp: <oy Bus
m E} in E}
{B1; Bz; - {B1;By;- -
in — BB;; BB;;
blky
{BB,; BB,; ... in EE'}
n EE} }

where BB] and EE! indicate a-renaming of variables in
BB; and EE!, respectively, to avoid names clashes with
the names in the surrounding scope. Note that we do not
need to rename locations because they are globally unique.

2. For each binding of the form “y = 1" in M, where z
and y are distinct variables, replace each occurrence of
“y” in M by “c” and then erase the binding y = z7”
from M.

3. For each binding of the form “y = v” in M, where v
i a ground value, replace each occurrence of ‘" in M
by “v” and then erase the binding “y = v" from M.

Notice only ground values can be substituted freely. This re-
striction on substitution of terms for variables is what allows
P-TAC to model sharing of computation precisely.

Definition 3.2 Two closed terms M and N in canonical
Jorm are said to be a~equivalent if each can be transformed
into the other by a consistent renaming of locations and
bound variables.

Lemma 3.3 Each P-TAC term has a unigue caronical form
up to a-renaming.

Proof: Since there are only a finite number of blocks and
occurrences of a variable in a term M, the canonicaliza-
tion procedure is strongly normalizing. It is easy to see
that the block flattening rules are locally confluent up to
a-renaming. Since variable substitution rules within a flat-
tened block are also focally confluent, the uniqueness of the
canonical form of M up to a-renaming follows trivially from
Newman’s Lemma [5). []

Some examples will clarify canonicalization of terms and
a-equivalence,

1. Terms {inz+1}, {y=1; inz + y} and {z=2y=
1; in £ + y} have the same canonical form. However,
this canonical form is different from the canonical form
of {z=Apply F2; y =1, inz +y}. This example
shows that a binding whose right-hand-side (RHS) is
not grounded is meaningful in determining the opera-
tional structure of a term.

2. Terms {l-store { v; in 5} and {l-store ! v; z = 5; in z}
have the same canonical form which is different from

{in 5}.
3. The following two terms are o-equivalent:
{I-store I vo;

l-store 3 vy;
in {l-structure, 2, lg, I1}}

and {I-store i}, vg;
I-store I} vy;
in {l-structure, 2, I3, 11}}

4. The following two terms are not a-equivalent:

{i-store ly {}-structure, 2, I3, i3);
I-store I {l-structure, 2, I3, I3);
in (I-structure, 2, lo, I;)

and
{I-store 16 {l-structure, 2, I}, lé)
|-store I} {I-structure, 2, Iy, I3 };
in {l-structure, 2, I, 1)}
These terms could arise during the execution of the
terms N; and N introduced in Section 2.2. This fur-
ther emphasizes the point that terms N; and N; are

different.

3.3 Reduction Notions

Intuitively, we define the evaluation of a program M as con-
sisting of repeatedly rewriting its subterms until no further
rewriting is possible. However, as we shall see shortly, some
of our rewrite rules have a precondition. The following is an
example of a rule with a precondition:

|-storel 5

l.fetchi — &

where the command |-store 1 § over the line denotes the
precondition. The above rule says that the subterm I-fetch ?
of M can be rewritten to 5 if the command |-store ! § occurs
in the context, i.e. , M.

Note from the above example that the precondition does
rot merely ailow or disallow the rewriting, but also affects
the outcome of the rewriting. Therefore we define a redex
in our ARS as follows:

Definition 3.4 Given a program M, let N be a sublerm of
M. N is said to be a redex iff it matches the left hand side
of a rule and the precondition of the rule is satisfied. If the
precondition of the rule can be satisfied by more than one
statement then N represents a distinct reder corresponding
to each such statement.

Following Klop [10], we will sometimes qualify a redex
with the name of the specific rule it matches; thus, we will
say, for example, that “2 + 2” is a f-redex, for it matches
the LHS of a é.rule. We remind the reader that a context
C[] is a term with a hole in it, such that, hen a suitable
term is plugged in the hole, C[] becomes a proper term [5].
A closed context is a context with no free variables.

Definition 3.5 Given an ARS (A, R}, if MN€ A and o

€ R, then M reduces to N in one step (M — g N)if 3

a context Cf |, and o-redex p , such that, M = Clpf, N =

Clp'], and p — p’. The transitive reflezive closure of —— g
o

i3 written as — |
R

We will sometimes explicitly mention the rule being ap-
plied in the reduction by writing M — N. We will also

make use of a different notation, M RN N, where p is the
subterm (of term M) being reduced.

34 The Rewrite Rules of P-TAC (Rp.7ac)

We now present the set of rewrite rules, Rp.7 4, for defin-
ing the ARS for P-TAC. In the following n and n represent
a variable and a numeral, respectively. Remember that the
rules are only to be applied to terms in canonical form. To
avoid a distracting discussion of type errors, we assume that
a primitive function is only applied to arguments of appro-
priate types.

¢ § rules
m+n - mtn
Equal? m n s True (fm =n)
Equal?’ mn — False (if m # n)

¢ Conditional rules

Cond Truezy — ¢«
cond

Cond False & ¥y — ¥
cond

¢ Data Constructor rules

Make—tuple r y —; {z = Allocate 2; Store z 1 z;
mkt
Storez2y; inz}
¢ l-structure rules

Allocate p — {I-structure,nn, o - - - In-1)
ale
{(fo---ln.1 are globally unigne new locations)

Length {i-structure,n, lo ---In1} — =

ten
Nil? Nil

nil
Nil? isv — False
nil

— True

{if isv is & ground value other than Nil)
Select (kstructure,n, lg -+ -lna) i — MHetch U
a€
(0<i<ny

Select (1-siruc1ure,2. lo- - in1)

Jee.

— Error
seal
G<ovi>n

Store (l-structure,n, lo---In1) § y — Lstore ; y

(0 <i<m

Store (i-structure,n, i ceedlnaa) 4

y ——+ Store-Error

sto

(i<0Vvi>nl

I-store! v h . d val
w e u o
l-fetd'l[v € sag Uuna vaiue
I-f

N=lstorel v A N =lstorel v A
N, N’ are distinct subterms of program M

M — T
blw

e Application rules

Apply {Closure, F™, m,fsv) z —
apy
{chain = Make-tuple = isv;
in Make-closure {Closure, F™, m, isv) chain }
where m > 1

F"zy 23...2, = {B;; Bs;---Bm; inzs} €D

Apply (Closure, ™, 1, isv)z — {z, = =
aP2 2! | =Selectisv 1;
resty) = Select isv 2;

z;,_o = Select rest; 1;

z! = Select restn_2 1;
é_{; ’B%;"'B:n;
mn Zj
All local variables in the block on the right hand side are
considered to be new. Note that we will have one instance
of the last rule for every user-defined function.

s Closure rules

Fn — {Closure, F",n, Nil)
ciy

Make-closure {Closure, F*, m

1 By

isv) isv' —
elg
{Closure, F™, m-1,1isv")

where {sv, isv’ are I-siructures values

Discussion:

1. By insisting that v be a ground value in the [-fetch
rule, T we capture the intuition that only ground

values can be stored into locations. Also notice that
l-store [v is only a precondition for the I-fetch rule,
and thus, it remains unaffected by the applicatizn of
the I-fetch rule.

2. According to the blow-up rule, g the whole program
w

M is a redex. That is, if an attempt is made to store
something in an I-structure location that already con-
tains a value, the whole program M goes into a “con-
tradictory state” or T,

The blow-up rule seems rather drastic. However, local-
izing the effect of multiple stores would require keeping
track of what computations have depended upon which
fetches. Since a location can be computed at run time
as in {i = Apply F a; Store z i v;.-- }, it is not pos-
sible, in general, to determine if a program will go to
T without executing it. The confluence of P-TAC will
ensure that if any terminating reduction sequence goes
to the T, then so will all the terminating ones.

3. Note that the program will go to T even if the second
value to be stored in a location is the same as the first
one. We could relax this condition by requiring that
the values being stored in a location be “unifiable”
with the one already in the location. This poses some
conceptual problems when the values under consider-
ation are closures, and some efficiency problems when
the values are I-structures.

4. An important fact to be noted is that the blow-up rule
will never be applicable in the funcliondl subsel of P-
TAC. If the use of Store only arises indirectly through
Make-tuple, then it is clear that each location has ex-
actly one store operation associated with it. This can
be seen by examining the rewrite rule for Make-tuple.

5. The I-structure rules allow the specification of infinite
lists, such as: {z = Make-tuple 1 z; in =}. This expres-
sion gets reduced to:

{I-store Ip 1;
I-store [(l-structure, 2, lo, 51},
in {I-structure, 2, lg, 1)}

where no farther reductions are possible.

6. We have included “errors” in case of I-structures rules
because these errors can not be avoided by static check-
ing. However, we have not provided any rule for error
propagation.

4 Confluence of P-TAC

We prove the confluence of P-TAC by showing that P-TAC
is subcommutative, a property that is defined as follows:

Definition 4.1 An ARS is said to be subcommutative,
ifY terms M, M, and M;:

M—M A M— M, = 3 M, such that

0/1

0f1
My — M; A M, — M,
of1 .
where — means in zero or one siep.

Lemma 4.2 A reduction relation that is subcommutative is
confluent. [5}

In order tc show that P-TAC is subcommutative, we need
to examine the interaction between rules of Rp.tac. In
a Term Rewriting System (TRS), the interaction between
rules is often characterized by the notion of “overlapping
patterns”. The pattern of a rule is the abstract syntax tree
associated to the LHS of the rule, where each variable is
replaced by a hole. Thus, the constant symbols on the LES
of a rule determine the pattern. Two rules are said to be
ambiguous if their patterns overlap. In our ARS two rules
may not overlap, but one of the them may still affect the
other by destroying its preconditions. The following notion
of interfering rules subsumes the notion of overlapping.

Deflnition 4.3 i-rule interferes with j-rule iff:
1. the application of i-rule can invalidate the precondition
of j-rule; or
2. the pattern of i-rule overlaps with the pattern of j-rule.

Fact 4.4 The blow-up rule, e and the I.fetch rule, —

are the only interfering rules in P.TAC,

The blow-up rule can invalidate the precondition of any
rule. The I-fetch rule interferes with itself as shown by the

example below:
{l-store I 1;
|-store 1 2;

z = |fetch I;

'
Ny i’

. P2

inz}
The subterm |-fetch I matches the (LHS) of the I-fetch rule.
However, the precondition for the rule can be satisfied by
either the subterm (I-store I 1) or by the subierm (I-store I
2). Thus, redexes p1 and pz2, shown above, do overlap and,
consequently, the Ifetch rule mterferes with itself.

Lemma 4.5 P-TAC is subcommutative.

Proof: We want to show that V (canonical) M, My, M, €
A, and ¥ i-rule, j-rule € Rp.tac, the following holds:

M—M A M-— M; = 3IM; such that
i E

Mlo—,]*M:; A Mz-u—l—l-rMa

1. (Non-interfering rules) Suppose the s-redex does not
interfere with the j-redex. By inspecting the non-
interfering rules of Rp-rac, and the structure of canon-
ical terms, we can see that the i-redex and j-redex have
to be disjoint. By the definition of interference, the i-
reduction (analogously, the j-reduction) cannot inval-
idate the precondition of the j-redex (¢-redex). There-
fore, the i and j reductions commute.

2. (Interfering rules)

2.1 Let i-rule be e and j-rule be different from —.

w dlw
Since only the blow-up rule can destroy the pre-
condition for the blw-redex, in the following dia-
gram M is still a blw-redex.

M
< N

bHw 3

T = M,
blw

2.2 Let both i-rule and j-rule be pos Then,
M
&
2.3 Let both i-rule and j-rule be e Ther M is

a blw-redex which can not be destroyed by the
I-fetch reductions, Hence M; and M, are also

blw-redexes.
M

< N
I-f I-f
My M,

NS
T

5 Program Equivalence and Observable results

Notice that, unlike functional TRS’s, the normal form of a
P-TAC program will usually contain a number of commands,
such as |-store I v, because commands are never erased ac-
cording to our rewrite rules. Such store commands reflect
the state of storage at the end of an execution. Consider the
following two programs, M; and M», which are in normal
form:

My ={in9} vs M; = {l-storely 4; l-storel; 5; in 9}

Though these programs are not a-equivalent, they can be
said to produce the same “answer”, i.e., 9. That is, if the
user does not care about the contents of the store at the ter-
mination of his program, he may observe “9” at his terminal
in both cases. Exactly what should be observable about a
value is a tricky question if the value is of a higher-type,
t.e,, an I-structure or a closure. For example, to a user the
internal representation of a function (or of a partial applica-
tion) is of no int..est; he can only apply it to another term.
As is to be expected the question of program equivalence,
i.e., whether two programs can be substituted freely for each
other, is related to the notion of “answer” we choose. We
introduce the notion of an erasure to factor out the internal
store of a term.

Definition 8.1 Given a term M, where M is in normal
Jorm, the L-Erasure of M, £{M), is the term obtained by
erasing all commands of the form l-store I v, where v is a
ground value, from M.

We introduce the notion of proper-termination and improper-

termination to deal with the fact that £(M) may contain
unresolved I-fetches or circular bindings.

Definition 5.2 Given an ARS P = (A, Rp_rac)p and M
€ Initial-Terms of A, the answer produced by A/P with re-
spect to P, Ansp (M), is undefined if M does not have a
normal form. Otherwise, M reduces to a normal form N,
and Ansp (M) is

o ifE(N) is T then T;

s if £(N) is of the form {in v} and
¢ if vis either integer, boolean or Error, then (proper-
termination, v,
e if v is a closure value, then {proper-termination,
Closure},

o if vis an L-structure value, then (proper-termination,
{I-structure, n}},

where proper-termination, Closure, and l-structure are
reserved constants and n denotes the length of the I
slructure value;

o if £(N} is of the form {By; Ba;-..in v} and
o if vis either integer, boolean or Error, then (improper-
termination, v}, '
¢ if v is a closure value, then (improper-termination,
Closure),
o if vis an Lstructyre value, then (improper-termination
(I-structure, n}},
¢ else (improper-termination, Nothing).
where improper-termination and Nothing are reserved
constants.

According to the above definition Ans(M,) = Ans(M;), for
M, and M; defined at the beginning of this section. The
same is true for the following two programs M; and M,:

My = {l-store lg 4; and M, = {l-storel} 5;
I-store {3 5; I-store] 4;
in in

{I-structure, 2, I, h1)} {l-structure,2, I, 1{)}

However, M3 and M, are not substiiutable for each other,
because, for example, the answers produced by “Select M3 1
and “Select M, 17 are not the same, This example clearly
shows that in the presence of higher-order types, context
plays an important role. Thus, we define the following equiv-
alence between programs [11):

Definition 5.3 M, N € A are said to be observationally
congruent if ¥V user definable contexts Cf |

Ans(CIM])=Ans(C[N}).

According to this definition programs M; and M, are obser-
vationally congruent, while M3 and M, arc not. As Meyer
points out in [11], we could have limited the notion of ob-
servable values to, say, the integer “3” without having any
impact on the equivalence of programs!

6 Operational Sermantics of an Optimizing Compiler for
P-TAC

The Id compiler [16] has several phases. It first translates
Id into high-level dataflow graphs (“program graphs”) and
then repeatedly applies many optimizations to these graphs.
It then generates the “machine graphs”, which is the ma-
chine language of the Tagged-Token Dataflow Architecture
(TTDA). It also does optimizations on the machine graphs,
but these are specific to TTDA. P-TAC is very close to pro-
gram graphs. Interestingly enough, the compiler optimiza-
tions on program graphs can be expressed in terms of an
abstract reduction system (D, —_), where D is the set of
all passible user-defined functions, that is, all the terms gen-
erated by the grammar of Figure 1 with Definition as start
symbol.

6.1 The Definition of a Correct Compiler

The rules stated in Section 3.4 are applied only to the main
expression of a program; the definitions of functions are not
involved. The domain of action of a compiler, on the other
hand, is the set of user definitions; the rules are applied to
subterms on the right-hand side of the user-defined func-
tions. Thus, a compilet may be defined as follows:

Definition 6.1 A compiler is an ARS (D, ——g.) which
given D C D iransforms the ARS P=(A, R) p into another
ARS Q-‘—"(A,R)Dl, such that,
ILYF, Fg122 - 2n=€¢e € D =
IF, Fgyzp--zn=¢ € D' and ¢ — ¢';
R,
2. R, is strongly normalizing.

Digcussion:

1. There are several useful optimizations what, if included
in R., will destroy its strongly normalizing property.
In such cases we need to restrict, in some manner,
the number of times such an opiimization rule can be
applied. We will discuss one such optimization later.

2. Usually a compiler will only produce e’s in normal
forms with respect to R.. If R, is confluent then it
is guaranteed that all terminating reduction sequences
in R, lead to the same “efficieni” program, and we can
concentrate on finding an efficient reduction strategy
for generating the optimized program.

3. The exclusion of M, the main expression, from com-
piler optimizations, is not a sericus limitation, because
M can be enclosed inside a function body and then op-
timized.

The foremost question regarding any optimization is whe-
ther it preserves the meaning of the original program. Usu-
ally, questions about meanings take us into the denotational
semantics of programs because the optimized program is
not going to be syntactically equivalent or a-egquivalent to
the source program. We will sidestep the denotational se-
mantics of P-TAC programs, by formulating the correctness
question in terms of observational congruence. The defi-
nition given below basically states that if no program can
“observe” a difference (produce different answers) between
the use of the old and new definitions then the transforma-
tions are correct.

Definition 6.2 A compiler (D, — .} which given D C D
transformas the ARS 'P:(A,RP-TAC)D into another ARS
Q=(A, RP—TAC)DI‘ istotally correct with respect to Rp_rac

¥ M € Initial-Terms of A then Ansp (M) = Ansg(M).

In some sense the correctness criterion chosen is too strict,
Generally all we care about is that the transformed program
produces exactly the same answers as the original. How-
ever, the cases when the original program does not termi-
nate or terminates improperly, it may be all right for the
transformed program to take some “liberties” and produce
a result. In the denotational jargon we would say that the
vriginal program should be an approzimation of the irans-
formed program.

Definition 6.3 A compiler {D,——g,_) which given D C D
transforms the ARS P=(A, Rp.rac)p into another ARS
Q=(A, RP-TAC)Dr s partially correct with respect to Rp_rac
ifV M € Initial.Terms of A, if M terminates properly in
P then Ansp (M) = Anso(M).

6.2 Compiler Rules that Preserve Total Correctness (Reomp)

We begin by examining rules of Rp_r4c that may be appli-
cable in the compilation process. We will call such rules as
Ry 1 a0+ Since a compiler does not allocate storage, il can-
not execute Allocate or most other -structure rules. The Ap-
ply operator cannot be executed indiscriminatiely at compile
time either. Besides the difficulty of allocating storage for
closures, the execution of Apply has the potential to get the
compiler jnto an infinite recursion. This is not acceptable
because a compiler must terminate, regardless of whether
the program is correct or incorrect. Thus, in addition to the
canonicalization procedure given in Definition 3.1, Ry,
includes the following rules:

¢ § rules

» Conditional rules

o Nil?7 rules.
As usual we will consider reductions only on the canonical
representation of terms,

TAC

A compiler may apply some additional rewrite rules,
Ropt, to transform a Program into an even more efficient
version. These optimization rules are usually not included
in Rp.rac because it is not clear how the preconditions of
some of these rules can be checked efficiently at run time.
Let

Reomp = Rp.1ac U Rop

A description of Ry follows:

e Arity Detection rule

N = Apply F™ x;;
f2 = Apply f1 x2;

a1 = Apply Jao2 Tho1;
Apply fn Tn Tad FCr(za,- -, zn)
a

where it is presumed that there is a combinator FCr (acro-
nym for Fast Call) for each user-defined function. This rule
detects if all the arguments for a user-defined function are
available. If so, the function is invoked directly, saving the
overhead of creating the intermediate closures.

. Inline Substitution rule
F™ 2y z2-- -2 = {B1; B2;++ - Bm in 2z} € D

FCr{zy,--- zn) e {z{ = z;
-
2, = Tn;
Bi: Byi-+- B
in 2}

This rule avoids the overhead of the function call completely
by inserting the body of the function in the calling program.
Note that the fc-rule must also be included in Rp.rac be-
cause, as we shall see later, not all FC’s can be eliminated at

compile time. FC’s can also be included in the Initial Terms
of P-TAC.

. Commeon Subexpression Elimination rule

r=a+b y=a+h

y=o+b — y=u;
cse

Similar cse rules exist for all primitive functions, PF1, PF2
and PF3, except Allocate, FC and Apply. As the name
suggests this rule avoids recomputation of the same subex-
pression. Function calls cannot be eliminated because of the
possibility of side-effects via I-structures.

. Fetch Elimination rules

x = Make-tuple a b
Select 1 — a
Je

z = Make-tuple a b

Select x 2 — b
fe

z = Allocate n
Lengthz — n
fe

The above rules eliminate a run tinse fetch from a data
struclure,

. Test Elimination rules

z = Allocate n

Nil?z — False
te

z = Make-tuple a &

Nil?7xz -— False
te

Algebraic Identity rules

And Truez — =
alg

Or Falsez — =
alg

r+0 - x
alg

Tx]l — z
alg

Any algebraic rule can be included as long it does not have
a precondition and it does not produce a ground value on
the RHS. We will explain the reasons for these restrictions
in Section 6.4,

6.3 Confluence and Normalization of R.omp

Theorem 8.4 R.omp without the Inline Substitution rule is
strongly normalizing.

Proof: The proof is straightforward from the following two

observations:

1. Application of any rule in R.omy destroys a redex and
does not duplicate any existing redexes.

2. Let n be the number of occurrences of primitive functions
in a term M. It is clear that the application of any rule
of R.omp decreases this number by one. Consequently,
the maximal number of redexes that car be reduced in
a term is at most n.

|

There are only two rules in Rp.7ac and Reomp that can

increase the number of applications and consequently, re-

dexes. These are the Apply (—) and FC rules, respectively.
apa

Application of — is automatically excluded from Reomp

apas

because storage allocation is excluded, and we deliberately

exclude the FC rule to gunarantee strong normalization. How-

ever, inline substitution is a very important optimization in
the Id compiler, therefore, the Id compiler passes the bur-
den of gnaranteeing termination to the user in the following
way. In Id a wser declares every function definition to be

“substitutable” or “not substitutable” by using 2 keyword

(Defsubst versus Def).

Notice that because of the elimination of interfering rules,

Ry pac 18 confluent. What we want to show is that by ex-

tending Ry _5,. with Ry, which has new interfering rules,

the subcommutative property, and hence, the confluence
property, still holds.

Theorem 6.5 R.omp is confluent.

Proof: The proof is similar to the one given in Section 4 so,
we only sketch the basic steps.

Notice that the cse-rule interferes with itself as shown
low:

{e=a+biy=a+b;...2...y}

£ L]
Py £2

e
Afli{;;:u-{—b;---y...y} My={r=att;...2...5)

This sort of interference is benign because My =, M,.

cse-rule also interferes with §-rules, and o nditional-rules,
etc. However, all these cases are captured by the following
example:

{r=243y=2+3;...z...4}

csey L

e N
cae &
My={y=2+3.-.y---y} My={z=2+3...2...5}
It is straightforward to see that the above diagram can be
closed in one step. u
6.4 Optimizations that Preserve only Partial Correctness
6.4.1 Confluent Rules (Rop,)

The reader may be wondering why the following rule was
not included in Reomp

zxl) — 0
mulg

especially given the fact that the rule

was included.

The reason is that this rule can change the termination
behavior of the program as illustrated by the following ex-
ample:

{y = Cond b 1 2;
T=y*0
b=FEqual?z0;
in 5}
Without the use of rule —, the above program will pro-
muip

duce the answer (improper-termination, 5) because of a cir-
cular dependency between z, y and b. However, if we apply

the rule — the answer produced will be
mulp

{proper-termination, 5}

By considering minor variations of the above example, we

can show that the — rule ¢can also turn
mulg

(improper-termination, v)

into T or non-termination, and a non-terminating compa-
tation into anything. However, an interesting fact is that

rule —— cannot change the answer of a computation that
mulg

produces an answer of the type {proper-termination, v). Fur-
thermore, it cannot change v, the value part of the answer,
even when the unoptimized computation terminates with
(improper-termination,v} (of course, as noted above, im-
Proper termination can turn into T). All the Ropt, rules
given below have this property.

N Teat Elimination rule
r = Allocate n

Nil?x — False
tey

¢ Algebraic Identity rules

And False x —— False
algy

Or Truez — True
algy

T*x0 — O
algy

r—x — 0
algy

Equal?z z — Trye
algy

Any algebraic rule that does not have a precondition can
be included here.
Let us define Rcomp, as follows:

Rcompl - Rcmnp U Roptl

Lemma 6.6 Reomp, is strongly normalizing and confluent,
Proof: Omitted. Similar to proofs given earlier. |

Discussion: The confluence is quite surprising because Reomy,

contains the algebraic Equal?-rule, which is a non-left-linear

rule. Since adding this rule to A-calculus destroys confluence
10}, we want to clarify why it does not cause any harm in
-TAC. Let’s first recall the reduction rule for the fix-point

operator Y:
Yr 5 YY)
we have the following reduction:
Equal? (Yf) (¥) T’F?“ﬂ‘? FY) (Y.Q

E——
Y—r desc{ Eq—r)

Eg—r

Note that the descendent of the Eg-redex is not a redex
any more, while in P-TAC we get

{z= Apply Y f; = {z = Apply £ (Y f);

Y—»
in Equal? x =) in Equal? r 2}

Eg—r Eq-r

The main point to grasp is that by naming “Y f”, the
descendent of “Equal? r £” remains a redex, and the dupli-
cation of the computation “Y f” is avoided.

6.4.2 Non Confluent Rules (Rop:,)

We now discuss some optimizations that are not confluent.

Let

Reompy = Reomp, U Rop,
where rules in Rope, are defined as follows:

. Fetch Eliminatjon rule

Store z { z

—_—
Select 1§ —1 2
feq

s Algebraic Identity rules

r=n + m

m >0
lessn # — True :
aigg
Ten tom m > g
Lesszx n — False
alga
r=n 4+ m
== m>0
Greatern r —— False
algy
xr= m
ntm m>0

Equal? n £ — False
algg

Lemma 6.7 Reomp, is strongly normalizing.
Proof: Trivial. []

We illustrate, by an example, that these transformations
can create havoc in the presence of deadlocks. Consider the
following program:

{y=z+3
z=y+3;
b=lLessz y;
a=Condb12;
ina}

This program will produce (improper-termination, Nothing)

in Rp-rac. The trouble is it can produce two different an-
swers if optimized using Reomp, because “Less z y” repre-
sents two different overlapping redexes — one corresponding
to the precondition “y = £ + 3” and the other correspond-
ing to the precondition “z = y 4 3", Therefore, the above
program can produce either 1 or 2 as an answer after having
applied R.omg,.

The main problem with the rules of Reomp, is that they
ate potentially overlapping; precondition of any rule can be
satisfied in several ways. The only rule in Rp-tac that
had this characteristic was the I-feich rule. However, by
disallowing multiple writes in a location via the blow-up rule
we were able to preserve the confluence. We can include a
slightly modified version of the blow-up rule 1o deal with the
modified version of the fetch elimination rule in Reomp,

However, there is no easy way of dealing with the “circu-
lar dependency” problem short of doing the dataflow anal-
ysis of the programs. If we could detect all such programs
then we can declare them illegal and conveniently use all
the Reomp, rules. Though algorithms for dataflow analysis
are well developed, we have not yet examined them from
the correctness point of view, that is, we don’t know if they
detect all and nothing but deadlocked cycles in a Program.

7 The Correctness of R..n,,

The correctness of Reomp would be trivial to decide if all the
rules in R,,, were “derived rules” in Rp.1 4c:.

Deflnition 7.1 A rule & € R’ is said to be a derived rule
in(AR)IFYMeA M — M, =3I M, M— M
- R

A M ~—» M.
R

Pictorijally:
M — M

a

b4

Consider the following two versions of the Test elimination
rule, neither of which is in Rp.rac:

z = Allocate n z = Allocate n.

W &— alse n, r— alse
: te tey

YErsus

The — rule is a derived rule in Rp-rac while —» is
te

tey

not. This is so because “Allocate 3” can always be reduced
in Rp-rac to get an I-structure value, and then the Nil?
test can be applied to this I-structure value to get the an-
swer False. On the other hand no rule in Rp_psc matches
“Allocate n”, unless n is grounded, and consequently the
Nil? test may not be applicable either. However, in case
n is grounded, the result according to Rp_rac would also
be False. Thus, the difference between the two rules shows
up only when we consider the application of the rnles to
open terms or terms where the RHS of the binding cor-
responding to n does not get grounded either because of
non-termination or improper-termination.

The only rules in Rope that are derived rules are the Test
elimination rules.

To better understand the behavior of non-derived riles,
consider the following example where M; is obtained from
M, by applying the algebraic rule “c + 1 —— z”;

Mi={z=y+ly=z+hz=2+1; inz+2)

My={z=y+1l,y=z+1; inz+2)
It so happens that both M; and M; are in normal form

and are not a-equivalent. However, they do produce the
same observable answers, i.e.,

Ans(M1) = Ans(Ma2) = (improper-termination, Nothing)

The correctness of the compiler crucially depends upon the
fact that the effect of a non-derived rule cannot be “ob
served” by any program.

Definition 7.2 Aninstance of a rule is a rule obtained by
substituting a ground value for a free variable in the rule.

For example, an instance of «Z= Make-tuplea b, .o . . 4
eCtrl———a

by substituting a ground valne for either “a” or “b" e.qg.,
«T = Make-tuple 2 b,
Selectx 1 — 2 -

Definition 7.3 A4 grounded instance of a rule is a rule
obtained by substituting ground values Jor all the free vari-
ables in the rule.

For example, a grounded instance of “And True + — 2 is

“And True False —- False”; a grounded instance of the Previ-

ous Fetch Elimination rule is «Z.=Maketuple23,
Select 1 — 2

: w_ Storexi5 u S
Note that the instance P Dy sect 2" of the Fetch Elim
ination rule in Rope,, even thongh it introduces a ground
value on the RHS, is not a grounded instance. Furthermore,
it is not a derived rule, while any grounded instance is a
derived rule.

Theorem 7.4 A compiler (D, —+n,.) 18 partially correct with
respect to Rp.rac #f ¥ 0 € R, all the grounded instances
of o are derived rules in Rp_14c.

Proof: By Definition 6.1 a compiler, given R., transforms

ARS P = (A, RP_TA(;)D into another ARS Q = (4, RP-TAC)DI.

We want to show that ¥V M € Initial-Terms of A, if M ter-
minates properly then M produces the same answer in both
P and Q. We prove the partial correctness of R, by induc-
tion on the number of reduction steps applied to P,

We give the proof only for the base case, that is, suppaose
@ is obtained from P in one step by applying rule ¢ €
R.. Thus, the only difference between P and Q is that
@ contains an “optimized™ version of a function, say, F;. In
the following we will write R instead of Rp.7ac to reduce
the clutter. Suppose M — M’ o M, in P, where M’

R 2

contains the first invocation of F;. Since F; is first applied
in M’, it is possible to mimic in Q the reduction sequence

M —s M'. Suppose M' — M; in Q, where M; 2, M,.
R apa

This means that 3 a o-redex in M1, say p, such that M; 2.
o
M;. Pictorially we have

oMy —e

M— M |,
R My ——s ...

We will show that if M) terminates properly in P then
it’s possible to close the above diagram in P-TAC.

If M) terminates properly in P, then all free variables
of p get grounded; consider then the reduction sequence,
a1 ...an, where redexes a; ..., are the redexes needed to
ground all free variables of p (see the picture below). We
consider two cases.

Case 1

Suppose redexes a1 ... a, do not interfere with redex p, that

is, &1 ... @n do not destroy expression £ or its precordition.

This means that M; must contain the expres ion o' where p’

is a copy of p, which is a o'-tedex, where o’ 15 the grounded

instance of 5. Moreover, no rule in R. can destroy the pre-

condition of a P-TAC redex for the following reasons:

1) the grounded instances of any rule that deletes a com-
mand can not be derived rules;

2) any rule that modifies a “Store” command has to rewrite
that command into the correspondent “l-store” command.

We conclude that it is possible to apply the reduction se-

quence ay...an, to M2 in Q. We thus obtain:

-

3M;, M; "L Mjin Q and M{ — M}

Since ¢ is a grounded instance of o, ¢' is a derived rule in
Rp-1ac and hence 3 M, such that

/.Mlﬂ....i‘»M{
MR-'""» M‘ lcr la"' Ma
TTAC Ngf, =y A

Case 2

Suppose redexes a .. -@;-1 do not interfere with p and o;
does. (As an example of this situation consider M ={r=
Make-tuple 1 y: y = Select z 1, iny} and Mz = {z =
Make-tuple 1 y; y = 1; in ¥}. M; is the optimized version

of M, obtained by applying the fe-rule.) Furthermore, let
a; be the redex needed to ground, say variable “y”, of rule

o Thusif, My 'S0 MY and My U227 MY hen AFY

still contains a copy of p, which is a o”-redex, where o”
is an instance of o in which variable “y” is not grounded,
However, an attempt to ground “y” by applying redex o;,
either the precondition of p or p itself geis destroyed due to
interference. Clearly due to proper-termination in P it must
be the case that both the precondition of p and p itself are
not strict on y. Notice that, if o were grounded then there
would exists reduction sequences 3, ... BnyTt-..%m, in P
and Q respectively such that

M; By...Bn My A M—; Y1--Tm M;.

Due to non-strictness and by the fact that variable y gets

grounded it must be the case that the abave reduction se.

quences are indeed applicable ta M] and M; respectively.
|

Corollary 7.5 Compilers {D, ~Reomphr (D) =Reomy, } and
(D) == Reomy,) are partially correct with respect to Rp_rac.

Theorem 7.6 A compiler (D, —r_} is totally correct with
respect to Rp.vac if
1. ¥ o € R. oll the grounded instances of o are derived
rules in Rp.7ac; and
2. Y o € R, the instances of o that can introduce a ground
value on the RHS are derived rules in Rp.rac.

Proof: From the previous theorem the first condition guar-
antees partial correctness. What we want to show next is
that ¥ M € A if M terminates properly in @ then M ter-
minates properly in P. The proof is similar to the previous
one, therefore we will only sketch the basic steps. Suppose

M, 2, M;, if M- terminates properly in @ then all free

variables of o get grounded in Q. Consider the reduction se-
quence o, ...om that ground those variables. In both cases
of non-interfering and interfering redexes it must be the case
that a;...an are applicable in P. If not it means that o-
reduction does introduce a new ground value in Q and ¢ is
not a derived rule, which contradicts the second condition.
What we have shown so far is that a P-TAC program M ter-
minates properly in P iff M terminates properly in Q. We
can then conclude that a variables gets grounded in P iff it
gets grounded in Q, that is, no information can be deleted
or created. From this we also derive that both improper-
termination, T and L are preserved, since the same argu-
ment applies to all cases we will only analyze the case of
improper-termination. We want to show that if M termi-
nates improperly in P then M terminates improperly in Q.
Note that M can not produce T in Q@ because this means
that a new ground value is produced in ¢, and this violates
what proved previously. Analogously M can not produce |
in Q. |

Corollary 7.7 The compiler (D, — Reom,) i totally cor-
rect with respect to Rp.pac.

8 Conclusions

P-TAC has already proven very useful in understanding and
classifying optimizations used in the Id compiler. The only

optimization that is in use in the Id compiler but has not
been discussed here is dead code elimination, which essen-
tially deletes bindings corresponding to those variables that
are not needed to produce the final answer. This optimiza-
tion also requires dataflow analysis and can turn a program
producing T or improper-termination into a properly ter-
minating program. Dead code eliminalion can also interfere
with deadlock detection and optimizations in Reomp,.

It appears that even though ARSs are very useful to
describe correctness of many optimizations they are inad-
equate for describing optimizations that require dataflow
analysis. Hence, it may be worth extending the work in
the direction that facilitates bringing in graph-theoretic re-
sults. We also think that exploring connections with the
work on strictness analysis may be profitable.

Acknowledgments

Part of the motivation for this work came from observing

- Ken Traub’s success in modeling sharing of computations in

his Functional Quads. He also provided many detailed and
useful comments on several drafts of this paper, We got the
idea of modeling compiler optimizations as an ARS from a
talk P.L. Curien gave at M.LLT in November 1987, where
he described the work of Thérése Hardin. Unfortunately we
have not been able to read the thesis [8] because it is in
French!

We are grateful to Vinod Kathail for innumerable dis-
cussions about Term Rewriting Systems and the A-calculus,
and the specific issues discussed in this paper. A discus-
sion with Albert Meyer was very helpful in clarifying the
question regarding observational congruence and compiler
correctness.

Many thanks to Shail Gupta, Jamey Hicks, Gary Lind-
strom (Utah), R.S. Nikhil, Surya Mantha (Utah), Jon Ricke
and Jonathan Young for reading the curreat draft of the
paper and for providing insightful comments.

Funding for this work has been provided in part by the
Advanced Research Projects Agency of the Department of
Defense under the Office of Naval Research contract N0O0014-
84-K-0099 (MIT) and N0039-88-C-0163 (Hacvard).

References

[1] Arvind and K. Ekaradham. Future Scientific Program-
ming on Parallel Machines. Journal of Parallel and
Distributed Computing, 5(5), October 1988,

[2] Arvind, S. Heller, and R. S. Nikhil. Programming Gen-
erality and Parallel Computers. In Proceedings of the
Fourth International Symposium on Biological and Ar-
tificial Intelligence Systems, E. Clemoenti and S. Chin
{eds), Trento, Italy, pages 255-286. ESCOM Science
Publishers, Leiden, The Netherlands, S ptember 1988.

[3] Arvind and R. S. Nikhil. Executing a Program on
the MIT Tagged-Token Dataflow Architecture. In Pro-
ceedings of the PARLE Conference, Eindhoven, The
Netherlands, Springer-Verlag LNCS !i9, June 1987.
(To appear in IEEE Transactions on (fomputers).

[4] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures:
Data Structures for Parallel Computing. In Proceed-
ings of the Workshop on Graph Reduction, Santa Fe,

New Mezico, Springer-Verlag LNCS 279, pages 336
369, September/October 1987.

[5] H. Barendregt. The Lambda Calculus: Its Syntaz and
Semantics. North-Holland, Amsterdam, 1984.

[6] B. P. Barendregt, M. C. J. D. van Eekelen, J. R. W.
Glauert, J. R. Kennaway, M. J. Plasmeijer, and M. R.
Sleep. Towards an Intermediate Language Based on
Graph Rewriting. In Proceedings of the PARLE Con-
Jerence, Eindhoven, The Netherlands, Springer-Verlag
LNCS 259, pages 159-175, June 1987.

{7] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W.
Glauert, J. R. Kennaway, M. J. Plasmeijer, and M. R.
Sleep. Term Graph Rewriting. In Proceedings of
the PARLE Conference, Eindhoven, The Netherlands,
Springer-Verlag LNCS 259, pages 141-158, June 1987.

[8] T. Hardin. Résultat de Confluence pour les Rigles
Fortes da la Logique Combinatoire Categoique et Liens
avec les Lambda-caleuls. Ph.D. thesis, Université Paris
VII, October 1987.

[9 T. Johmsson. Lambda lifting: Transforming pro-
grams to recursive equations. In Proceedings of Func-
tional Programming Languages and Computer Architec-
ture Conference, Nancy, France, Springer- Verlag LNCS
201, September 1985.

[10] J. Klop. Term Rewriting Systems. Course Notes, Sum-
mer course organized by Corradoe Boehm, Ustica,Italy,
September 1985.

[11] A. R. Meyer and 8. S. Cosmadakis. Semantical
Paradigms: Notes for an Invited Lecture. Technical re-
port, MIT Laboratory for Computer Science, 545 Tech-
nology Square, Cambridge, MA 02139, July 1988.

[12] R. 8. Nikhil. Id (Version 88.1) Reference Manual.
Technical Report CSG Memo 284, MIT Laboratory for
Computer Science, 545 Technology Square, Cambridge,
MA 02139, August 1988.

[13] R.S. Nikhil, K. Pingali, and Arvind. Id Nouveau. Tech-
nical Report CSG Memo 265, Computation Structures
Group, MIT Lab. for Computer Science, Cambridge,
MA 02139, July 1986.

(14] S. L. Peyton Jones. FLIC — a Functional Language
Intermediate Code. ACM SIGPLAN Notices, 23(8):30-
48, August 1988,

[15] S. K. Skedzielewski and M. L. Welcome. Data Flow
Graph Optimization in IF1. In Proceedings of Func-
tional Programming Languages and Computer Architec-
ture Conference, Nancy, France, Springer. Verlag LNCS
201, pages 17-34, September 1985.

[16] K. R. Traub. A Compiler for the MIT Tagged-Token
Dataflow Architecture. Technical Report LCS TR-370,
MIT Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139, August 1986.

[17] K. R, Traub. Sequential Implementation of Lenient
Programming Languages. Technical Report LCS TR-
417, MIT Laboratory for Computer Scierce, 545 Tech-
nology Square, Cambridge, MA 02139, May 1988,

