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Abstract

Dataflow architectures can exploit the full parallelism of many algorithms by means of
fine grained synchronization. Each instruction in a dataflow graph may be considered
a different task which can be executed on its own processor. The principle criticism of
dataflow architectures has been the high overhead associated with the distribution and
synchronization of the instructions. Most notably, in previous dataflow architectures,
there was an apparent need to use either a fully associative memory, or some sort of
hashing scheme in order to match operands in an instruction. The Explicit Token Store
(ETS) architecture overcomes the need for this bottleneck.

MINT (Monsoon Interpreter) is a bit-level simulator for Monsoon, which is the first
hardware implementation of the ETS architecture. MINT is easily extendable to future
implementations of ETS. Any state accessible in Monsoon can be accessed in MINT,
except the internal state of the pipeline stages. All timing for MINT is identical to Mon-
soon, including pipeline delays. One can single step through either MINT or Monsoon
without telling the difference between the two.

MINT can do several things that Monsoon cannot do. MINT is capable of more detailed
statistics gathering than Monsoon. MINT can implement pseudo-instructions which
execute several Monsoon instructions; for example, system calls may be implemented as
single instructions in MINT in order to minimize the effect of a specific operating system
on the statistics gathered for studies of algorithms on dataflow architectures.

Eventually, MINT will be used to help debug Monsoon hardware, prototype new Monsoon
opcodes, and it will be shipped to parties interested in performing dataflow experiments.

Thesis Supervisor: Gregory Papadopoulos

Title: Project Manager
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Chapter 1

The Explicit Token Store Dataflow
Architecture

In this chapter, we describe the Explicit Token Store (ETS) architecture, especially in
comparison to previous dataflow architectures. It is not meant as an introduction to
dataflow and a certain amount of knowledge of dataflow architectures is assumed. In
particular, a fairly thorough knowedge of the the MIT Tagged-Token Dataflow Architec-
ture (the basis of the work on ETS) is assumed. For a more thorough introduction to

dataflow, the following papers are recommended: [2], (3], {1].

1.1 What is Monsoon?

Monsoon is an implementation of Explicit Token Store, a new dataflow architecture de-
veloped by Papadopoulos [10]. Monsoon overcomes many of the implementation barriers
of previous dataflow architectures. Monsoon’s principle advantage is its ability to match
operands in a fast, constant amount of time. In previous dataflow architectures, tokens
which did not have a partner were put into a “waiting matching area”. Every token
would have to check the waiting matching area to see if its partner was there. In hard-
ware implementations, matching was either accomplished with large associative memories
(which is prohibitively expensive and slow) or else with some sort of hashing schemes,
which did not lend itself well to a high performance, pipelined implementation {8] [7]. In
ETS, each token places itself into a predetermined offset of an activation frame, where an

activation frame is analogous to a stack frame in conventional Von-Neumann machines.



The offset of each token within the Irame is determined at compile time. In this manner,
waiting matching storage can be implemented with conventional, tagged memory, and
waiting matching can be done in a short, constant time, which allows the architecture to

be effectively pipelined.

1.2 Overview of Monsoon Architecture

Token {

Instruction Instruction
Memory Fetch

L L

Data Operand
Memory Matching

Token
_l_ Queue

Form
Tag ALU

v

Form Token Token ¢ Token ¢

Figure 1.1: The Monsoon Architecture

In Monsoon, data memory and instruction memory are completely separate. Instruction
memory is 32 bits wide and data memory is 64 bits of data, 8 bits of tag and 2 bits

of presence. The data memory is currently used for I-structure (array) memory as well



as for activation frames and constant storage. Monsoon has two token queues, both of
which are LIFO. As stated before, dataflow execution does not depend upon the order
in which the instructions are executed, and the queueing policy (LIFO, FIFO, random,
etc.) does not affect the determinacy of the program.! If the queues were FIFO, the
results would be the same, although the amount of time and space required to execute a
program might be different. LIFO queues have the attractive feature that they preserve
spatial locality; tokens which are processed at about the same time are likely to match

and fire, therefore requiring less total memory to execute a given program.

The two queues have slots with 64 bits of tag, 8 bits of tag-type, 64 bits of data and
8 bits of data-type. There are two token queues so that an infinite processor simulation
can be done in the hardware. One queue can empty out and fill up the other queue; the
number of instructions executed until a queue empties is equal to the maximum number
of instructions that can be executed in parallel in a dataflow machine with an infinite
amount of processors. Once the queue is empty, the roles of the queues are reversed, and
this continues until both queues are empty. At that time, the program terminates. The
number of times the queues swap is called the “critical path” because it is the minimum
number of time-steps in which the particular program can be executed given the that

program’s inherent data dependencies.

Execution on Monsoon occurs in the following pipelined steps:

Dequeue Token

Instruction Fetch

Operand Match

ALU and Create Tag or Bubble

Enqueue Token

Note that the Instruction Fetch stage occurs before the Operand Match stage. This
is in the reverse order of the TTDA architecture because certain information from the

instruction is necessary to determine how to match operands.

1However, certain resource management calls require that a certain tokens be executed before other
tokens. For these cases, which will be discussed later, tokens can be inserted directly into the pipeline,
overriding the priority of other tokens.



1.2.1 Dequeue Token

Execution begins with dequeueing a token. If the processor is idle, a few “starter” tokens
are dropped into the pipeline to start it up. These starter tokens have information as to
which function is being called, and the arguments to that function. When the processor
is busy, the Enqueue stage of the pipeline usually produces a token which is directly sent
to this stage. This is indicated in Figure 1.1 by the direct route from the Form Token
stage to the Instruction Fetch stage. Sometimes, tokens arrive from the network to enter
the pipeline. If no tokens arrive from the network, and no tokens are directly enqueued
from the pipeline, then this stage will unstack a token from the current token queue. If

there are no tokens in the current token queue, then the pipeline is bubbled.

Each token consists of four parts: the tag-type, tag-value, data-type and data-value.
Currently, the type fields (tag-type and data-type) are not being used, but eventually,
the data-type slot may be used for several purposes, including type-checking, garbage
collection, and statistics gathering. The data-value contains the data that the token is
carrying; this data may be a floating point number, an integer, a bit-array, or a tag
(being used as data). Usually, it contains an operand-value to a particular instruction;
for example, it may contain a floating point number as an operand to a multiplication

instruction. The tag-value part of the token is broken up into the following fields:

TAG J

PORT | MAP P PE FP
1 7 24 10 22

e The port field is used to determine the input port of the instruction into which
the token flows. For example, if the instruction is division, then the token could be
either the divisor or the dividend, depending upon the port with which the token
1s labeled.

e The map field is used for interleaving large data structures across processors in

order to more uniformly distribute memory references.

o The pe (processing element) field determines which processing element the token
is currently in. This is sometimes used in some instructions which move tags into

value slots in tokens, although on a given processing element, this field is redundant.
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o The ip (instruction pointer) field is a pointer to an instruction in instruction mem-
ory into which the token is flowing. For example, the ip might point to an addition

instruction.

e The fp (frame pointer) field is a pointer to the base of an activation frame in
data memory where the token is to wait or match. The token will look into a
particular offset, which is determined by the instruction, of this frame to find its
partner. A new activation frame is allocated for each function invocation. All the
tokens for any function invocation share an activation frame. In addition, each
instruction is assigned an offset into its activation frame at compile time. In this
way, different (i.e. parallel} invocations of the same function can co-exist: they
simply have separate activation frames. Since each token is generated from an
instruction, each token knows ezactly where in data memory to look for its pariner.
This allows tokens to match in a single cycle, which is the principle advantage of

ETS over previous dataflow architectures.

1.2.2 Instruction Fetch

An instruction is fetched from the instruction memory by the ip field of the token. The
ip is just an absolute address into instruction memory. Instructions are broken up into
the following fields:

| INSTRUCTION |
OPCODE r PORT 5
10 10 1 11

o The opcode determines the operator (e.g. plus, minus, merge, switch, i-fetch, etc.)
in addition to the number of outputs, how the outputs are to be queued, and how
the operands are supposed to be matched. Since the opcode determines so many
things, the 10 bits that we use to represent it are proving to be not enough. In the

next machine, the opcode will have a larger field (12 bits).

e The r field is usually interpreted as the offset into the activation {rame into which
the token should look for its partner. If the token does not find its partner, it will

insert itself into that slot.

Some opcodes use the r fields for other purposes.
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¢ The port field is the output port which the output token(s) is sent to on the next
instruction. For example, if we executed the function f(z) = (3 +z)/4 The output
of the addition of 3 and z would be sent to left port of the division instruction in

the function, since (3 + z) is the dividend.

e The s field is the offset from the current ip that the output instruction is located
at. The s field is interpreted as a two’s complement number because destination
instructions can be located in instruction memory either before or after the current
instruction. If the opcode specifies two outputs, the second output token is sent,
by convention, to the following instruction, tp + 1. This convention has made
compiling code for Monsoon somewhat awkward; in the next machine, there will

be two s fields to represent the two offsets for two output destination instructions.

The s field is also used for other purposes in certain opcodes.

1.2.3 Operand Matching

There are several different matching functions. For example, sometimes we have functions
that have only one argument, such as identity. That token does not need to check for
any other tokens. Sometimes, we have functions that take a constant as an input. For
example, for the function f(z) = z + 3, the addition instruction will have only one
incoming token — the 5 will be compiled as a constant into data memory. In these cases,

the instruction will fire when the one token enters it since the other operand is a constant.

Most arithmetic instructions take two tokens and use a “normal” matching function.
For those instructions, the first token will look at the presence bits at fp + r. If the
presence bits indicate that the partner token 1s already in that slot, then the partner
token is extracted, and the two tokens are sent to the next stage of the pipeline. If the
presence bits for that slot indicate that the slot is empty, then the current token must
be the first token to arrive. At that point, it inserts itself into the slot and changes the

presence bits to indicate that it has arrived.

1.2.4 ALU and Create Tag or Bubble

If in the previous stage, the token discovered that the slot was empty, then the rest of

the pipeline is bubbled, because there are not enough operands for the instruction.
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If the tokens were sent to this stage from the previous stage, then two things happen
in parallel: the tag or tags for the output token or tokens are formed, and secondly, the
output value is calculated. If there are two output tokens, both tokens will have the same

value. The output tags are usually constructed in the following manner:

o The port is the output-port indicated by the instruction. That is, it is the input

port of the “next instruction”.
o Currently, the map is the same as the last input token’s map.
e The pe is the same as the last input token’s pe.

o The ip for the first token is ip + s, and if there is a second token, its ip is by

convention zp + 1.

o The fp is the same for most instructions, except certain instructions where the fp
is either used for something totally unrelated to activation frames, or else used for

entering or exiting function invocations.

1.2.5 Enqueue Token

If there was a bubble, then no tokens are enqueued unless one arrives from the network.

If there was one output token, then it is usually inserted directly into the pipeline, as

was described in the Dequeue Token section.

If there were two output tokens, then one of them is inserted into the pipeline and

one of them is stacked onto the current token queue.

There are some exceptions to these rules, but they are handled as special cases.
Sometimes, there are tokens that are coming in from the network, and those tokens
have priority over any tokens in the current processor in order to avoid deadlock in the

network. Those tokens are always directly inserted into the pipeline.
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1.2.6 Overview

Execution in the current system ends when the pipeline and the token queues are all

emply.

Hopefully, the pipeline will be kept full most of the time. The ALU and Create
Tag stage will be only full as much as the Operand Matching stage creates outputs.
If all instructions took two operands, then the ALU would only be utilized half the
time. In reality, almost half of the instructions take only one operand, so the ALU
utilization is actually around 75%, if the pipeline is full.? In any case, it is not certain
that ALU utilization is an important factor in determining the effectiveness of a parallel

architecture.

Certain factors allow us to believe that the pipeline will be kept fairly full. The ETS
pipeline is non-blocking; no instruction is dependent upon the execution of any other
instruction, so there can be no conflict for data within the pipeline. Most programs have
quite a bit of parallelism in them, so that if one section of the program is waiting for
data, other parts of the program can still execute.® Data from GITA show that most
programs end up using a lot of queue memory; this probably means that some of the

tokens waiting in queues could be processed by the pipeline.

1.3 Example Program Compilation and Execution

Suppose that we would like to execute the following program:

def foo x =

X kx+2*xx+7;

foo would compile to the following Monsoon code:

2Half of the instructions take only one operand because many of those instructions are actually
identities. In real dataflow graphs, instructions often have more than two destinations. Since Monsoon
only allows two destinations for each instruction, identities are used to “fanout” the outputs of some
instructions.

3In fact, a big problem for dataflow is that it can exploit 100 much parallelism. Too much parallelism
will use up too many resources too quickly, such as data memory and queue memory [6].

14



Code block FOO:

IP: <OPCODE R => DEST:P>
438: <IDENTITY-M1 0 => 43D:0>
439: <IDENTITY-M1 0 => 442:1>
43A: <IDENTITY-M2 0 => 441:1>
43B: <IDENTITY-M2 0 => 441:0>
43C: <*R-L1 4D => 440:1>
43D: <IDENTITY-M2 0 => 442:0>
43E: <ADJUST-OFFSET-CHANGE-TAG-N1 2 => 1:0>
43F: <+R-L1 4C => 43E:1>
440: <+R-N1 3 => 43F:0>
441: <*R-N1 1 => 440:0>

442: <ADJUST-OFFSET-CHANGE-TAG-N1 0 = 0:0>

In the graphical representation of the dataflow machine graph (Figure 1.2) the part of
the graph within the dotted lines is the actual code block; the other nodes of the graph

are related to the function call and return.

Suppose we wanted to calculate f00(10.0). In the current “operating system”, we
would first write the argument, 10.0, to a special location in data memory.? The execution
of foo would begin with the queueing of an initial token containing the address of foo and
the address of the first free activation frame which is currently always the same location

in data memory.®

This first token is copied by the first identity instruction and sent to the three nodes
right above the foo code block — namely, the change-tag and the two adjust-offset-
change-tag (AOCT) instructions.®

These three instructions are used to distribute information for the calling convention.

The leftmost instruction, change-tag sends the address of the return instruction to

4The current “operating system” can only handle functions of one argument, but only because no one
has bothered to implement anything more sophisticated. There is no inherent problem with functions of
more than one argument. The current calling convention (taken from TTDA) supports functions with
any number of arguments.

SCurrently, activation frames are all the same size, and they are kept on a linked free list in data
memory. Obviously, this will become more sophisticated as we learn how to write real operating systems
for dataflow systems.

6Note that most of the identity instructions are used for “fanout” purposes.
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the first instruction in the code block (which is an identity in this case). The return
instruction is currently always the write! instruction. The middle instruction, AOCT
sends the address of the argument list to the second instruction in the code block. In
this case, there is no argument list, since we only have one argument. The rightmost
instruction, another AOCT sends the value of the first (and only) argument to the third
instruction in the code block. This convention is described in more detail in {12]; it is

currently the same convention used for the TTDA.

The left and middle branches of the code block terminate. The AOCT instruction
at offset 0xA does not produce an output. Normally, the output of that branch is sent
as a synchronization signal to the next code block, if necessary. We do not need the
synchronization, so the AOCT will output to a NOP instruction, located at 0x0. The
return address will eventually find its way to the AOCT instruction at offset 0x6.

On the right branch of the code block, the calculation of the function proceeds. At
offset 0x9, z? is calculated, and at offset 0x4, 2z is calculated. These two are added at
offset 0x8, to produce 22 + 2z which is sent along to offset 0x7. At this node, 7 is added,
producing the final result, 22 + 2z + 7. This result is sent to the right port of the AOCT
at offset 0x6. When the AOCT at 0x6 receives both inputs, it send off the result to the
return address. The instruction at the return address is write!, which just writes the
result to a pre-determined address in memory and set the presence bits to indicate that
that location has been written to. Execution then halts, and the result can be read from
that address.

17



Chapter 2

Why Build MINT?

With many new architectures, a simulator is built before the hardware is built in order to
test the effectiveness of any architectural innovations. This was not the case with MINT.
Since ETS was largely based upon work done on TTDA, Papadopoulos felt that most of
the analysis of TTDA was valid for ETS.! MINT is intended to be a hardware debug-
ging tool, although its development was parallel with the development of the hardware.
With the addition of the microcode compiler [5], MINT is a true bit-level, microcodable

Monsoon simulator.

2.1 The GITA Interpreter

The Computation Structures Group presently has a simulator for the TTDA architecture
called GITA (Graph Interpreter for the Tagged Token Dataflow Architecture). Since
TTDA is not an implemented architecture, GITA is not a realistic simulator; in fact,
GITA is the only platform on which TTDA runs.? However, GITA is a very useful tool
for evaluating algorithms on dataflow machines because it can take statistics. Most people
who want to analyze algorithms do not care if the underlying architecture is somewhat
unrealistic. In fact, they would prefer the effects of the operating system on the execution
to be minimized, so that the characteristics of the algorithm, rather than the operating

system, are observed.

1papadopoulos did run some simulations on a slightly altered version of GITA, but no version of
GITA has been a legitimate Monsoon simulator.

2 Any architecture on which the only implementation is a network of 32 Lisp machines may reasonably
be called “unrealistic”.

18



GITA processes about 600-1000 tokens/second on an Explorer Lisp Machine. TTDA
tokens are a little more powerful than Monsoon tokens, since each token can output to
multiple tokens, whereas Monsoon tokens can only output to a maximum of two tokens.
Certain TTDA tokens are a lot more powerful because they are the equivalent of system
calls. The bookeeping for those instructions is all done in Lisp, whereas in Monsoon,
we are implementing an operating system on the machine. When MINT needs to make
a system call, it will simulate the system call as part of the execution of the machine

dataflow graph instead of directly implementing the call in Lisp.

The initial performance goal was to obtain comparable performance to GITA. It was
known at the outset that it would be almost impossible to obtain the same performance or
better performance because Monsoon programs will definitely require many more tokens
to execute than TTDA programs. GITA has also been in constant use by the CSG since
it was written about four years ago, so it has been highly optimized by many competent
programmers. MINT would be written entirely by this author in a few months, from

scratch.

2.2 Reasons for Building MINT

The rationales for MINT and GITA are different for one very important reason: Monsoon
hardware. GITA was the only execution platform for the TTDA architecture. MINT
is only to be used as an alternate execution platform for the ETS architecture. The
Monsoon hardware will be about four or five orders of magnitude faster than MINT,
which will practically eliminate the need for MINT as an experimental platform for large
dataflow programs. The relationship between MINT and Monsoon is described in Figure
2.1.

All dataflow programs to be run on Monsoon or MINT will be written in the Id [4]
programming language. Id is a high-level functional language with many novel features,
chief among them being I-structures. People will seldom program dataflow machines
in dataflow machine language, because it is too difficult. Even dataflow experts find
it difficult to ascertain the correctness of simple dataflow machine graphs merely by
“looking” at them. The Id compiler, which previously compiled TTDA graphs, has been

modified to compile Monsoon machine graphs.
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Figure 2.1: Where does MINT fit in?
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The user front end will include the linker and the loader. ID programs are currently
dynamically linked and loaded automatically after compilation, much as Lisp machines
work. The front end will also consist of an execution environment, much like a Lisp
Listener. The front end will direct either MINT or Monsoon to collect statistics and
it will display those statistics. Monsoon contains some statistics registers which can be
accessed by commands in the microcode. MINT has analogous “registers” which work
like the hardware. In addition, Monsoon is capable of collecting other statistics which

the hardware is not capable of collecting.

Both the Monsoon hardware and MINT can be modified by changing the microcode
for the instructions. The microcode specifies several things: what ALU operation to exe-
cute, how many inputs, how many outputs, how to match the inputs, and how to generate
addresses for the outputs. The microcode can be directly loaded into the hardware, and
the microcode can be compiled into Lisp code (5], which can be inserted incrementally or
totally into the Arithmetic, Matching, and Address Calculation (ALU) module of MINT.

MINT will not be used for running large experiments, unlike GITA and the MEF;
it exists for different reasons. MINT will allow other research centers to perform exper-
iments in dataflow without having to buy the expensive hardware. MINT will collect
more statistics than is possible with the hardware. These statistics will provide im-
portant information about parallel algorithms and the Monsoon architecture itself. Of
course, GITA served this purpose, but MINT promises to give a more accurate model of

execution on an implementable architecture.

The current hardware is still not completely debugged, and with MINT, we have
something with which to compare the hardware. MINT and Monsoon exhibit the same
timing, and the same state in all of data memory, instruction memory and both token
queues. Also, prototyping potential hardware enhancements will be much simpler in soft-
ware than in hardware. If the hardware enhancements are simply writing new opcodes,
the MINT microcode compiler will do that. All new instructions can be compared on
MINT and the hardware.

21



2.3 Monsoon Software Interface Specifications

In the initial design phases of MINT, there were many complaints from group members
about the programming style GITA is written in. Since GITA has been modified by many
programmers, it is currently very “hacked-up”. There was a question as to whether MINT
should be based up the framework of GITA, and the response was quite negative. The
consensus from the beginning was that MINT should be small, portable and have clearly

specified interfaces.

These “clearly specified interfaces” evolved into the Monsoon Software Interface Spec-
ifications [13]. As indicated in Figure 2.1, these interfaces are used for both MINT and
the hardware. There are more interfaces within MINT and between MINT and the
microcode compiler, but the interfaces in the Specifications are to be used by external
programs such as the Linker, and eventually, the Debugger. These interfaces must be

supported by any simulator for Monsoon.
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Chapter 3

Design Issues

In the initial design phases of MINT, several issues came up which influenced the design
of MINT.

e MINT had to be reasonably fast, or else no one would use it.

e MINT had to be portable, so that it could be run on different systems, such as
Symbolics, TT, and Sun Lisp.

e MINT had to be written with modification in mind. The Monsoon architecture is
only an experimental prototype, so MINT had to be written cleanly enough so that
other people could modify the code without a lot of effort.

e MINT was to be a bit-level simulator; this was a design decision which was heav-
ily debated because GITA, the previous dataflow simulator, was not a bit-level

simulator. This decision was the major force in the eventual design of MINT.

e MINT was not to support the Multi-Processor Emulation Facility (MEF), because

of the existence of the Monsoon hardware.

3.1 Portability

Portability was important because MINT will be distributed to other sites, which may

or may not have Lisp Machines. Therefore, we had the option of writing in either C
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or Common Lisp. The compiler and all of the system software for Monsoon had been
developed in Lisp, so we decided to implement in Lisp - speed was not that critical in

the prototype simulator.!

Since the code had to be portable, we only used constructs in Common Lisp. For ex-
ample, we did not use the Symbolics Flavor System, or any machine dependent function
calls. We used few machine dependent optimizations, and each of those optimizations
are conditionally compiled for each machine. There is always a Common Lisp implemen-

tation, which is portable, but slow.

3.2 Modularity

Modularity was an important design goal for MINT because several sections of MINT
were to be experimented with immediately, which meant that those sections had to have
clean, well-defined interfaces to the other modules. In addition, support for Gita had
become somewhat tedious because it had grown as each user added features to it which

he needed. These features were not always cleanly integrated into the structure of Gita;
we decided that MINT would not have this downfall.

MINT is pretty much divided up as the hardware is. There are 5 modules:

e Memory

Queues and Pipelines

Matching, Arithmetic, and Address Calculation (ALU)

Queueing and Control

Statistics

Since MINT will be used for hardware prototyping, the microcode simulator for MINT
is easily changeable. All of the changes to the microcode only affect the Matching,

Arithmetic and Address Calculation module. The microcode does not have to be written

In the future, a C version of the simulator may be implemented as a UROP project, now that there
is already a design for the overall structure of MINT.
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in Lisp. Derek Chiou is writing his bachelor’s thesis on a Monsoon microcode to Lisp
compiler [5]. This compiler will take a Monsoon microcode specification and compile it
into Lisp functions which can be easily inserted into the ALU module of MINT. The
microcode specifications are identical for the microcode compiler and for the Monsoon

hardware.

The Queues and Pipeline module is separated out for easy experimention with dif-
ferent queueing strategies. For example, changes in the length of the pipeline are easily
modified, and different types of queues (such as FIFO or random) could be easily imple-

mented and inserted in place of the current module.

The Queueing and Control module can be easily modified to run different queueing
strategies. Currently, there are several modes: single stepping, infinite processor emula-
tion, and running until idle. With this module separated, finite processor emulation, and

finite latency emulation can be easily implemented.

The modular breakdown of MINT lends to an easy implementation in other languages.
Presumably, someone will eventually implement MINT in C, which may allow it to run

several times faster than in Common Lisp.

3.3 Speed

Speed is not as important a criterion for MINT as it was for GITA, mainly because we
have Monsoon, which will run programé about four or five orders of magnitude faster than
MINT. We have no plans to implement MINT on the Multiprocessor Emulation Facility
(MEF). The MEF is a high-speed network of 32 TT and Symbolics Lisp machines which
can emulate computing on a multiprocessor environment. GITA could run on the MEF,
mainly because GITA was the only “dataflow machine” that that we had until Monsoon.
The MEF is extremely hard to program, and it is a very touchy piece of hardware. We
decided that it was too much trouble to implement MINT on the MEF, especially since

the hardware would still be three or four orders of magnitude faster than anything on
the MEF.

However, we did not intend to implement a slow emulator merely because we had

hardware. Other sites which would use MINT might not have the hardware. Therefore,
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MINT would be the only thing (other than GITA) on which they could run dataflow
experiments. Our goal was to have comparable speed to GITA, which processed about
1000 tokens/second on an Explorer I Lisp Machine. We achieved this goal, but unfortu-
nately, the ETS model of computation presently requires about two to three times the
number of tokens to execute identical programs. We believe that there is still room for
improvement in MINT, but that we will never reach the same performance as GITA, be-
cause we have the added overhead of simulating an operating system, and because of the
fanout necessary in the ETS model because each instruction is only capable of sending
two other tokens. If a node in a dataflow graph requires more than two outputs, those
additional outputs are implemented with additional identity nodes, which only take n
one token, and output two tokens. Instruction counts on MINT indicated a much higher
number of identities than in GITA.

3.4 Data Representation

The goal of bit-level simulation was at odds with our desire to implement a fast simulator.
Aside from merely writing tight code, we had to keep two larger factors in mind in
implementing MINT. First, we tried to avoid consing, in order to reduce the amount
of time used by the garbage collector. We eventually wrote in a very imperative style,
which is common in Lisp programs which require speed. Secondly, we tried to avoid
too many type coercions, which were necessary because the operations on data were
often on a different type of data than 64-bit integers. Since we were keeping a bit-level
simulation, we were given the option of just implementing big arrays of bits which we
could interpret as we pleased — essentially, just implementing the hardware exactly as it
was designed. We eventually opted against such an implementation, because it would
require too much type coercion. For example, because of the nature of Lisp, we could
keep all data as the type it was last referenced as. If MINT executed a double-precision
floating point multiplication, we could save the result in memory as a double-precision
floating point number, since Lisp allows us to keep arrays of heterogenous objects. If we
chose to reference an object as an integer, we would perform the coercion, and return
the integer. All data was 64 bits long in data memory, whether it was a floating point

number, unsigned integer, signed integer or tag.

In another issue of bit-level simulation, we decided not to implement the pipeline as
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the hardware functions. We maintain timing consistency with the hardware by passing
tokens through a FIFO queue as long as the pipeline, but all of the calculation for
each token is done after the token exits this FIFO queue. It does not matter when the
calculation for the token occurs, because the pipeline is a non-blocking, non-interlocking
pipeline. None of the tokens can possibly depend upon the calculation of any other token
because the dataflow model does not care what order the tokens are processed in. By
forsaking this level of accuracy in the simulation, we were more easily able to abstract
the function of each opcode in Monsoon, since the function of each opcode was executed

all in one Lisp function.?

The token queues were implemented in a similar manner to the memory. Although
the data in the queues was always kept as token structures, which were implemented as
Lisp structures, we had the ability to reference the queue as 128 bit unsigned integers, if
we pleased. The FIFO queue for the pipeline was represented in the same manner. More

details of the data representation are discussed in the next chapter.

2 After the implementation of MINT, we realized that it may be possible to extract all of the state of
the pipeline from the opcode functions, if necessary. In normal simulation, this would only slow down
the simulator; however, we would not need to extract this information in normal simulation. In single
stepping mode, this may be useful in comparisons with the Monsoon hardware
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Chapter 4

Program Structure

4.1 Overview

Each of the modules of MINT corresponds to a certain section or sections of the Monsoon
architecture (see Figure 4.2). The Memory module simulates the Monsoon memory.
The Queues module simulates the Monsoon queues. The Matching, Arithmetic, and
Address Calculation module simulates the stages in the pipeline which perform matching,
arithmetic and address calculation. The Queueing and Control module controls the
movement of data between all of the other modules. It dequeues the tokens, fetches
the instructions, sends the tokens to the Matching, Arithmetic and Address Calculation
module. That module returns either zero, one, or two tokens and information about how
to enqueue those tokens to the Queueing and Control module. Then the Queueing and

Control module enqueues the tokens, and loops back to the dequeue stage.

MINT does not simulate the inside of the pipeline. Instead, all of the work of the
pipeline is done in the Matching, Arithmetic, and Address Calculation module. The
timing for the pipeline is simulated by passing the enqueued tokens through a circular
buffer as long as the pipeline. All of the calculation for the pipeline can occur either
before insertion into, or after removal from the circular buffer. We chose to do the
calculations after the removal because the calculations increased the amount of data;
before calculation, we have one token — after calculations, we could have zero, one, or

two tokens.
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4.2 Memory

Memory seems to be a trivial issue, since we can implement memory as a big array of
numbers, just like it is in the hardware. Unfortunately, we come across some problems
when we implement memory in this way. First of all, data memory is 64 bits wide in
Monsoon.! In most implementations of Lisp, a big array of 64-bit integers is actually
a big array of pointers to bignums, which must be consed up and garbage collected.
Initially, we considered implementing memory as two big arrays of 32 bit quantities, but
we quickly realized that any arithmetic would probably eventually require conversion of

the 32-bit quantities to bignums first.

\ page table
- page
& D
0 12 —T—> 892342157394593052
3 68 T—= 3.1415926d0
3 16 —+—> (tag structure)
pe

presence type  data

Figure 4.3: MINT Data Memory

Eventually, we decided that we could not avoid consing bignums. However, we knew

that we would have to do a lot of type coercion if we kept all the data in the form of

1 Actually, memory is 64 bits of data, 8 bits of type and 2 bits of presence — 74 bits wide.
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bignums. Most of the math is done with IEEE double-precision (64-bit) floating-point
numbers. Whenever MINT would do a floating-point operation, both operands would
have to be converted to double-floats, the operation would be executed, and the answer
would have to be converted back to a bignum. Since Common Lisp allows us the luxury of
arrays with heterogeneous types, we opted fill the slots with the most convenient objects.
Each slot would be left as the type of the last reference to that slot. Each memory
reference would have a type associated with it. For example, we can read any slot in
data memory as one of the following types: unsigned integer, signed integer, double-float,
or tag. In instruction memory, which is 32-bits wide, we can read any slot as either an
unsigned integer or an instruction. All memory writes leave the object as the type that

1t was.

Note that this does not affect the state of the machine to any user viewing this
memory. He cannot tell the difference between the hardware and the software, even
though the software keeps the data in this strange format. If he wants to read any slot
as an unsigned integer, he can just specify it as such. If the slot in the array actually
contained an object of another type, then the read function automatically coerces the
object for him, in addition to writing the new object back into the slot, on the assumption
that the new type is going to be the type that the object is usually referred to. This has
been tested and proven more effective than just leaving the object as it was originally

written.

We had another problem with the memory. The address space was 24 bits wide.
This meant that a straightforward representation of memory would require an array that
was 16 megawords big. In addition, since data memory also contains type (8 bits) and
presence (2 bits) information, we would need another two large arrays. Consing up three
16 megaword arrays was out of the question. We had the option of simulating just part
of memory. However, we decided that that was not enough. Eventually, we decided
to implement a “demand-paged” memory. Each memory reference would go through a
“page table”. On each memory reference, the top 14 bits were used as an index into the
page table. If the entry in the page table were empty, then we would create that page.
Otherwise, we would use the page in the page table slot. The remaining 10 bits were
used to index into the page. In this way, we only needed a 16 kiloword page table, and

each newly referenced page was 1 kiloword big.

Unfortunately, since data memory contains presence, type and data fields, and since
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we supported a multiple processor memory model, each memory reference required four
array references, in addition to type coercion and automatic page creation if necessary.
Instruction memory only requires three memory references, and it 1s not clear yet whether
we need 24 bits of instruction memory to run any program on MINT. Any program that

large would take an unreasonably long time to execute.

We do not suggest that any program run on MINT would need to use all 24 bits of
data memory. However, the alternative to not supporting the all 24 bits is to support
less than 24 bits. If a user runs a program which needs more memory than we support,
what shall we do? We must enlarge the memory enough to run that program. It is better
to support the memory now than allow some user to crash sometime in the future. This
paging scheme also only allocates as much memory as the user requests, aside from the

overhead of the page table.?

The instruction memory is exactly the same as the data memory, except that the
instruction memory does not have a structure containing data, type and presence, since
instruction memory does not have type and presence information. All the slots in in-
struction memory are represented as instruction structures, since instruction memory is

rarely referenced as anything else except as instructions.

Since the memory is constructed in this somewhat odd fashion, several optimizations
became clear once we began to implement the Matching, Arithmetic and Address Calcu-
lation module. Many instructions need to read and write to several fields at one address.
For example, if a token uses a normal matching function, it will read the presence bits
at the specified location. If the presence bits indicate the slot is empty, then the token
inserts its data into that slot and writes the presence bits to indicate that the slot is
full. If the presence bits indicate that the slot is full, then we want the value of the slot,
and we want to write the presence bits to indicate that the slot is empty. If we had
implemented the memory with a flat array, then each of the steps could be done inde-
pendently. However, since we have a heirarchical memory structure, we would be doing
redundant array references if we referenced each field separately (i.e. first reference the
presence bits, then reference the data, then reference the presence bits again). Since this
is a common matching function, we designed a memory reference function, rw-dm-data,

which takes an address and a value as arguments; if the slot is empty, the value is written

?However, most of the programs we have run so far actually use less memory than the page table has
(16 KWords).
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and the presence field is set to full and nil is returned; if the slot if full, then the presence
bits are set to empty, and the value of the slot is returned. Functions such as this are
used throughout the ALU module, and the Monsoon microcode compiler generates code

which uses these function.

Since MINT is very modular, it would be a trivial task to implement a faster, but
more limited version of the memory module. The module need only support the same
memory instructions specified by the Monsoon Software Interface Specifications, and the

following instructions implemented for use with the Monsoon microcode compiler:

read-dm-data pe address [Function]
write-dm-data pe eddress value | Function]
write-dm-dtp pe address data type presence [Function|

These two functions do not coerce types. Any object can be written or read as its current

type. Note that the type argument to write-dm-dtp does not affect the type of the data.

write-presence-and-read-dm-data pe address presence [Function]
write-presence-and-read-dm-data-as-bits pe address presence [Function]
write-presence-and-read-dm-data-as-integer pe address presence [Function]
write-presence-and-read-dm-data-as-float pe address presence [Function]
write-presence-and-read-dm-data-as-tag pe address presence [Function]

These five functions write the presence as presence, and reads the data as the indicated

type.

rv-dm-data pe address value [Function]
rv-dm-data-as-integer pe address value [Function]
ru-dm-data-as-bits pe address value [Function]
rw-dm-data-as-float pe address value [Function]
rw-dm-data-as-tag pe address value [Function]

Each function will write the value to the specified address if the presence bits indicate
the slot is empty. The presence bits will be changed to indicate the slot if full and nil is
returned. If the slot is full, then the value in the slot is returned as the type indicated

by the function name.
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4.3 Queues and Pipelines

Both queues and pipelines are just arrays of pointers to tokens structures. Token struc-

tures are defined as follows:

(defstruct (token :conc-name)
(tag-type 0)
(port 0)
(map 0)
(pe 0)
(ip O
(fp O
(value-type 0)

(value-value 0))

Although the token is usually abstractly considered as the four-tuple of tag-type,
tag-value, value-type, and value-value, we chose to explode the tag-value slots because
keeping the tag-value as one slot containing a tag-value structure would only add to
interpretation costs. Fwvery time we dequeue a token from the pipeline, we will always
require every slot of the tag portion of the token. Therefore, we chose to eliminate the

one extra reference, and the extra consing involved with keeping the abstraction.

The tag-type and value-type slots are not currently used, but they would eventually
presumably contain 8-bit quantities. The value-value slot will contain some sort of value.
As described in the Memory section, the types of values are as follows: unsigned integers,
signed integers, 64-bit floating point numbers, and tags. If the type is already correct,

then coercion will be unnecessary. As was already stated, coercion is usually unnecessary.

The token queues are just empty art-q arrays and a pointer; they are just stacks.
When a token is enqueued, if that slot in the array is empty (i.e. nil}, then a new token
will be consed up and filled with the contents of the enqueued token. That new token will
be inserted into the empty slot, and the queue pointer will be bumped up. If the current
slot in the array already contains a token structure (which is invalid, having already been
dequeued) then the slots of that structure are just filled with the values of the enqueued

token. In this way, we only cons up the number of tokens necessary when the token queue
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is most full, and we avoid discarding token structures which will just give more work to

the garbage collector.

The pipeline is just an art-q array and a pointer to a slot in that array. The current

pipeline is 8 stages deep, so it is implemented as in Figure 4.4.
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Figure 4.4: MINT Pipeline Representation

The pipeline pointer points to the current token to executed. First, that token is
dequeued. Then that slot does not contain anything useful. After the token is operated
upon (i.e. sent through the pseudo-pipeline) then a new token will be enqueued into the
pipeline. That token will take up the same slot that the old token just exited. We then
bump the pointer. When the pointer reaches the end of the array, it wraps around to

the beginning.

The pipeline is always filled with token structures. When a new token is enqueued
into the pipeline, we just mutate the slots of the old token. The old values of that token
have already been dequeued, and are no longer needed. In this way, we avoid consing up

new token structures which will just have to be garbage collected in the future.

Another advantage of this implemenation is that we can dequeue tokens from the
queue directly into the pipeline by swapping the pointers to the tokens. This takes far
less steps than copying the contents of each field of the queue token into the pipeline
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token. Unfortunately, this tends to spread the tokens out in memory, and destroys
locality. These little tokens structures could be spread out all over memory. Pointers to

these tokens will be shuffled about by the swapping of pointers.

An alternative implementation is to use a flat array. We still want to use the same
fields, but we can spread out the fields across each slot in the array. In this way, we
preserve locality, but we must cons up all of the memory we need for the queues when

be begin computation.?

4.4 Matching, Arithmetic, and Address Calcula-

tion

This module is the heart of the simulator. Most of the pipeline operations are done in this
module. In Figure 4.2, there are two arrows entering the box representing this module,
and one arrow leaving the box. The two arrows entering the box are the data from the
instruction and the data from the token. The one arrow leaving the box is the output
token or tokens. These tokens also carry with them information on how they should be

queued.

We chose to implement this module as a set of Lisp functions; each opcode is given
a separate Lisp function, since it is the opcode which determines the operations within
the box. Each Lisp function takes the same arguments (just the sum of the number of
fields in a token and the number of fields in an instruction) and returns either zero, one
or two tokens, and instructions on how to enqueue those tokens. The arguments to the
Lisp function are the slots of the token, and the slots of the instruction. The actual

enqueueing of the output tokens is done by the Queueing and Control module.

Each opcode has a different matching criterion, function, output destination com-
putation, and number of outputs. This is reflected in the Lisp code. For instance, a

hand-coded opcode is shown below:

3We currently do not automatically grow the queues when they become full, although this is an
obvious feature that should be implemented, for the same reason we implemented the paged memory
abstaction.
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(defun +-n1 (tag-type input-port map pe ip ; token fields
fp value-type value-value ; token fields
r output-port s) ; instruction fields
(let ((wm-val (rw-dm-data pe (+ fp r) value-value)))
{(when wm-val
(let ((result (+ (coerce-to-float value-value)
(coerce-to-float wm-val))))

(values :enqueue-hp-queue ; how to queue

tag-type ;

output-port ; specified by instruction
map ; not currently used

pe ; not currently used

(+ ip =) ; standard output

fp ; within the same frame
value-type ;

result))))) P X+ Y

Note that this opcode uses the “standard” matching function - each token looks for
its partner at fp+r. When a token finds its partner, this function adds the values of the
extracted data and the data carried by the current token. This is then returned as the

data for the output token. The output token is sent to the “standard” location of ip + s.

The values returns by the Lisp function are the slots of the output token, and in-
structions on how to queue that one token. The :enqueue-hp-queue keyword tells the

run function to enqueue this token in the high priority queue.

4.5 Queueing and Control

This module is the brains of the whole operation. It is the top level loop which controls
the rest of the modules. Basically, it just follows the ETS pipeline diagram. Depending
upon how we wish to queue tokens and move data, the top level function, run will preform
accordingly. For example, run may only execute one instruction cycle in single-stepping
mode, or it may just run until the queues are empty in normal mode, or it may gather

statistics for infinite processor mode.
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Normal run has the following pseudo-code.

1. If the pipeline and queue is empty, then halt.
2. Dequeue a token from a queue.
3. Fetch the instruction indicated by the token.

4. Call the function corresponding to the opcode. The arguments to the function are

the fields from the token and the instruction.

5. Take the tokens and the instructions returned from the previous function call and

enqueue the tokens according to the instructions.

6. Loop back to the beginning.

Infinite processor run has the following pseudo-code.

1. If the pipeline and both queues are empty, then halt.

2. If the current queue and the pipeline are empty, then swap the queues and write

the statistics to registers.
3. Dequeue a token from a queue.
4. Fetch the instruction indicated by the token.

5. Call the function corresponding to the opcode. The arguments to the function are
the fields from the token and the instruction.

6. Take the tokens and the instructions returned from the previous function call and

enqueue the tokens according to the instructions in the other queue.

7. Loop back to the beginning.

Note that the only difference between the two run’s was the use of the statistics

registers and the swapping of queues.
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4.6 Statistics

The statistics registers are currently implemented exactly as the Monsoon Software In-
terface Specifications require. They are a bank of arrays which can be written to at
appropriate points in the code. For instance, if we wanted to do an instruction mix, we
could compile the microcode specifications so that certain opcodes incremented certain
statistics registers every time they were called. If we want to do a parallelism profile,
a certain register can be incremented on every step through the top-level run function.
These statistics registers would be read by the debugger or the Monsoon Listener at

appropriate points in the execution.
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Chapter 5

Conclusions

MINT has met the performance specifications that we set for it at the beginning of the
design stage. It will simulate Monsoon at a bit-level, although the internal representation
of MINT is not necessarily all bits. All of the timing for MINT is identical to Monsoon,
making it suitable for debugging Monsoon hardware. And MINT is comparable in speed
to Gita, in terms of tokens processed per second. However, since MINT will execute
about two and a half to three times as many token, MINT will execute most programs
in about 50

In the end, the decision to implement the simulation at the bit-level turned out to be
an important one in the utility of MINT. The author firmly believes that researchers only
interested in collecting statistical data on dataflow programs should adopt the approach
of Muryanto and Tan [9] [11]. Muryanto and Tan chose to compile dataflow graphs
directly into sequential assembly code; preliminary analysis of the speed of this approach
suggests at least an order of magnitude speed increase over an interpreter approach such
as MINT. Since MINT is an exactly simulates all state and timing of Monsoon hardware,
it will find applications in the debugging of this hardware, in addition to debugging of

multiple processor Monsoon hardware in the near future.

There are several obvious extensions to MINT which should be considered in the near
future. First of all, MINT should simulate multiple processors. All of the modules of
MINT already individually simulate multiple processors — for example, memory references
must specifiy the processor which the reference is pointing to. However, there is no

network simulator module. Once this is accomplished, an I-structure board module
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should be written. I-structure boards are separate components of dataflow computers

which are attached to the network, and serve all I-structure requests.

MINT should be written in C, so that it can be transported to even more systems
than it will be available in now. The C version of MINT should be several times faster
than the Lisp version, which will make MINT more attractive to researchers who do not
want to buy the Monsoon hardware. If MINT is ported to C, then perhaps some sort of
network protocol can be devised for parallel execution of MINT across several different
kinds of computers. Although we decided not to support the MEF, extending MINT to
run on the MEF would probably not be very difficult.
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