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Abstract

Monsoon, a dataflow processor, has recently been built at the Laboratory for Computer
Science at MIT. To facilitate experimentation, Monsoon employs a downloadable mi-
crocode to describe its instruction set. Since we wish to accurately simulate the processor,
regardless of its current microcode, the concept of a microcode compiler was developed.

The goal of the thesis was to design and code a compiler that accepts a Monsoon mi-
crocode specification and a Monsoon instruction set specification as inputs and translates
them into Common Lisp for use within an existing Monsoon simulator. The primary
objective of the compiler was to produce code of comparable efficiency to hand-coded
routines. Secondary considerations were human-readability and code size. Thus, the
identical microcode used to drive the actual hardware is also compiled for the simulator,
with obvious benefits of hardware — simulator consistency.

A compiler has been written, and it produces Common Lisp code that satisfy the above
goals. It is flexible enough to adapt to any foreseeable microcode changes. The compiler
1s written in Common Lisp.

Thesis Supervisor: Dr. Gregory Michael Papadopoulos

Title: Project Manager
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Chapter 1

Introduction

The Computation Structures Group of the Laboratory for Computer Science recently
assembled a prototype of a Monsoon Dataflow processor as defined by Papadopoulos[6].
Monsoon was designed with an easily modifiable instruction set[10] - trivial changes to
data loaded into the processor, which we call microcode, can achieve a broad spectrum of
processor behavior. Monsoon achieves this flexibility by dynamically decoding instruc-
tions along with data state into microcode that controls its pipeline stages. Thus, the
process performed at each stage depends on the data being processed and the microcode
associated with that data. Since the processor was designed to invite instruction set ex-
perimentation, the group is doing just that. This development is being done both on the
Monsoon hardware and a Monsoon Interpreter (MINT) which was written by Shaw[7].
This thesis aids in that experimentation process by compiling microcode intended for the

Monsoon hardware into efficient Common Lisp suitable for use in MINT.

The way dataflow programs are executed is shown in Figure 1.1 and is described
below. The programmer writes the program in a high-level language called Id[5]. The Id
program-to-graph compiler[9] then compiles the program into a dataflow graph. Once the
graph is created, execution can take one of two paths. Either the Monsoon hardware or
MINT could run the program. There are advantages and disadvantages to both execution
systems. The hardware processes tokens close to four orders of magnitude faster than the
simulator but does not provide sophisticated debugging and statistical tools. Another
disadvantage is that only one copy of the hardware exists — thus, the number of people
that can perform research is very limited. MINT, though very slow, will run under any

Common Lisp environment and will include debugging and analysis tools.
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Figure 1.1: Monsoon and its Programming Environment



Since the raison-d’étre of the simulator is to emulate the hardware, any changes in the
hardware must also be made in the software. At this point in the hardware refinement,
the microcode, and thus the instruction set, is the only part that will change. Since new
microcode can be loaded into the hardware at will, a method to load new microcode
into the simulator should be provided. A simple solution to is to build a microcode
simulator that interprets the microcode. Interpretation, however, would be unacceptably
slow. Our solution, the goal of this thesis, is a compiler that takes the microcode and
uses it to create efficient Common Lisp code. This compiler is rather unique in the fact
that its source language is low-level microcode and the destination language is high-level
Common Lisp. Since we desired efficient code, a direct mapping of microcode to Lisp
is not sufficient. We identified many opportunities for optimization, most of which were

incorporated into the compiler.

The compiler was also designed to be general enough to make changes in the microcode
easy to make in the compiler. This generality is achieved by specifying decode tables as
parameters. Changes to the microcode structure itself, say by a hardware modification,
can be reflected in the compiler by changing the decode tables. Note that if the structure
of the tables changes, modifications to the compiler code will probably have to be made.

The compiler assumes that the basic pipeline structure will remain constant.

With the compiler in place between the microcode and the simulator, our system is
complete. When the microcode of the hardware is changed, the simulator is changed by
a simple compilation. The compiler will encourage experimentation with microcode by

making it easy to simulate.
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Chapter 2

The Monsoon Processing Element

2.1 Dataflow Background

Dataflow is a relatively old idea in the field of computer architectures. It was first
proposed by Dennis and Misunas[2] and later refined by a number of projects including the
Manchester Machine(3], Sigma-1[8], and TTDA[1]. The basic concept behind dataflow is
that execution is data-driven rather than instruction-driven. An instruction executes only
after all the data it requires have been received. Conventional computers, on the other
hand, execute instructions in a specific sequential order with little run-time regard to data
dependencies. It is evident that dataflow computers have the potential for exploiting large
amounts of parallelism inherent in many applications, and that data-driven execution

readily extends to parallel architectures.

The standard abstraction of a tagged-token dataflow machine was developed indepen-
dently by groups at Manchester University of Manchester, England, at the University of
California, Irvine, and later refined by the Monsoon processor, where associative mem-
ory has been replaced by explicit memory storage techniques. Data travels through a
dataflow machine in packages called tokens consisting of data along with control infor-
mation, called tags, that encode such data as the destination instruction. The advantage
of using a tag is that each instruction is synchronized on its own — it requires no external
information. Thus, it is easier to keep processors busy using tokens with tags than tokens

without tags.

The basic operation of a tagged-token dataflow processor is described. A token enters

a processor and checks for its partner, presumably by checking for equal tags. If the
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partner is present, it is fetched and the instruction is executed. Obviously, if the instruc-
tion is unary, such as NOT, the processor does not need to check for a partner. The part
of the machine that checks for partners is generally called the wailing/matching area.
Newly calculated data is encapsuled into tokens which are sent back into the system. A

dataflow processor cycles through tokens until an answer is produced.

Though the dataflow concept is an intuitive one, efficient ways of implementing the
concept are not so intuitive. Some problems with dataflow are the necessity of im-
mutable data-structures to prevent out-of-order errors, large, fast waiting/matching sec-
tions, garbage collection of objects being referenced in an out-of-order fashion, deadlock
resolution, and so on. Efficient dataflow processors are thought to require special hard-
ware to support the dynamic scheduling associated with the computation model. Though
implementation challenges exist, however, the promise of being able to exploit nearly all

parallelism within an algorithm is too good to pass up.

A few dataflow machines have been built, the most notable being the Sigma-1[8]
and the Manchester Dataflow Machine[3]. Various design details, however, hamper these
machines. A major detail is the implementation of the waiting/matching area. The
simplest waiting/matching area has fully-associative memory so that partner searches
take unit time. Fully-associative memory is much too expensive for any reasonably
sized waiting/matching area, so cumbersome hashing techniques are generally used.
Papadopoulos[6] provides an elegant solution to the matching problem in the imple-

mentation of Monsoon, a pipelined dataflow processor.

2.2 Monsoon: a Dataflow Processor

Monsoon is a fully pipelined dataflow processor — thus, none of its stages can take more
than unit time to execute (there are a few exceptions, but they rarely occur.) Monsoon’s
basic architecture, some of its unique features, and an overview of its microcode decoding

are described in this section. Much of this information was taken from Papadopoulos|6].

The basic stages of Monsoon, as shown in Figure 2.1, are instruction fetch, effective
address generation, fetch presence bits, operand Jetch and/or store, ALU/FPU and next
address generation, and form token. The operation occurring in any stage of the pipeline

is completely independent of the operations occurring in the rest of the pipeline. Each
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stage is also non-blocking except for some exceptions due to read/writes to memory and
long floating-point operations. Though the pipeline can block to permit long operations
to finish, the pipeline never needs to be flushed since each pipeline stage is independent
of the others. This is especially advantageous for branches and hazards. Unlike standard
pipelined RISC processors which must flush their pipelines whenever a wrong control

path is taken, Monsoon never wastes any of the processing done on a token.

The major innovation of Monsoon is its implementation of the waiting/matching
area. The technique used, called Explicit Token Store (ETS), allows waiting/matching
to be done in unit time. This is accomplished by activation frames. Activation frames
are very similar to stack frames found on conventional computers. The base address is
known, and variables are referenced by offsets to that base address. Activation frames
are created when a codeblock is executed and contain all necessary matching locations
along with their presence state bits. Since each token carries its base frame pointer and
fetchs its frame offset with its instruction, it knows exactly where it should look for its
partner. Activation frames, in addition to making waiting/matching quick, also reduce
the amount of memory required. Instead of storing the entire token, including the tag,

only the data needs to be stored (recall that tags are normally used for matching.)

Implementing activation frames requires pointers to the frames within the tags of the
tokens. A ¢ represents such a pointer. C.s is often written to represent the instruc-

tion/frame pointer combination found in a Monsoon tag.

’ ats
ri -
op r [/ desis N0 v
v N
s Si * 40| +1,+8F> €7 | empty
1
CORDOSTY ute [o |2 [#L,#np’ | ctt: [wer | ooowr
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4
s+2: - |+0 ] +k c+2: | empty
# o o
T~ e o = g
ctr:
s+2:

3afn:

Program Text

Activation Frame

Figure 2.2: Activation Frame and Code

An activation frame and its corresponding program text are shown in Figure 2.2.
Notice that the * depends on the +, and the — depends on both the # and the +.
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Monsoon fetches its instruction which tells it the matching location of the token in terms
of an offset to the activation frame base pointer, and up to two destinations for its result
tokens. An interesting point to notice is that both the + and the — instructions use
the same matching location. This is possible because the — instruction can only receive

input tokens after the + instruction is done and has reset the presence bits to empty.

{c.s;, 2.0) (c.s,, 3.4236)
. ¢ [ompry | ] 8: ¢: [ present] 2.0 |
i resd
A. No operands, location is initially ernply C. Second operand arrives, read location
{c.5;, 2.0) write
8: € present | 2.0 1 82 e: | empty | ]
{c.s},, 6.847)
B. First opevand arrives, write value into location D. Ezecute instruction, clear presence flag

Figure 2.3: Token waiting and matching

Another dataflow innovation found in Monsoon is its technique for token matching.
Monsoon uses presence bits to indicate the state of a particular matching location in
an activation frame. An example of token waiting/matching is shown in Figure 2.3. In
the standard tagged-token dataflow model, the check is done on the tags of the tokens
which must be stored along with the data. Monsoon checks presence bits associated
with the partner’s location rather than actually checking for valid data. If the partner
is present or the operation is unary, the instruction is fetched and applied to the data
(Figure 2.3, part c). Otherwise the data is written to memory where it will wait for its

partner (Figure 2.3, part b.) Thus, the basic order of operations is as follows.

® The first token enters its processing element and checks the presence bits of its
predetermined meeting point for the state of its partner. Since the state is empty,
the token knows that its partner has not yet arrived. The token is written to the
specified meeting place, and the presence bits of the location are mutated to a

present state.
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¢ The second token enters the processor some undetermined amount of time after-
wards. It checks the presence bits of the predetermined meeting location and finds
that the present state is set. Thus, it knows that its partner is available, fetches that
partner and executes the instruction. The presence bits are reset back to empty.

This reset is important if the location in the activation frame is to be reused.

This matching technique has a couple of advantages. The first benefit is that the data
path and the hardware necessary to check on a match is much less than a system that
compares entire tags. Of course, knowing where to look for the partner (ETS) is crucial
to this advantage. The second benefit is that a stored token can have more than two
states of presence. This is especially advantageous for complicated instructions, such as

gates with two triggers.
P

l 10 1s
Opcode r

11

port § ™

s Macro Instruction

Base TMap | PMap [EA| First Level Decode (1024 entries)

type L TC Type Map (32 x 512 entries)

2 i1 2 2
22 BRA | |FOp|Next] Presence Map (64 x 32 entries}

crrstate "
< - |

11 3 " 6 [ 1

Second Level Decode
ALU/FPU Control | NA Control | FT Control Type Mask Except Mask | Stat {2048 entries)

Figure 2.4: Instruction Decoding Tables and Maps

For experimental purposes, Monsoon’s pipeline is controlled by a microcode (refer to
Figure 2.4.) This microcode is not microcode in the traditional sense of instructions for a

microengine processor. Monsoon’s microcode controls the actions of each of the pipeline
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stages. For example, the microcode controls how a token is to be constructed, which
functional unit is to execute the instruction, and what kind of memory operations are to
be performed. The specific microcode that will be run on a specific token is decided by
the instruction pointer inside of the token, the type of the value of the token, the port
of the token, and the presence bits of the ETS memory associated with that token.

The decoding process starts with a token coming into the processor. The token

consists of a number of fields of data as shown below.

| Token
Tag-part Value-part
TYPE TAG TYPE VALUE
8 64 8 64

The structure of the tag is shown below.

|_ TAG
PORT | MAP TP ) PE ) FP
1 7 24 10 22
where,

PORT Indicates whether the token is coming on the left port (I) or the
right port (r) of the instruction specified by PE:1P. This field is
called INPUT-PORT throughout the rest of the document.

MAP Alias and interleave control. Increments to FP affect PE as specified
by MAP. (This field is presently not operational.)

IP Instruction pointer. The absolute address of an instruction on pro-
cessor number PE.

PE Processing element number. For machines with less than 1024 phys-
ical processors, the LSBs of PE can be concatenated with the MSBs
of Fp, extending the physical address space of each PE

FP Frame pointer. The absolute address of a 72 bit location on processor
number PE. PE:FP describes a global address, so a machine is limited
to a maximum of 4000 megawords of physical memory.

17



Once the token enters a processor, its instruction is fetched by reference to its 1P
(refer again to Figure 2.4). The instruction consists of a OPCODE, offsets r and s and the
OUTPUT-PORT. The OPCODE references to the first level decode (1ST-LEVEL-DECODE)
table of the microcode. The 1ST-LEVEL-DECODE is comprised of a base pointer (BASE)
to the second level decode tables, a type map (TMAP) pointer, a presence map (PMAP)
pointer, and an effective address mode (EA). Once we have the 1ST-LEVEL-DECODE,
the proper TMAP is referenced using the TYPE of the token’s data and its PORT, pro-
ducing a two bit type code (TC). The effective address is computed in parallel with the
computation of TC and is used to read the presence bits (CURRSTATE) associated with
the activation frame matching location. TC, CURRSTATE, and the INPUT-PORT of the
token are used to reference the proper PMAP from which a presence map entry (PENT)
is obtained. A PENT consists of a offset to the BASE of the second level decode (BRA), a
force-to-zero bit (Fz) which forces the BASE to zero if true, a fetch and/or store operation

(FOP), and the next state (NEXT) of the effective address location.

The second level decode table is referenced by the BASE, which is forced to zero if FZ
if true, added to BRA. The returned result, 2ND-LEVEL-DECODE, contains information
to control the functional units, the next address unit, and the form token unit. The

structure of the 2ND-LEVEL-DECODE is shown below.

[ Second Level Decode Entry i
FU(.:/-TL NACTL | FTCTL | TMASK | EMASK | STATS
11 3 12 16 10 4

where,

FUCTL Selects a function unit and specifies its control.
NACTL Controls the next address generation.

FTCTL Specifies the form token mode.

TMASK Specifies operand type checking and propagation.
EMASK Specifies the exception mask.

STATS Specifies an increment for one of 16 instruction mix counters.

18



2.2.1 Function Units

The function unit is a set of four units — an arithmetic unit, a pointer unit, a type unit,
and a machine control unit. Only the first two are presently operational. The incoming
token value and the read value, if any, are assigned to processor variables names A and
B depending on the flip bit and the INPUT-PORT. These values are then used by the

function units.

We describe the FUCTL control of the functional units.

FUCTL
FLIP { UNIT oP

where,

FLIP Specifies the Ir — A, B mapping.
UNIT Selects one of the four function units: FALU, PIU, MCU or TPU.

oP Function unit opcode. Interpreted by each function unit.

The arithmetic unit uses OP as an instruction. The pointer increment unit uses bits

from the OP to control its three operational units (PORT, IP, and FP.)

2.2.2 Next Address Control

The next address is controlled by three bits divided as follows:

[ NACTL l

[NAL | NA2
2 | 1

where,

NAl Specifies the tagl 1P increment of 0,1,2, or 3. PORT is always set to
i

NA2 Specifies the tag2 1P increment of 0 or s. PORT is set to the instruc-
tion PORT or r.

19



2.2.3 Form Token Control

The FTCTL field has the following structure:

where,

EN1, EN2
K1, K2
ORD
RECIRC
STACK

ACK

P FTCTL |

EN1 | EN2 KlIxz ORD | RECIRC | STACK | ACK

2 1 2 1 1

Specifies the conditional output predicates for tokenl and token2.
Specifies the assembly of tokenl and token2.

Specifies the relative priority of tokenl and {oken2.

Controls the recirculation of the higher priority token.

Specifies the stack for the lower priority token.

Controls acknowledgment for network packets.

See Papadopoulos’s[6] Appendix for details on the microcode.

This unique decoding permits instruction execution to branch any one of eight ways
(BRA is two bits and FZ is one bit) based on the type and port of a token along with the
presence bits associated with it. This control is extremely general and permits remarkable

flexibility for experimentation. The desire of the group to experiment with this powerful

computing engine is the driving force behind my thesis.
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Chapter 3

Objectives and Approach

The primary objective was to take a microcode specification and an instruction set spec-
ification and compile them into MINT routines[4] that accurately and efficiently emulate
the Monsoon pipeline. Efficient implies run times comparable to hand-coded procedures.
Secondary considerations were code-size and human-readability. The speed of compila-
tion was not regarded as important, but did become somewhat of an issue later in the

development stages.

3.1 Naive Approach

As stated in the Introduction, a Monsoon pipeline simulator could be trivial to write.
A simple microcode interpreter would suffice. An interpreter, however, is very slow.
Creating Lisp routines using tables that map microcode to Lisp functions would be
another possible solution. The quality of the resulting emulation routines would depend
strongly on the quality of the Lisp compiler used to compile them, but could never
produce optimal code without further processing, unless the mappings were exhaustive.
A compilation based solely on simple table lookup would probably create opcodes of at
least a page a piece. Each of the eight possible branches (which become thirty two if
you include unique next state writes) would have to be listed out, and all possibly used
variables, regardless of whether or not they are necessary, would have be bound and
calculated. Compilation based on table lookup alone would produce very large and slow

code. Since different Lisp compilers have different levels of optimization, and none are
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good enough to optimize blatantly inefficient code, it was decided that the microcode

compiler should try to produce the best possible Lisp code.

3.2 Specific Microcode Compiler Optimizations

Given the goals of the thesis, a desired destination code style was developed. This style
includes no mutators and no consing. Duplication of code is permitted to minimize
execution paths. Bindings should only be bound in an environment that needs them.

Speed always takes precedence over size. Lisp compilers are assumed to be stupid.

Given the “execution speed is everything” mentality, the following optimizations were

developed.

1. In-line substitution. Variables occurring only once within a specific branch of
execution are in-line substituted. This is the most frequent optimization within the
compiler, and reduces code size considerably. The compiler also uses in-line sub-
stitution to eliminate unused expressions that were generated from the microcode
specifications. In-line substitution occurs many times in the code following this
paragraph. Note that read-dm-data and (+ ip s) (IP) are in-line substituted
into the returned values. Also notice that since IP will only be calculated once
in each leg of the branch, it is substituted into each leg rather than being bound
above. (+ fp r) (effective address) is another in-line substitution found in this

example.

(DEFALU (IDENTITY-M1)
(DECLARE (IGNORE VALUE-TYPE))
(IF (= INPUT-PORT 0)
(VALUES :ENQUEUE-HP-QUEUE
TAG-TYPE OUTPUT-PORT MAP PE (+ IP S) FP
0 VALUE-VALUE)
(VALUES :ENQUEUE-HP-QUEUE
TAG-TYPE OUTPUT-PORT MAP PE (+ IP S) FP
0 (READ-DM-DATA PE (+ FP R)))))

22



2. Common sub-expression elimination. As a side-effect of in-line substitution,
any binding used by more than one other binding or statement is bound in an envi-
ronment accessible to those bindings and/or statements. This will eliminate com-
mon sub-expressions within bindings and will hopefully make the code run faster.
The compiled code for Identity-M2 is shown. Notice that since temp-value-* is

used twice in the else-conditional leg, it is bound in that leg.

(DEFALU (IDENTITY-M2)
(DECLARE (IGNORE VALUE-TYPE))
(IF (= INPUT-PORT 1)
(LET* ((TEMP-VALUE-* (READ-DM-DATA PE (+ FP R))))
(VALUES :ENQUEUE-RP-QUEUE
TAG-TYPE OUTPUT-PORT MAP PE (+ IP S8) FP
0 TEMP-VALUE-*
:ENQUEUE-PIPELINE-TAIL
TAG-TYPE O MAP PE (1+ IP) FP
0 TEMP-VALUE-*))
(VALUES :ENQUEUE-HP-QUEUE
TAG-TYPE OUTPUT-PORT MAP PE (+ IP S) FP
0 VALUE-VALUE
:ENQUEUE-PIPELINE-TAIL
TAG-TYPE O MAP PE (1+ IP) FP
0 VALUE-VALUE)))

3. Functional symmetry. Taking advantage of symmetrical functions reduces code
size and makes the code faster by eliminating an unnecessary conditional. An
example of what can be done knowing that a function is symmetric is found in
the following compiled opcode. Notice again that no unnecessary bindings are
created and that no unnecessary conditionals are evaluated; in fact, all bindings

and conditonals have been eliminated.

(DEFALU (+-C1)
(DECLARE (IGNORE INPUT-PORT VALUE-TYPE))
(VALUES :ENQUEUE-HP-QUEUE
TAG-TYPE OUTPUT-PORT MAP PE (+ IP S) FP
0 (+ (COERCE-TO-FLOAT VALUE-VALUE)
(READ-DM-DATA-AS-FLOAT PE (+ FP R)))))
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4. Binding inside of conditionals. This optimization eliminates extra calculations
when possible. A hacked version of the opcode i-putr-12 (enqueue on conditional
(b = 0) was added) follows this paragraph. Notice that b-tag is bound inside of
the conditional since it is not used outside of the conditional, while temp-value-*

is bound outside of the conditional since the conditional needs it.

(DEFALU (I-PUTR-L2)
(DECLARE (IGNORE INPUT-PORT VALUE-TYPE))
(LET* ({TEMP-VALUE-* (READ-DM-DATA PE R)))
(IF (ZEROP (COERCE-TO-INTEGER TEMP-VALUE-%*))
(LET* ((B-TAG (COERCE-TO-TAG TEMP-VALUE-*)))
(VALUES :ENGUEUE~-HP-QUEUE-ENQUEUE-PIPELINE-TAIL
PE TAG-TYPE OUTPUT-PORT MAP (+ IP S) FP
0 VALUE-VALUE
(TAG-PE B-TAG) (READ-DM-TYPE PE R)
(TAG-PORT B-TAG) (TAG-MAP B-TAG) (TAG-IP B-TAG)
(TAG-FP B-TAG)
0 VALUE-VALUE))
NIL))))

5. Conditionals inside of bindings. Conditionals between two similar codeblocks
can be inserted into the bindings themselves. This drastically reduces code size of
some some instructions. A simpler compiler would simply duplicate the code in the

two arms of the input-port conditional.

(DEFALU (--N2)
(DECLARE (IGNORE VALUE-TYPE))
(LET* ((RW-DM-DATA-* (RW-DM-DATA PE (+ FP R) VALUE-VALUE)))
(IF RW-DM-DATA-*
(LET* ((Y-FLOAT
(IF (= INPUT-PORT 0)
(- (COERCE-TO-FLOAT VALUE-VALUE)
(COERCE-TO-FLOAT RW-DM-DATA-%))
(- (COERCE-TO-FLOAT RW-DM-DATA-*)
(COERCE-TO-FLOAT VALUE-VALUE)}))))
(VALUES :ENQUEUE-HP-QUEUE
TAG-TYPE OUTPUT-PORT MAP PE (+ IP S) FP
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0 Y-FLOAT
:ENQUEUE-PIPELINE-TAIL
TAG-TYPE O MAP PE (1+ IP) FP
0 Y-FLOAT))

NIL)})

6. Flip check removal. Since the flip bit is static within the instruction, we reduce
the flip check to either a port check or nothing at all. Please refer to the previous

optimization for an example of how a flip is removed.

7. Efficient read-write-presence routines. These routines are features of MINT
and claim to be faster than their components executed singly. Combinations of
data memory reads and presence and type writes are provided to eliminate un-
necessary address lookups. This affects both the speed and the size of the pro-
cedure. Examples of efficient memory operations exist throughout the previous
examples. Note the rw-dm-data in .--nl. Support for the write-dm-dtp and

write-presence-and-read-dm-data-as-* is also provided.

8. Elimination of unnecessary reads and writes. The compiler will optimize all
unnecessary reads and writes out of the code. This includes not only reads but
write presences as well since a lot of opcodes write the present presence state back
as the next presence state. Everything that can be asserted to be unnecessary is
eliminated. This optimization tends to be a big win given that memory references

are expensive.

9. Binary decision trees. This is both a size and a speed issue, though trade-offs
between the two may be incurred. If every path is listed separately, code size would
grow, since common codeblocks would have to be listed twice (though pointers
could be set to common codeblocks, but this would limit readability.) Generated
predicates, however, are sometimes larger than ones found in a case statement. It
is believed, however, that predicate evaluation is cheaper than chasing pointers.
Also, the binary branching should make any large branching cheaper due to its
Oflog n) growth. An example of a rather large operation that takes advantage of

the predicate generator follows.

(DEFALU (ISTR)
(DECLARE (IGNORE TAG-TYPE MAP IP OUTPUT-PORT S))
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3.3

The Monsoon Microcode Compiler uses output generated by the Monsoon Microcode
Assembler (UTOOLS) which is presently being used to generate microcode for the hard-
ware. No modifications to the present system are needed to run the compiler. The

microcode information comes in the form of a list of opcodes, lists of presence and type

(LET* ((EA-INTEGER (+ FP R)))
(IF (> (READ-DM-PRESENCE PE EA-INTEGER) 0)
(IF (= INPUT-PORT 0)
(LET* ((Y-TAG (COERCE-TO-TAG VALUE-VALUE)))
(VALUES :ENQUEUE-HP-QUEUE
0 (TAG-PORT Y-TAG) (TAG-MAP Y-TAG)
(TAG-PE Y-TAG) (TAG-IP Y-TAG) (TAG-FP Y-TAG)
(READ-DM-TYPE PE EA-INTEGER)
(READ-DM-DATA PE EA-INTEGER)))
(LET* ((Y-TAG (READ-DM-DATA-AS-TAG PE EA-INTEGER)))
(MULTIPLE-VALUE-PROG1
(VALUES :ENQUEUE-HP-QUEUE
O (TAG-PORT Y-TAG) (TAG-MAP Y-TAG)
(TAG-PE Y-TAG) (TAG-IP Y-TAG) (TAG-FP Y-TAG)
VALUE-TYPE VALUE-VALUE)
(WRITE-DM-DTP PE EA-INTEGER VALUE-VALUE 1))})
(IF (= INPUT-PORT 1)
(WRITE-DM-DTP PE EA-INTEGER VALUE-VALUE 1)
(WRITE-DM-DTP PE EA-INTEGER VALUE-VALUE 3)))))

Structure and Implementation of Compiler

maps, and arrays of first and second level decodes.

The overall structure of the Monsoon Microcode Compiler is shown in Figure 3.1 and

is described in the rest of the chapter.

3.3.1 Monsoon-Ucode-Compiler

This is the top level procedure and performs high-level compilation control. The first

thing it does is look for duplicate first level decode references. There are many opcodes
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Monsoon-Ucode-Compiler

Top-level procedure that calls
everything, collects the results
and writes them to a file.

Combine-1st-levels
Combines opcodes with the same first I
level decodes.
Strip-and-Combine
Creates mappings between presence map entries ;
and second-level decodes to type-presence-port
combinations.
i
Compile-Codeblocks
Compiles each unique presence-map entry/
second-level decode. Calls bind-and-substitute
(see next Figure) to link bindings and statements.
Predicate-Generator Combine-Codeblocks
Generates efficient predicates based on < | Smashes codeblocks together into a binary
types, presences, and port bits. decision tree. Uses predicate-generator
to generate efficient predicates.

'

Attach Headers

Attaches necessary headers. Includes
(declare (ignore ...)) to eliminate
warning messages when compiling.

Figure 3.1: Overall structure of the Compiler

27



that are exactly the same except for their names. The compiler pairs these opcodes up
so that work is not duplicated. This is not done if the error option (see Customizing
Microcode Tables in the Appendix) is turned on since we need to know the name of
the exact instruction we are compiling (error code will generally include the name of
the procedure that caused the error.) After the opcodes has been appropriately pre-

processed, the compilation starts. Each opcode is processed by the following stages.

3.3.2 Strip-and-Combine

The first level of the actual compiler, Strip-and-Combine, compresses the TMAP and
PMAP down into a single array referenced by TYPE, INPUT-PORT, and CURRSTATE. Each
time one of these smashed TMAP-PMAP combinations is created, it is cached in case
another opcode desires the same combination. This compression reduces the complexity
of the problem by reducing the number of look-ups necessary and makes the problem
a lot easier to understand. Note that duplication occurs throughout the smashed array
since eight bits of TYPE and one bit of INPUT-PORT reduce to only four different decodes.
An option to turn off the TMAP translation is provided. This makes the compiler faster

since it does not have to take care of so many cases.

The compiler then creates unique 2nd-level decodes and presence maps (which we
will call UCODE) to presence-port-type mappings. Eliminating duplicates was the first
step to compiling as little as possible. Note that each UCODE has a unique combination

of PRESENCE, INPUT-PORT, TYPE, and NEXT.

3.3.3 Compile-Codeblocks

This section first checks for special read/write cases that can be optimized using special
instructions. If a special case is found, it is processed by alternate procedures. Other-
wise, the compiler loops through the list of UCODES produced by Strip-and-Combine
and compiles them one at a time. The Lisp equivalent of a single UCODE is called a
cODEBLOCK. The first step of the compile process is to generate STATEMENTS which
are all operations other than bindings performed within a CODEBLOCK. Thus STATE-
MENTS include token enqueues, writes to memory, statistics writes, and so on. After all

of the STATEMENTS are produced, all of the bindings needed by those statements are
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recursively created. In other words, all bindings which represent all needed values in the

CODEBLOCK are produced. These include bindings of every type of every value needed

throughout the codeblock. The bindings are generated in order — that is, the bindings

are in an order in which they can be computed sequentially.

Bind-and-Substitute

Header procedure that calls lower
level procedures that bind/substitute

v v

and inlines

Inline-Constants

Cycles through the binding list,
bindings with
constant values by callin
inline-const-into-env-liat

Bind-and-Sub-Vars

Examines all remaining bindings and
either inlines, binds, or dumps them.
Inlining is accomplished by the
substitute-into-env

:

Inline-Const-into-Env-list
Substitutes the constant value

v

Substitute-into-Env

wherever it is needed. Does it
recursively so that all levels
receive the variable.

Recursively determines whether the
binding should be inlined or bound
and where it should be inlined or

bound. Calls appropiate procedure

when it knows.

= 2

\ & \ A
Insert-Mutator Inline-into-Binds Inline-into-Fun
Inline-into-Else-Binds Inline-into-Else-Fun

Inserts a mutator when a
side-effect binding is not
substituted into a conditional
arm.

Inlines the binding value into

the bind/else-bind of a env-struct.
Calls Substitute-into-Env
recursively if necessary.

Inlines the binding value into

the fun/else-fun of an env-struct.
Calls Substitute-into-Env
recursively if necessary.

Figure 3.2: Bind and Substitute Structure

After the bindings and statements are available, substitution is performed (see Fig-

ure 3.2.) Substitution is performed in two waves which are organized into a procedure

called Bind-and-Substitute. The first wave, called Inline-Constants in-line substi-

tutes for all bindings with constant values. The second wave, called Bind-and-Sub-Vars

counts the number of references to a binding, then binds if the number of references is

greater than one, substitutes if the number of references is equal to one, and discards if

the number of references is equal zero. This procedure is called recursively to insure that

the elimination of a binding is noticed by the bindings above it. Bind-and-Sub-Vars
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calls Substitute-into-Env which in turn calls in-line and insertion routines depending

on what is appropriate.

The second wave substitution has a number of interesting problems associated with
it. One problem involves taking advantage of the typed data memory reads, i.e., reading
the data as a specific type. These reads are provided with the hope that they will be
more efficient than separate read/coerce instructions. To effectively use the typed-reads,
one must know what type is needed. Trouble arises if more than one type of a specific
value is needed. The microcode compiler follows a specific algorithm felt to be fairly

effective at resolving the typed read problem.

A read binding starts out as a generic read with an unspecified type. If the read
binding is in-line substituted into a coercion, the read is mutated into the desired type
and the coercion is thrown away. If the read binding is not in-lined into a coercion, it
remains an untyped read. Note that if the original read-binding is referenced more than
once, it is never in-lined. This implies that a codeblock which uses a read value as two or
more different types will bind the read in its untyped form. Binding an untyped read is
the correct solution in this case as shown in the following example. Suppose we need an
integer then a float. In the case where the original data is a float (which is not unlikely
since types are very rarely mixed), unless the original data is saved, two coercions need
to be performed. One coercion would be to change the original floating representation
into an integer, and the second coercion would be to change the integer representation
back into a float. Tt is worth the extra stack space required to store the uncoerced read

to avoid unnecessary coercions.

Another problem associated with substitution is insertion of a binding with a side-
effect into a conditional statement. Presently one binding value,
write-presence-and-read-dm-data has a side-effect. This instruction is another MINT
function designed to be quicker than two separate functions. It writes the presence bits
while reading the data memory. If this instruction is substituted into a conditionalized
statement, the write must exist in all of the conditional cases. For example, even if the
instruction with a side-effect is substituted only into the true arm of the conditional, the
false arm should still feel that side-effect. Thus, while substituting the write-presence
read-data instruction into a conditional statement, one must be careful to insert a write-
presence instruction into any conditional branch not containing the combination instruc-

tion. It is better to insert the mutator rather than splitting the combination read/write
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instruction because it keeps the advantage of having the combination instruction some

of the time.

Once substitution is performed, the codeblock is completed. All other codeblocks

that make up the instruction are compiled and accumulated for combination.

3.3.4 Codeblock Combination

Combination can take a number of different paths. The simplest is combining the code-
blocks randomly. The codeblocks are split up into a binary conditional tree and predicates
are generated to describe the control path through that tree. The predicates would have

to be as efficient as possible.

Another scheme, which is the one currently implemented, combines similar codeblocks
in an effort to reduce code size. Two codeblocks which differ in the value of one variable
(such as the --N2 instruction: see Optimizations section for the code) can be combined
by simply conditionalizing the binding. Dropping the conditional into the binding has
the advantage of making the code smaller. Rather than having the conditional on the top
and duplicating all of the code, the common code can be shared. This scheme makes the
predicate generator necessary, as one cannot know which codeblocks can be combined in
this fashion. There is room for improvement in the implemented algorithm. Presently,
the conditional is only lifted when the size of the codeblocks are exactly equal, and there
is only one difference between the two codeblocks (making the conditional fit over only
one statement of the codeblocks.) If the conditionals could be put over more than one

statement, this method would become more powerful.

The final codeblock combination scheme is to combine code in a straight conditional
fashion — i.e., compare on TYPE, then CURRSTATE, then INPUT-PORT. This will have
only one conditional expression at each test point but will contain more test points and
more code since duplication is sometimes necessary. [ believe, however, that this scheme

will be efficient for very small instructions.

3.3.5 Predicate Generator

A predicate generator was built to create efficient predicates around CURRSTATE, INPUT-
PORT and TYPE. It is used to support the random combination of codeblocks as described
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in the previous section. The generator works in a way similar to a Karnaugh map. An
array that is referenced by TYPE, INPUT-PORT, and CURRSTATE is marked by wants,
don’t wants, and don’t cares. Solid rectangles are “grown” around the wants, including
don’t cares if convenient. The “growing” is done so that the largest rectangles possible
are created. Obtaining the largest rectangles involves growing a rectangle, then holding
indicies constant and growing again. The largest rectangles that include all wants are
then converted into sums of products predicates. Note that both the positive and the

negative predicates are generated and only the cheapest is returned and used.

3.3.6 Effective Address and Presence Insertion

Each codeblock knows what its current presence state is and what it’s next state should
be. Thus, CURRSTATE is never used within a codeblock and, thus, is not in the list
of bindings processed during the codeblock binding session. Since CURRSTATE requires
EA, the effective address cannot be processed before CURRSTATE. Once combinations
are finished and predicate generation is complete, however, the effective address and
CURRSTATE are dropped in and bound and/or in-lined as necessary. The same routines
used in the previous binding processing are used again here. Note that because we are
binding CURRSTATE and effective address after we bind everything else, nothing but
constants can be used to create these variables. We could wait until the very end to
bind-and-substitute everything, but it would be very expensive in terms of run-time

of the compiler.

After EA and CURRSTATE have been inserted into the instruction, the compilation
structures (described in the next section) are removed, the instruction is put into a print-
able form, and final headers are attached. The compiler prints the completed instruction

to the specified file and proceeds to its next instruction.

3.4 Implementation Structures

There are two basic compiler structures that should be discussed. The first of these
structures is called name-struct. It is defined as a structure with name, minor-name,

and type fields. The type field defaults to integer.
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The name-struct is used in place of a variable. It makes finding variables much
easier and gives vital information to the compiler about the type state of that variable.

The fields are discussed in detail below.

e Name is a Monsoon level name. These include all of the incoming token values
such as output-port, £p, s, r, tag-type, value-value, and value-type, and the

internal names such as y, a, b, temp-value, temp-type, and tag-1 and tag-2.

e Minor-names are presently only used with disassembled tags and indicate the tag

part. These include port, £p, ip, etc.

e Type is simply the MINT type of the variable. Presently the types include
integer, float, bits, tag, *, and type. * can stand for any of the first four

types.

The second structure used within the microcode compiler is called env-struct. This
structure is used to represent all statements and bindings within the program. The ratio-
nale behind the env-struct is that all bindings and statements should have the capability
to have environments. Using the same structure for both bindings and statements per-
mits future modifications to be made easily and makes both bindings and statements

more flexible.

The structure has as fields name, nom-faux, cond, cond-vars, binds, else-binds,
fun, else-fun, and needed-vars. Each of the fields is described in the following itern-

ization.

o Name is always a name-struct if it is defined. It defaults to nil. A name exists

if the env-struct is a bind, otherwise it does not.

o Nom-faux is used to indicate a special condition that exists within its env-struct.
If it is defined, nom-faux is always a single name-struct. This flag is used mostly
for read-write-presence bindings so that the Substitute-into-Env knows that

it is substituting a mutator.

e Cond is filled with a conditional statement. If no conditional exists, the default is

true.
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e Cond-vars is a list of variables (name-structs) needed by cond.
¢ Binds contains a list of bindings that apply if cond is evaluated to be true.

e Else-binds contains a list of the bindings that apply if cond is evaluated to be
false.

e Fun contains a list of statements which could be env-structs and/or Lisp expres-

sions that are executed if the cond is evaluated to be true.

o Else-Fun contains a list of statements which could be env-structs and/or Lisp

expressions that are executed if the cond is evaluated to be false.

e Needed-vars contains a list of variables needed within the conditional. The list
includes variables need by all of the bindings and all of the function statements of

both the true and false arms of the env-struct.

An overview on how env-struct is used for bindings and statements follows. Note
that brackets <> indicate that that field is optional.

Binding:

Name <nom-faux>
<cond>
fun

<else-fun (if cond is not true)>

Statement:

cond
bindings
fun
<else-bindings> (if cond is not true)

<else-fun>
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3.5 Implementation Assumptions

The following assumptions were made during the writing of the compiler. All of the as-
sumptions which had to do with the hardware assume that the hardware is not going to
change for specific things. The hardware is not assumed to be totally static but some as-
sumptions made coding easier. It is assumed that the basic functionality of each pipeline
stage will not change and their order will not change. Some of the following assumptions

clarify basic pipeline assumptions, but most have to deal with the implementation.

e At most one nom-faux exists per env-struct. This is just to make coding easier.
It turns out that more than one nom-faux is not presently needed. Nom-faux’s
are only used for tagging bindings with reads and/or writes and for tagging token
returns. These are mutually exclusive as a binding is a bind and a token is a
statement. Note that using nom-faux’s to prevent substitutions from crossing
boundaries — for instance, substituting a read past a write — might require more
than one nom-faux. This possibility was not a large one, however; the structure of

the pipeline would have to change to require a substitution of a read past a write.

¢ Write-presence has all constant arguments except for ea. This is reasonable
since the presence bits are written before anything is calculated. This is necessary
because a write-presence might be substituted into a token statement before it can

be processed by the bind-and-substitute routines. This should never happen.

e Ea can have only passed variables as parameters. Presence can only have ea and
passed variables as parameters. This assumption is necessary because these two
variables are bound and substituted at the very end. It is reasonable because ea
and presence are at the top of the Monsoon pipeline, and no other variables are

available.

¢ All passed variables must use their passed name as their name within their

name-struct. This makes life a little easier for the compiler.

e If temp-type exists, then temp-value exists and vice-versa. Take notice of this
when writing the fop-info array. This makes some matching in

bind-and-substitute more efficient.
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» Passed types are 8 bits big, i.e., they are not larger than 255. This eliminates the

need for masking.

¢ There must be some read and/or write for each fop. A fop cannot be a nil. This
is not unreasonable since the hardware must also do something for each fop, even
if the result is not used. If you are not doing anything for that codeblock, use a
read which will be optimized out. This is used by the check-and-optimize which

assumes if one does not exist, the other does.
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Chapter 4

Conclusion

A compiler has been written and is currently generating code that meets all given spec-
ifications. The compiled opcodes runs all tested programs at virtually the same speed
as hand-coded routines. For example, the benchmark wavefront, which was chosen for
its scientific instruction mix, runs on MINT in exactly the same amount of time using
either the compiled opcodes or the hand-coded opcodes. Thus, the main objective of the
compiler, the speed of its compiled opcodes as compared to hand-coded opcodes, was

met.

The compiled output, in addition to meeting speed requirements, matches the original
specifications of code style. The code is very readable — the compiler output, as seen in
the Optimizations section, is standard. Including types as part of the names of the
variables, and not including any Lisp mutators (such as setf, rotatef, etc.) make the code
easy to read. The size of the compiled code is comparable to the size of hand-coded
code. The size of the binary files of both the compiled and the hand-coded opcodes are

comparable as well.

Presently, the compiled opcodes are the default opcodes used by MINT to interpret
dataflow graphs. Though the compiler is not quick, taking 770 seconds to compile the
entire instruction set on an Explorer I1, it is acceptable because of the incremental abilities
of the compiler. Since the compiler has the ability to compile a subset of the instruction

set, the user is free to compile only what has changed, thus saving time.

It is believed that the techniques used to compile Monsoon’s pipeline controls are

applicable to RISC processors in general. The routines implemented in this thesis are
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powerful enough to be used within similar compilers for other processors. Simple alter-

ations to the thesis code could result in microcode compilers for any RISC processor.

4.1 Future Modifications

A few more optimizations could be added. Presently the combine codeblock routines
are still a bit primitive. Though they catch almost all of the combination optimizations,
they do not catch all of them. Those combinations that the compiler does not catch
occur very rarely if ever. For this reason, it is believed that improving this section would

have minimal advantages.

Predicates could be lifted and bound. Once in a while, some predicates are evalu-
ated more than once because of the way that the codeblocks are combined. Since the
Predicate Generator prefers equals, which should be extremely cheap, this infrequent
redundancy (since most instructions have very few conditionals) should have little per-

formance impact.

An automatic incremental compiler could be added to the system. It would require
careful analysis of the entire instruction definition state and a check to see if anything
had changed. Summary.txt which is written by the Microcode assembler would be of

great use here.
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Appendix A

Execution

The compiler was designed for ease of compiling an instruction set. When the microcode
itself changes, parameters associated with the microcode have to be changed as well.

This Appendix attempts to describe way one uses the Monsoon Microcode Compiler.

A.1 Simple Instruction Set Compilation

Most compilations will not require microcode specification changes. To compile an in-
struction set one needs to load “o:>monsoon>muc>load-muc”. Then, call Monsoon-
Ucode-Compiler with the correct arguments. This procedure has all of its arguments
keyworded and defaulted. The default is compiling the entire instruction set and writing
it to

“o:>derek>monsoon-ops.lisp”.

The keywords are as follows:

(file "o:>derek>monsoon-ops.lisp')
(opcode-list *opcode-list#)
(presence-map-list *presence-map-list*)
(type-map-list *type-map-list#*)
(1st-level-decode *1st-level-decode*)

(2nd-level-decode *2nd-level-decode*))
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Note that *opcode-1list*, *presence-map-list*, *type-map-list#,
x1st-level-decode*, and *2nd-level-decode* are all defined by UTOOLS.

A sample run is listed below.

>{monsoon-ucode-compiler)

% Then a list of the opcodes that are presently
% being compiled is listed. This will compile
% the entire instruction set and write it to

4 o:>derek>monsoon-ops.lisp

If the user wishes to compile a subset of the *opcode-1ist*, he can do so by giving
a list in the same format as *opcode-list*. This might be useful if only a few opcodes
were changed or added. Note that each compile overwrites the old compile if the same

file name is used.

A.2 Customizing Microcode Tables

The microcode compiler is customizable to reflect the possibility of changing microcode
and internal specifications of the hardware. All specifications{6] are defined as parameters
and can be changed easily by the user. Each field of the microcode is defined as an array
that is filled with the possible values that that field can take. The array is referenced by
the microcode specifications associated with each opcode. An example of such an array

is shown below.

(defconstant ipop-array (make-array ’(4) :initial-contents
“((+ ,*a-ip* ,*b%*)
(+ ,*a-ip* ,*g%)
,¥a—-ip*

,¥b*)))
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This array controls the generation of the ipop field of the pointer increment func-
tional unit. Notice that the arguments that need to be substituted are defined as global
parameters. These global parameters are simply name structures that make substitution

easier. Any variable that needs to be substituted needs to be a name structure.

The opcodes are defined as follows. The *alu-op~list* defines the ALU opcodes.
The format of the list is a list of lists of the name of the opcode, the procedure that defines
the opcode (in a list), the type of the returned value, and a Boolean that indicates whether

or not the opcode is symmetric.

An example of an ALU definition follows. Note that this example is a single element
of a list.

(FMUL

(* ,*a-float* ,*b-floatx)
float

T

The procedure to define opcode can be anything as long as your variable names are

correct. The compiler uses straight substitution.

The pointer increment unit operation is defined within arrays that are referenced and

copied. Again, these are mutable for customability.

In addition to the functional unit specifications, all other tables as defined by
Papadopoulos[6] are defined, some in unusual formats. Stick to the format given in each
of the existing arrays. None of the array names can be changed. Unusual formats are

enumerated below:

® kl-array and k2-array. These use a two dimensional array that contain solely
symbols that tell the compiler what to use as a tag and as a value in a token. Note

that tag-1 and tag-2 must be specified as ’tag-1 and ’tag-2.

¢ tag-l-array and tag-2-array. These arrays contain lists of all of the tag bindings.

Make sure to use make-env-struct-with-needed-vars in the proper format.
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