MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

Program Development and Performance
Monitoring on the Monsoon Dataflow
Multiprocessor

Computation Structures Group Memo 303
October 27, 1989

Gregory M. Papadopoulos

This report describes research done at the Laboratory for Computer Science of |
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advancaed Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-84-K-0099,

\ _ _____

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Instrumentation for Future Parallel Computing Systems, ACM Press, Frontier Series.

Program Development and
Performance Monitoring
on the Monsoon Dataflow
Multiprocessor

Gregory M. Papadopoulos?

5.1 Introduction

Developers of parallel applications often feel like they are living in a Heisen-
bergian purgatory; instrumenting a program can radically change its run-time
behavior, even causing it to produce different answers! Such experiences lead
to the natural conclusion that we should fundamentally improve the way real-
time data are collected on multiprocessors and expand the kinds of measurements
being taken. But perhaps we should first understand why the need for quality
multiprocessor instrumentation is so much more acute than the historical de-
mands placed on uniprocessors. Is getting a parallel program to run well (or at
all) somehow inherently more difficult than doing the same thing on a sequential
processor? Can better instrumentation really abate our frustration and accelerate
the effective use of parallel machines? It seems that the requirements of three
development activities are confounded under the desire for better instrumenta-
tion;

1The author is funded in part by the Advanced Research Projects Agency of the Depart-
ment of Defense under Office of Naval Research contract N0OOO14--84—K~0099.

|

I

92 Chapter 8. Program Development and Performance Monitoring on the
Monsoon Dataflow Multiprocessor

0 Debugging. Getting the program right.

0 Program Analysis. Understanding the inherent properties of a program
(e.g., its average concurrency),

0 Performance Tuning. Making the program run well on a particular imple-
mentation,

Our investigation of dataflow architectures [1] and associated declarative
languages has led us to believe that each of these activities can and should be
approached independently of the others, and that much of the perceived need
for highly dynamic and specific instrumentation is an artifact of the mismatch
(and inadequacy) of current parallel programming languages and processor ar-
chitecture,

To start, a program should be able to be developed and debugged without
regard to the target architecture. There should be no “surprises”—the exposing
of latent bugs—when changing the machine configuration. A declarative (or
functional) programming language (e.g., fp [2], s1sAL [3), Id [4]) guarantees
determinate execution, even in the presence of program bugs; re-execution of a
program on the same set of data will always yield the same results and set of
errors, independent of the number of processors or relative execution timings.

But determinacy does not guarantee good performance on a given problem;
different mappings of a computation onto a machine will always yield the same
answers (and errors) but may result in dramatically different execution times.
And it can also be the case that no mapping yields acceptable performance——
meaning the problem (inherently) has insufficient parallelism for the given ma-
chine configuration. But when observing a poorly running program, how are we
to know if the mapping is bad or if there is simply too little parallelism for the
problem size?

Ideally, it would be nice to perform an experiment that would tell us the
inherent parallelism and thus predict the best performance that we could ever
hope to get on a machine with a given number of processors, Then, we could
compare our prediction with the actual measured performance and determine if
further improvement is possible.

To these ends, we unabashedly propose a scientific method for the devel-
opment of parallel applications. As shown in Figure 5.1, a debugged program
can be analyzed to expose its inherent parallel characteristics and the expected
performance on a given machine configuration can be predicted theoretically.
Measurements from the actual program execution can then be compared against
the predicted performance; a mismatch would point to either inadequate analysis
or a deficiency in the machine implementation.

The utility of instrumentation in a multiprocessor should be gauged by
its contribution to facilitating program development under this paradigm. The
experimental Monsoon dataflow multiprocessor [5] now under construction at

5.1. Introduction

93

Program

!

Debug

.

Analyze [’ Execute

Predicted Measured
Performance Performance

Compare

FIGURE §.1
A scientific method for developing parallel applications.

94 Chapter 5. Program Development and Performance Monitoring on the
Monsoon Dataflow Multiprocessor

M.LT. incorporates a number of features 1o aid in program debugging, analysis,
and performance tuning. We present two novel features in this discussion:

1. Hardware support for machine-independent program unalysis. Using a pair
of “ping-pong” token queues we can efficiently simulate an infinite proces-
sor array on a finite collection of processors.

2. An instruction coloring technique that allows instruction mix statistics to be
focused on programmer-selected subsets of procedures, allowing the rapid
determination of the contribution from a given procedure to the overall

program.

Our ultimate goal is to replace the ad hoc development of parallel applica-
tions with a rational methodology based on analysis and measurement where the
processes of debugging, program analysis and performance tuning are distinct,
well-defined tasks.

5.2 Getting the Program Right

Parallel machines seem to have induced a regression in programming. A pro-
grammer is often concered with the reflection of implementation details onto the
structure of the program (e.g., number of processors, interconnection topology,
synchronization costs). This is usually accomplished by annotating programs
written in conventional sequential languages (e.g., FORTRAN, C and Lisp) to in-
dicate that certain things should be performed in parallel [6]. At a high level it
may be evident that an application possesses ample parallelism, but the complex-
ity of exposing the parallelism through annotations may introduce new erTors
that did not exist in the sequential version [7,8).

For example, matrix multiplication is a determinate computation, but if the
the programmer accidently uses the same variable to accumulate the parallel
inner products, the program is likely to show indeterminate behavior. The in-
determinate behavior is often difficult to reproduce when debugging because it
depends upon the relative execution timings and the debugging instrumentation
itself alters these relationships. Moreover, the explicit parallel task model of
these computations leads to execution traces that comprise collections of inde-
- pendent processes competing for machine resources. Pragmatically, it is hard to
name and “talk about” a specific process and relate it back to the program text,
asthcprocessesmqntommemmndﬁmmnmm

For these reasons, debugging places the greatest demands on instrumen-
tation; it must be non-invasive and it must deal with the fiming of events
rather than the statistical abstraction (the number of events) of execution per-
formance. In fact, we believe that the instrumentation problem for debugging
timing-dependent phenomena is so hard that trying to identify the sources of

5.3. Predicting Performance 95

nondeterminism through measurement is fundamentally impractical. While there
appears to be significant progress in the development of automatic dependence
analysis tools (e.g., Ptool [9]) to assist in detecting incorrect parallelization, we
question whether these techniques can ever really uncover the truly insidious
bugs in programs that employ sophisticated data structures and/or attempt to
manage their own storage. : '
We believe the best approach to developing robust parallel codes is to pro-
vide a programming environment that guarantees determinate execution even in
the presence of program bugs. Declarative languages can offer such a guarantee:

Independent of the relative timing of concurrent processes and the
distribution of data and processes across processors, a program will
always yield the same result and the same set of errors (given the same
input data, of course).

This property, known as the Church-Rosser property [10] is not without its
costs, and the implementation efficiency of declarative languages is the subject
of much research—and beyond the scope of this discussion.

It is encouraging to note, however, that scientific programs expressed in the
declarative language Id [4,11] for our dataftow processor yield dynamic instruc-
tion mixes within a factor of two of the same applications written in FORTRAN
and executed on contemporary von Neumann uniprocessors [12,13]. In addition,
the FORTRAN codes generally experience a measurable increase in execution
overhead when they are executed in parallel (after suitable annotations) while
the number of instructions executed for the Id program is independent of the
number of processors.

Thus, one option for the parallel programmer is to debug the application in
the familiar development environment of a single processor. The Church-Rosser
property guarantees that the program will behave identically (in terms of results
produced) when executed on a multiprocessor configuration!,

5.3 Predicting Performance

Amdahl’s law for vector processing provides a simple machine-independent
characterization of the performance limitations of vectorization. Given an appli-
cation that is, say, 90% vectorizable, Amdahl’s law limits the best case speedup
to about a factor of ten—even given an infinitely fast vector unit. When we

1We gloss over the obvious requirements that the machines a!l have the same arithmetic
behavior. Not to mention the fact that some applications simply exhaust the resources
(like memory, or the patience of the programmer) of a single processor, in which case
debugging would have to take place on a multiprocessor. We will address the problem
of debugging on a parallel machine in a moment.

96 Chapter 5. Program Development and Performance Monitoring on the
Monsoon Dataflow Multiprocessor

exccute the program on an actual vector processor we are-able to roughly pre-
dict its expected performance. If the experienced performance and the predicted
performance agree, then we know the only way to further decrease execution
time is to adjust the code to increase the amount of vectorization. If experience
and analysis substantially disagree then we tumn to performance measurements
to diagnose the cause of the problem, e.g., bank conflicts, short vectors, poor
compilation, erc. ‘

Amdahl’s law applies to parallel execution as well—the maximum expected
performance gain from processing things in paralle] is ultimately limited by that
portion of the computation that is inherently sequential. We can all understand
this rule in the abstract sense and can sometimes apply it in practice. However,
its utility is limited by the ability to precisely distinguish that fraction of the
computation that is truly sequential.

Fundamentally, the sources of parallelism in a program are manifold? and
trying to predict what fraction of the paralielism can be exploited by a particular
machine organization can be exceedingly complex. Moreover, the language in
which the application is coded may unintentionally obscure certain kinds of
parallelism. It appears that there is no substitute for actually running the program
on a real set of input data and then, somehow, analyzing real-time measurements
in an effort to determine both the available parallelism and how much of it is
effectively exploited.

Our approach is try to determine the potential parallelism in programs by
considering only the essential data dependences involved in computing the re-
sult. Then we try to predict how the potential parallelism is attenuated during
execution. Ammed with these predictions, we have a better chance of under-
standing actual real-time measurements of the program on a particular machine
configuration,

We believe that fine-grained dataflow graphs offer one of the cleanest for-
mulations of parallel computation. Dataflow graphs avoid overspecifying the
instruction execution sequence by dictating only the essential data dependences.
An actual execution of the program may impose additional ordering, but all
such orders obey the data dependences. Thus these graphs capture all sorts of
parallelism—vector, inner loop, outer loop, producer-consumer, etc.

The first step is to interpret the dataflow graph in an ideal environment that
imposes no additional ordering and thus reveals an amalgam of the potential
program parallelism, Then, we refine our estimations by selectively accounting
for finite processor resources and non-zero communication latency. At the center
of this analysis is a time-independent formulation of computational progress.

2Indeed, vector processing is a restricted form of parallel processing,

§.3. Predicting Performance 97

5.3.1 Idealized Execution

The dataflow graphs produced by the Id compiler are based on a fixed set
of schema and rules for composition that ensure deterministic behavior on all
execution orders [14). One such execution order of interest is the so-called
infinite-processor or ideal execution order that follows the simple execution
rule:

At step 5 execute all instructions that have their operands, then proceed to
step 5 + 1.

We term each step a parallel computation step. While we do not specify
the order in which instructions should be executed within a step, the set of
instructions executed by step j is completely determinate, The parallelism profile
of the computation is defined as a plot of the number of instructions executed in
each parallel computation step versus the step number. By definition, all of the
instructions in a step are completely independent of each other (they all have
their required operands and don't need to intercommunicate). So the parallelism
profile graphically reveals inherent parallelism in the program.

Figure 5.2 shows the parallelism profile of the SIMPLE code, a hydrody-
namics and heat code that has been studied extensively both analytically and by
experimentation3, This profile shows three iterations on a 20 x 20 mesh, while a
typical production run performs 100,000 iterations on a 100 x 100 mesh. We can
interpret the parallelism profile as the trace obtained from measuring an ideal
machine with the following properties:

o Unit time per operation,
0 Unbounded number of processors,
0 Zero communication delay,

In the SIMPLE example, almost one and a half million instructions were
executed; this took our ideal machine only 1,976 “clocks”—where every pro-

- cessor can complete an instruction every clock cycle. We term the number of

steps required to complete the computation the critical path: there exists a se-
quence of 1,976 operations such that operation k requires the result of operation
k — 1 for all k. That is, there is at least one inherently sequential thread in the
computation comprising the critical path number of instructions.

3See [15] and [16] for a detailed discussion.

98 Chapter 5. Program Development and Performance Monitoring on the

Monsoon Dataflow Multiprocessor

1

-

-

Concurrent Operations

00 400 600 800 1000 1200 |

1400

1800

T
1800

FIGURE 5.2
Parallelism profile for SIMPLE (3 iterations, 20 x 20).

5.3. Predicting Performance 99

We can also identify some important structural aspects of the parallelism.
For example, as can be seen from iterations 2 and 3, there is no significant paral-
lelism between the outer loop iterations of SIMPLE . The tremendous variability
of the potential parallelism is also noteworthy, and typical of our experience with
even the most highly parallel programs. This strongly suggests that reducing the
profile to a single “average parallelism” number (analogous to the percentage
vectorization) is apt to mask important dynamics, like the sections of inherently
low parallelism. Yet even this highly idealized execution provides a hard upper
bound:

No machine can complete the computation faster than the critical path number
of instruction times.

Every instruction on the critical path depends directly on the result of its
predecessor, thus these instructions cannot be rearranged to run in parallel nor
can they be pipelined (pipelining requires independence of adjacent instructions).
We can also conclude that a processor with an instruction pipeline depth of d
cannot execute the program in fewer instruction times than the product of the
critical path length and d.

5.3.2 Bounded Processor Profiles

Another clear consequence of the ideal parallelism profile is that a single proces-
sor machine will take at least as many instruction times to execute the program
as the area under the curve—the total number of instructions executed. So now
we know two extrema: the best time on an infinite collection of processors and
the best time on a single processor. What about the space in between? Deriv-
ing the best performance achievable on n processors would establish an upper
bound for evaluating real-time measurements. A “linear” speedup curve is often
cited as the metric for performance comparisons for multiprocessors, but this is
as naive as assuming that a linear improvement in the performance of a vector
unit will cause a linear improvement in the execution of any application!

The intermediate points along the speedup curve have a fairly unremarkable
relationship to the parallelism profile. Figure 5.3, shows the parallelism profile
of the SIMPLE example where the number of processors has been limited to
1000, slightly greater than the average parallelism. As expected, the peaks of
the profile have been truncated to 1000 parallel activities. The area under the
curve is the same (the same number of instructions are executed in both cases)
and the length of the critical path has increased from 1,976 to 2,763.

100 Chapter 5. Program Development and Performance Monitoring on the

Monsoon Dataflow Multiprocessor
1000 _
900
-
?o. 800 F
g 700 .
B
Q
a
E
S
1000 : 2000

FIGURE 5.3

Parallelism profile for STMPLE bounded to 1000 processors.

5.3, Predicting Performance 101

5.3.3 Accounting for Latency

The “processors™ assumed in the bounded simulations really represent concurrent
computations. For example, a pipelined processor of depth d would account for
d “processors”, as the pipeline computes d instructions in parallel. An alternative
view is that the pipelined processor indeed represents a single “processor™ but it
introduces a latency between dependent computations equal to d time units. A
mode that incorporates latency could also account for the processor-memory and
interprocessor communication times. Figure 5.4 shows the parallelism profile for
the SIMPLE example where the number of processors has been limited to 100.
The top profile has latency of zero while the bottom has latency of 10—it takes
10 time steps for the result produced by an instruction to be distributed to any
dependent instructions.

Surprisingly, the critical path is increased by a factor of two, not a factor of
10. This suggests that excess parallelism can be invested in tolerating latency,
and that the program has enough parallelism to perform well on a realistic
machine comprising 100 processors.

- 100
80 Zero Latency
“ 60
_2. 40
§- £0]
Qo o 1
% 10000
= Latency = 10
g 100
5
) 80
80 _
40 _
200
0
1 1 1
10000 20000 30000
Computation Step
FIGURE 5.4

Parallelism profile for SIMPLE bounded to 100 processors.

102 Chapter 5. Program Development and Performance Monitoring on the
Monsocon Dataflow Multiprocessor

5.3.4 Estimating Speedup from ideal Proﬂleé

Arvind, Culler and Maa [17] have shown that good estimates of the speedup
expected on a finite number of processors with a given latency can be obtained
from simple analysis of the ideal parallelism profile! Thus, we can avoid the
costly computation of numerous scenarios of bounded processors and fixed la-
tency. The derivation of the estimates is beyond the scope of this discussion, but
we have shown the results on the SIMPLE example (this time, one iteration on
8 32 x 32 mesh) in Figure 5.5, The curves (parameterized by latency) show the
estimated performance derived from analysis of the ideal execution profile. The
discrete points are the results of actually simulating the machine configuration

on our graph interpreter,

Speed Up

FIGURE 5.5
Speedup estimates for STMPLE (1 iteration, 32 x 32) from the ideal
parallelism profile.

5.4, Hardware Support for ldealized Execution 103

5.4 Hardware Support for Idealized Execution

The ideal parallelism profile provides a solid foundation for predicting the per-
formance of an application on a given multiprocessor configuration. However,
even computing a single profile can be very expensive as it is a true simula-
tion of the problem on given set of input data. Indeed, the idealized simulation
produces the same numeric result as any real-time execution (Church-Rosser,
again). This can be interpreted as a flaw—if the parallelism profile is highly
dependent on the input data (it certainly is a function of problem size) then
many ideal simulation runs would be required to characterize the program.

We believe that the parallel computation step abstraction can play such an
important role in application development that hardware support for idealized
execution should be developed. We have arrived at a simple hardware extension
for the Monsoon dataflow that efficiently implements a parallel computation step,
and appears to have general applicability among various dataflow architectures.

Monsoon, like most dataflow machines, is a collection of pipelined pro-
cessing elements. The processing element pipeline independently transforms
computation state descriptors called tokens. Tokens are the means by which
data are communicated from instruction to instruction. A Monsoon processing
element can consume a token and produce zero, one or two result tokens. Thus,
a large buffer or token queue is required to store the transient of excess tokens
that are generated during periods of high parallelism. Please refer to Figure 5.6.
The token queue is analogous to a work queue. A processing element keeps
consuming tokens from the queue and adding new ones. The only time it idles
is when the queue is empty.

Our hardware trick is simple. Rather than have a single token queue we
equip each processor with iwo queues. A parallel computation step works as
follows (see Figure 5.7):

1. Let Qg contain the tokens that were produced by computation step j.

2. All processing elements consume the tokens from @, but insert any result.
tokens into ;. This continues until all processors have emptied their re-
spective Qg and all idle. Each processor counts the number of instructions
executed.

3. The roles of Q, and @Q; are reversed, and the next computation step is
performed: dequeuing from @3 and enqueuing into Qq.

Interprocessor communication is also accounted for: a token, which is pro-
duced by a processor and destined for another processing element, is auto-
matically (by the normal hardware rules) transmitted over the network to the

104 Chapter 5. Program Development and Performance Monitoring on the
. Monsoon Dataflow Multiprocessor

Processing Elements

e

instruction token queue

pipeline = ;

—
|__T[| - -

Communication Network

r r r 4

I-Structure Memory Modules

FIGURE 5.6
A collection of pipslined monsoon processing efements.

5.4. Hardware Support for Idealized Execution 105

Engueue new tokens onto

this queue
L]
L]
'1
b
QO ‘\‘ Q1
]
1
)
1]
\\‘ |‘ A
\\ ‘I
Dequeue tokens from -
this queue statistics
"'f ‘\\‘
- -
¢ - > {
4 P
Network

FIGURE 5.7
A modified monsoon processor for performing parallel computation steps.

106 Chapter 5. Program Development and Performance Monitoring on the
Monsoon Dataflow Multiprocessor

destination processing element, that simply enqueues the token until the next
computation step.

Notice that the actual processing of instructions is performed at full speed
by each processor. The overhead from this technique arises from the implied
barricr synchronization—no processor can flip its queues until all other proces-
sors have come to an idle. This overhead is incurred only as many times as there
are steps on the critical path, so programs that exhibit even modest amounts of
parallelism ought to run fairly well. We would view executing within an order
of magnitude of real-time acceptable, and expect a typical degradation of about
a factor of three. In contrast, even our fastest graph interpreters execute in no
better than 0.1% reai-time.

The parallel computation step can also provide an unexpected benefit for
debugging programs. Church-Rosser only guarantees that the same set of
errors will be encountered from run to run, but the order in which the errors
occur is not determinate. In fact, the strategy of “stopping” the machine upon
detecting an error will seldom yield a reproducible state. The only certain way
of consistently ending up in the same error state is to let the program come to
a natural halt (i.e., wait for the effects of the error to propagate through the
computation). Suppose, however, that we debug using parallel computational
steps with the following error rule;

When an error is detected stop computation after completion of the current step.
This strategy has two desirable qualities;

L1Itis guaranteed. determinate. Execution will always halt on the same
computation step with the same errors.

2. The error does not propagate. By definition, all instructions within a
computation step are independent. Dependent instructions can only appear
in the next step, which we never execute.

The technique applies equally well to programmer-inserted breakpoints and
traces. In many ways, the parallel computation step is analogous to a single-step
on sequential uniprocessors.

We think there are analogs of parallel computation step for course-grain
models as well. In these settings, all tasks in the active task queue would execute
until some blocking event, and then enqueue into the task queue for the next
step. Statistics and error information could be gathered at the end of each step
and task parallelism profiles could be generated.

5.5. Instruction Coloring 107

5.5 Instruction Coloring

Between each computation step various processor and network statistics can be
gathered from each processor for later analysis and display. They include:

O instruction mixes, e.g., fixed and floating point operations, fetch, store,

0 processor performance, e.g., idle cycles, cache misses, pipeline bubbles,
and

0 network performance, e.g., message counts, blocking statistics.

This same set of event counters can be sampled periodically during real-
time operation to provide a trace of runtime performance data—with the usual
concern over sufficient sample frequency. However, the sampling between com-
putation steps during idealized execution is sufficiently frequent as the instruc-
tions processed during a step are, by construction, completely independent. So
nothing “interesting” would be revealed by sampling the statistics counters in
the middle of a parallel computation step.

We note that a programmer might also be interested in displaying statistics
other than total instructions executed in the style of parallelism profiles. For
example, the user might want to display only the floating-point operations per
step, or the aggregate network traffic to identify potential network hotspots that
might be exposed during real-time execution.

One often desires to filter the data to display the contribution of a subset
of procedures (maybe just a single function) to the overall execution trace. This
is accomplished on Monsoon by replicating the instruction mix counters in each
processing element and then adding a field to every instruction (its color) that
specifies which set of counters should be updated. All instructions belonging to
the subset of procedures to be monitored would be assigned the same color.

For an experimental processor like Monsoon, the added hardware of this
approach is tolerable. Replication of the statistics counters is relatively inex-
pensive. Because all instruction mix counters are mutuaily exclusive (only one
counter from one color set will updated during a given cycle), we can store
the current counts in a high speed memory and have only a single incrementer.
Adding more colors only involves increasing the size of the memory. A more
practical limit on the number of colors is dictated by the amount of time re-
quired to read all of the sets of counters during each sample period. Of course,
we must also pay for a few extra bits on every instruction memory location. We
have found four bits (sixteen colors) to be a reasonable compromise.

108 Chapter 5. Program Development and Performance Monitoring on the
Monsoon Dataflow Multiprocessor

5.6 Performance Monitoring

At the other end of the development cycle is the performance tuning of a working
program. In the purest of worlds, the ideal execution profiles would accurately
predict the real-time performance of the application. At least, the ideal execution
profiles provide reasonably tight bounds on the best we can hope to do on a
given machine configuration. So when we observe performance that is poor, but
matches prediction, we know not to indict the machine. If this performance is
inadequate then the only choice is to adjust the application—for example by
reformulating the problem with algorithms that exhibit greater parallelism,

What happens when the real-time performance is significantly worse than
predicted? The first step is to try to relate the real-time statistics back o the pre-
dicted execution profiles. Instruction coloring can help identify a computation
phase by indicating when certain procedures are active. Attention can then be
focused on those phases where the measurements and predictions diverge—the
places where aggregate machine utilization is significantly lower than projec-
tions. There is apt to be a small number of explanations for the divergence, as
we have already factored out the inherent limitations of computation:

0 Poor workload distribution. Some processors have a disproportionate
share of procedure activations, inducing other processors to idle.

o Excessive network contention. The network traffic is imbalanced leading
to restrictions in bandwidth or inordinate increases i, latency.

0 Memory contention. Memory requests are unevenly distributed causing
certain modules to become bottlenecks.

We believe that of the divergence better analysis of the ideal execution
statistics can also help reveal the cause of the divergence. After each computation
Step we can query the memory modules and discover any excessive loading.
Similarly, the network elements can be examined to determine relative traffic
and contention. It should then be possible to determine at cach step the rate
limiting term: be it the processors, network or memory.

All of this may be interesting to the programmer but not very helpful unless
there is some way to fix the problem., Unfortunately, we will have to wait until
we have gained more experience with large configurations before we know what
mixture of programmer control directives are truly useful.

5.7 Conclusion

If we are to leave the reader with one thought, it is that it is possible to system-
atically develop a reliable, well-performing application for a parallel processor.

5.7. Conclusion 109

But this nice world of determinate debugging, theoretical performance prediction
and relaxed execution instrumentation is only realizable if we make significant
changes to our programming languages and constituent processor architectures.
Declarative languages provide a natural basis for a robust parallel programming
environment. Dataflow machines like Monsoon that provide especially efficient
interprocessor synchronization and context switching can insulate the program-
mer from the vagaries of the underlying implementation,

References

1.

2.

Arvind and D. E. Culler, Dataflow Architectures, in Annual Reviews in
Computer Science, Annual Reviews Inc., Palo Alto, CA, Vol. 1, pp. 225-
253, 1986.

J. Backus, Can Programming be Liberated from the von Neumann Style?,
Communications of the ACM, 21(8), August 1978.

3. J. R. McGraw, SISAL: Streams and Iteration in a Single Assignment Lan-

5.

6.

guage, Language Reference Manual, Version 1.2, Technical Report M—-146,
Lawrence Livermore National Laboratory, March 1985,

R. S. Nikhil, Id Nouveau Reference Manual, Part I: Syntax, Technical
Report, Computation Structures Group, MIT Laboratory for Computer Sci-
ence, 545 Technology Square, Cambridge, MA 02139, April 1987.

G. M., Papadopoulos, Implementation of a General Purpose Dataflow Mul-
tiprocessor, Technical Report, Computation Structures Group, MIT Lab-
oratory for Computer Science, 545 Technology Square, Cambridge, MA
02139, August 1988.

A. H. Karp, Programming for Parallelism, Computer, 20(5), May 1987.

7. J. R. McGraw and T. S. Axelrod, Exploiting Multiprocessors: Issues and

8.

10.

Options, in Programming Parallel Processors, Addison-Wesley, Reading
MA, 1988.

D. A. Mandell and H. E. Trease, Parallel Processing a Real Code — A
Case History, Technical Report LA-UR 88-1836, Los Alamos National
Laboratory, May 1988,

L. A. Henderson, R. E. Hiromoto, O. M. Lubeck and M. L. Simmons, On
the Use of Diagnostic Dependency-Analysis Tools in Parallel Programming:
Experience Using Ptool, Technical Report LA-UR 88-1968, Los Alamos
National Laboratory, Los Alamos, NM 87545, June 1988.

G. Huet, Confluent Reductions: Abstract Properties and Applications to

Term Rewriting Systems, Journal of the Association for Computing Ma-
chinery, 27(4):797-821, October 1980.

110 Chapter 5. Program Development and Performance Monitoring on the
Mensoon Dataflow Multiprocessor

11. Arvind, R. S. Nikhil and K. K. Pingali, Id Nouveau Reference Manual,
Part II: Semantics, Technical Report, Computation Structures Group, MIT
Laboratory for Computer Science, 545 Technology Square, Cambridge, MA
02139, April 1987.

12. Arvind, K. Ekanadham and D. E. Culler, The Price of Asynchronous Paral-
lelism: An Analysis of Dataflow Architectures, in CONPAR 88, Manchester,
England, 1988.

13. K. Ekanadham, Arvind and D. E, Culler, The Price of Parallelism, in Fif-
teenth Annual International Symposium on Computer Architecture, Hon-
olulu, Hawaii, May 30-June 2 1988,

14. K. R. Traub, A Compiler for the MIT Tagged-Token Dataflow Architecture,
Technical Report LCS TR-370, MIT Laboratory for Computer Science, 545
Technology Square, Cambridge, MA 02139, August 1986.

15, Arvind and K. Ekanadham, Future Scientific Programming on Paralle] Ma-
chines, in Proceedings of the International Conference on Supercomputing,
Athens, Greece, June 1987.

16. W. P. Crowley, C. P. Hendrickson and T. E. Rudy, The SIMPLE Code,
Technical Report UCID 17715, Lawrence Livermore Laboratory, February
1978.

17. Arvind, D. E. Culler and G. K. Maa, Programming for Parallelism, in
Computer, 20(5), May 1987.

