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Preface

In the 1988 High-Speed Computer Conference at Gleneden, Oregon, the Salishan Conference,
programs for four applications were studied in a variety of parallel languages. Based on this, a
book is being assembled, with each chapter showing the solutions in a different programming
language. Each chapter is written by an expert in that language. The book is to be published
by North Holland.

This CSG memo contains the Id chapter for the book. The four problem statements are
given in the appendix.
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1 Introduction

Id is a parallel programming language developed in the Computation Structures
Group at MIT’s Laboratory for Computer Science.! In developing Id, we have three
major goals.

High level: at least as expressive as modern functional languages and Lisp. Parallelism
in Id is implicit— the user does not have to manage partitioning, scheduling and
synchronization.

General purpose: suitable for both “scientific® and “symbolic” computation. Id has
efficient arrays and floating-point operations, as well as recursive data structures (e.g.,
lists) in an automatically managed heap.

High performance: Qur aim is for an Id program compiled for a dataflow machine
to achieve at least as much absolute performance as its FORTRAN counterpart on a
von Neumann machine built with comparable technology.?

Id is a layered language [1, 2], with layer 0 representing the cleanest semantics and
layer 2 representing the most expressive power. Layer 0 is purely functional, and
is similar to other modern functional languages like Miranda and Haskell, i.e., it
has higher-order functions, non-strict semantics, polymorphic types with static type-
checking by inference, algebraic types with pattern-matching, list comprehensions,
and user-defined abstract data types. Id’s “array comprehensions” are fairly unique,

Layer 1 adds “I-structures” to layer 0. These permit a limited form of assignment.
One can allocate data structures with empty slots, assign values to these slots, and
read values from these slots. A slot can be assigned a value no more than once.
Reading a value from a slot is automatically blocked unti] it has been assigned a
value. This addition sacrifices the referential transparency of layer 0, but retains

1A first version of Id appeared in 1978. Since 1985, it underwent a series of revisions during
which it was variously called Id/83s, 1d86, Id Novean, etc., finally reverting to just “Id” again.

2However, Id is in no way specific to dataflow machines.



determinacy, since the value read from a slot does not depend on the time that the
program attempts to read it. The loss of referential transparency implies a certain
loss in the ability to transform programs (e.g., for proving correctness, for program
optimization, efc.); however, the benefits are:

® Certain programs that involve excessive copying when written functionally can

now be written more efficiently.
¢ Certain programs that must be written recursively when written functionally can

now be written using loops, i.e., tail-recursively.

Most of the programs in this chapter do not use Lstructures explicitly (a small use
is made in the Doctor’s office section). However, the Id compiler uses I-structures
extensively to implement all data structures, including those from layer 0.

Layers 0 and 1 are purely determinate, i.e., answers depend only on inputs. Layer 2
introduces non-determinism by adding “Managers” to layer 1, for those applications
that need it, such as shared-resource problems and operating systems. An example
will be seen in the Doctor’s office section.

It is possible to instruct the Id compiler to only accept programs restricted to layer
0 or layer 1, since each layer involves new syntactic constructs.

1.1 A brief introduction to the language

Id programs are built up from ezpressions. In addition to standard infix operators
Lke “+”, Id uses juxtaposition to indicate function application:

e ... e,
Functions are defined using des:

def clip top y = if (y > top) then top else y ;

Functions are curried, and application associates to the left, so that the expression:
elip 6

denotes a function of one argument that clips its argument to 5.

Data structures in Id are defined using algebraic types. However, some data structures
are 50 useful that they are pre-defined with special notation. An n-tuple may be
constructed by listing n expressions separated by commas. Here is a 2-tuple:

(."'b) » (ﬂ."b)

A list is either empty (¥i1}, or constructed using the infix “cons” operator (e1:e2).
Destructuring of lists (testing for emptiness, acessing the head and tail) is usually
done using pattern-matching— function on lists are defined in several clauses:

2



def length Nil =0 % Jor emply lists

| length (x:xs) = 1 + length xs ; % for non-empty lists
The clauses must have disjoint patterns. The second clause binds x and xs to the
head and tail, respectively, of the non-empty argument list.

A Jocal séope may be created using a block. Blocks may be nested, with standard
lexical scoping. The bindings in a block can include function definitions:
% integrate function f(=) froma to b
def integrate £ a b = { delta = 0.0001 ;
def iter x a = if x > b then
2
else
iter (x + delta) (s + f x) :
In
delta * (iter a 0) } ;

The block contains one ordinary binding and one function binding. The value returned
by the block (and the integrate function) is the value of the expression following the In
keyword. Note that integrate is higher-order— its first argument is itself a function.

Although recursion subsumes iteration, Id also has while-and for-loop constructs.

Like other functional languages, Id also has #ist comprehensions. The following ex-
pression creates all pairs (z,y) such that y < z and 2% + y? < 25 (all pixels in first
octant within radius 5):

{: ) Il 2 <~ 0 to b &y <-0 tox vhen x*x + yay <= 25 }
Terms like “x <- 0 to 5” are called generators and terms like “when ...” are called

fillers. Generators and filters are scoped from left to right, i.e., they can use identifiers
bound in generators to their left.

Id also has arrays, which are constructed using array comprehensions. This expression
denotes an identity matrix of size n X n:

{matrix (1,n),(1,n)

I [Ti,j3 =0 |1 4 <- 2 ton & J <=1 to (i-1) % below diagonal
| £i,i =1 j| i <~ 1 to n % diagonal
' il =01l j<-2ton& i < 1 to (j-1) } % above diagonal

In general, arrays can have arbitrary lower and upper bounds, and they can be queried
at run time using the bounds function. The array contents in the example are specified
in three regions— below, on and above the diagonal, respectively. The specifications
must be disjoint— a run time error will catch multiple definitions. The generator
syntax is identical to that in list comprehensions.

For efficiency reasons, we distinguish vectors, matrices, 3-dimensional arrays, elc. on
the basis of type.



1.2 Non-strict, but not lazy

Lazy and eager evaluation are not synonymous with strict and non-strict semantics,
respectively (even though this confusion is widespread in the literature). The for-
mer terms are concerned with operational semantics (what interpreters do), while
the latier terms are concerned with denotational semantics (declarative meanings of
programs). Non-strictness may be achieved by both lazy as well as eager (parallel)
evaluators.

When a lazy evaluator encounters an application f(arg), no computational resources
are devoted to arg. Instead, arg is packaged into a closure and passed to . If £ ever
requires the value of arg, the evaluator then devotes all its computational resources
toit, t.e., it invokes the closure.

On the other hand, Id achieves non-strictness with a parallel, eager evaluator. Com-
putational resources are shared amongst £ and arg, t.c., £ is invoked in parallel with
arg, passing only a place-holder for arg to 1. If £ ever requires the value of arg, it blocks
on the place-holder. If ¢ ignores its argument, it simply discards the place-holder.
Eager evaluation is thus speculative.

However, not all computation in Id is speculative. In particular, the arms of condi-
tionals (more-generally, case expressions) are not evaluated speculatively, After the
predicate has determined which arm is required, only that arm is evaluated. This is
how we control recursion, and our experience has been that with this control, in al-
most all cases, the potential waste of resources due to speculative argument evaluation
is not a problem. '

The advantages of Id’s eager evaluation are that (a) we avoid the overhead of building
a closure for arg and later invoking it, and (b) the computation of arg is begun before
it is really demanded, thus increasing the parallelism and shortening the critical path,
Consider the following Id expression representing an array of the first 20 Fibonacci
numbers:
{ 1ibs = {array (1,20)

| Li] = 1 13 <1402

| il = £ibs[i-1]+£ibs[i-2] || i < 3 to 20}
In

fibs }

Such a recursive array definition js only possible in non-strict languages like Id,
Haskell, and Miranda, and is not possible in strict languages like Lisp and ML. How-



The disadvantage of eager evaluation is that if a value is never demanded, the re-
sources allocated to compute it are wasted. The extreme case of this occurs when the
value represents an infinite structure. We handle these cases by special annotations
that request lazy evaluation, These will be described in our solution to the Hamming
problem.

An approach currenly being investigated by various researchers is to start with lazy
evaluation as the default, and to use strictness analysis to predict where it is safe
to evaluate things eagerly. However, it is too early to judge its effectiveness on large
programs with data structures and higher-order functions. Further, it will have no
effect on our fibe program above, which requires non-strictness. It appears that in
lazy languages, it will be necessary to have annotations to suggest “eager” evaluation.

We note in passing that the Haskell language definition only requires non-strict
semantics— it takes no position on lazy or eager evaluation. This is appropriate,
for it leaves implementors with some latitude for experimentation.

1.3 Implementations of 1d

Our efforts have concentrated on compilation of Id for dataflow machines which, to
date, have been emulated in software. A complete programming environment for Id,
called “Id World”, is available under license from MIT for a small fee. It contains a
compiler that translates Id programs into the machine code for the MIT Tagged-Token
Dataflow Architecture (TTDA). In addition, Id World contains GITA, an emulator for
the TTDA. Extensive instrumentation in GITA permits the experimenter to collect
and plot various statistics such as parallelism profiles, instruction counts, instruction
mixes, resource usage profiles, efc.

We are currently building a real dataflow machine called Monsoon. An early single-
processor prototype of Monsoon has been running compiled Id since October 1988. In
collaboration with Motorola, we are building new, multi-processor Monsoon machines
which are expected to be available in the summer of 1989. We aim to retain the
current 1d World interface for Monsoon, so that programs can be developed today for
Monsoon.

We have recently begun to study compilation of Id for other sequential and parallel
machines as well, which will increase its availability and value to other researchers.



1.4 Owur test runs: parallelism profiles, instruction counts
and critical path lengths

All the Id programs in this chapter were run on GITA, and we present their paral-
lelism profiles, instruction counts, and critical path lengths. The emulator was run
in “idealized” mode, i.e., with the following assumptions:

¢ All instructions take one time unit to execute.

¢ Each instruction executes as soon as jts input data are ready (i.e., immediately
after all its predecessor instructions in the dataflow graph have executed).

¢ It takes zero time to communicate data, from an instruction to its successor in the

dataflow graph.

The parallelism profile is a plot of the number of instructions executed at each time
step. The total instruction count, therefore, is the area under the curve. The eritical
path length is that time step after which no more instructions execute.

While this “idealized” mode is admittedly unrealistic, it is very useful in showing
what is the maximum parallelism available under some algorithm. As some of the
problems in this chapter demonstrate, the parallelism of some algorithms is not at all
obvious.

2 Hamming’s problem, extended

Our program is shown in Figure 1, with hamming ext as the top-level function.

In order to explain the solution, we begin with a solution for the original (simpler)
Hamming problem, where the primes are limited to 2,3 and 5. It is a direct imple-
mentation of the observation that if 4 is in the result hs, then 2k, 3k and 5k are also
in hs:

def hamming n =

{ hs = 1 : merge 2 (mapmult 2 ha)
(merge_2 (mapmult 3 hs)
(mapmult 5 hs)) ;

In
untiln n hs } ;

Here, bs is a stream, i.e., a potentially infinite list. Maprult takes an integer p and
a stream z;, z,,... and produces the stream pzy, px,,.... Merge_2, takes two streams
in ascending order and merges them into a new stream in ascending order, removing
duplicates. untiin produces the prefix of a stream containing just those numbers
that are < n. These functions are shown in Figure 1

6



def hamming ext primes n =
{ Qe £ xs p={ h=merge2 (mapmult p (1:h)) xs
In

h};
hs = 1: 20ldl list £ Nil primes ;
In
untiln n hs } ;
def mapmult p Nil il

| mapmult p (x:xs) = (p*x):#(mapmult p xs);

def merge 2 Nil Kil = Nil
| merge 2 (x:xs) Nil = (x:x8)
| merge 2 Nil (y:ys) = (y:ys)
|

n u

merge_2 (x:xs) (y:ys) = if (x < y) then

x :# merge 2 xs (y:ys)
else if (x > y) then

y :# merge 2 (x:xs) ys
olze

x :# merge. 2 xs ys ;

Nil
if (x <= n) then
x:(untiln n xs)
else
Nil ;

def untiln n ¥il
| untiln n (x:xs)

Figure 1: Id program for the extended Hamming problem.




In each of these functions, we are dealing with potentially infinite lists. Thus, we
use the “lazy-tail” kist-constructor “:#” to override Id’s default eager evaluation. It
is also possible to delay the head, or both the head and the tail, by using the con-
structors “#:” and “#:#”, respectively. The annotations are only in the constructor—
component selection is identical for delayed and non-delayed components.

The above program is inefficient because the three streams that are merged together
contain several duplicates (e.g., 2*3, 3*2) that are then removed during the merge.
Here is a new solution that avoids building duplicates in the first place:

def hamming n =
{hs = 1: { 851 = mapmult 2 (1:81) ;
82 = merge 2 (mapmuls 3 (1:s82)) =1 ;
83 = merge 2 (mapmult 5 (1:s3)) 52 ;
In
83 } ;
In

untiln n hs } ;

Here, 1 contains all the powers of 2, 82 merges in all products with all powers of 3,
and so on.

Finally, we can generalize our last solution so that, instead of working with just the
primes 2, 3, and 5, it works with a list of primes. This is shown in the function
haming_ext in Figure 1. The function fold1l 1ist performs the nested merge of our
previous solution, i.e.,

It is available as a library function in Id, but it can also be defined as:

def foldl list £ =2 Nil =z
' foldl list f z (x:xs) = foldl list £ (£ z x) xs3 ;

2.1 A test run

We ran the following program on GITA, our dataflow emulator:
hamming ext (3:5:7:11:13:17:19:23:¥i1) 5000
with the following output:

(L3579 1113 15 17 19 21 23 25 27 33 3§ 39 45 49 E1 55 57 83 65 69
75 77 81 85 91 95 99 10F 116 117 116 121 126 133 135 143 147 163 161
166 169 171 176 187 189 195 207 209 221 225 231 223 245 247 2853 255



273 276 285 289 297 209 316 323 326 343 345 361 35T 361 363 375 385
391 399 405 426 429 437 441 455 469 475 483 495 507 513 525 520 539
B61 E67 576 BBE6 659b 805 621 625 627 637 663 666 675 603 Ti6 720 73L
741 TB9 T65 80E 819 825 B33 845 847 865 B6T B7F 891 897 931 935 946
969 976 1001 1029 1035 1045 1063 1071 1083 10890 1105 1125 1127 1456
1173 1183 1197 1215 1225 1236 1266 1275 1287 1309 1311 1323 1331 1385
1375 1377 1426 1445 1449 1463 1485 1455 1521 1539 1547 1573 1575 1587
1615 1617 1626 1683 1701 1716 1726 1729 1765 1771 1785 1805 1815 1869
1863 1876 1881 1911 1026 1956 1089 199F 2023 2026 2057 2079 2083 2125
2145 2186 2187 2197 2205 2223 2281 2276 2277 2206 2200 2375 2401 241§
2431 2457 2476 2490 2627 2535 2541 2666 2601 2625 2845 2873 2601 269E
2717 2737 2783 2793 2806 2836 2873 2876 2907 2025 2075 3003 3026 3059
3087 3105 3126 3136 3159 3179 3186 3211 3213 3249 3287 3289 3315 3325
3376 3381 3465 3519 3549 3553 3576 36591 3645 36765 3703 3706 3757 3773
3796 3826 3861 3887 3027 3933 3969 3071 3993 4025 4005 4126 4131 4186
4199 4225 4235 4275 4301 4335 4347 4376 4389 4455 4450 4485 4563 4617
4641 4665 4675 4693 4710 4726 4761 4807 4845 4851 4875 4013)

which is not in Id syntax because GITA, written in Lisp, simply prints out the Lisp
value of the result. The parallelism profile generated is shown in Figure 2.
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Crit. path length: 9,384
Total operations : 116,739
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Figure 2: Parallelism profile for (hamming ext (3:5:.., :19:23:Nil) 5000)

3 The paraffins problem

Turner’s original solution [9] was written in the language KRC. It can be transcribed
practically verbatim into Id, since the functional core of Id is similar to KRC (in-
cluding list comprehensions), and Id shares the same non-strict semantics as KRC.
However, that solution is quite inefficient, because it generates many duplicates only
to be filtered out later. In [3], we showed an efficient program that avoids gener-
ating duplicates in the first place, using the canonical tree-enumeration techniques



described in [4] (and discovered independently by S.K. Heller, our co-author in [3)).
That solution is repeated here, and is shown in two parts: Figure 3 shows the code for
the sub-problem of generating radicals, and Figure 4 shows the generation of paraf-
fins, with top-level function paratfins_until. For more details, including a discussion
of the development of the solution, please see [3].

type radical = H | C radical radical radical ;

def 3 partitions m =

{: (i,j,k) Il i <- 0 to flcor {m/3)
& j <~ i to floor ((m-i)/2)
Ek = m-@G+3)};;
def remainders Nil Nil

[/}

| remainders (r:xs) = (r:rs) : (remainders xas) ;
def zadical generator n =
~ { radicals = {array (0,n)
i [0] = H:nil
! [3] = rads_of_size n radicals JITj < 1ton)

In
radicals} ;

def rads.of _sizen radicals n =
{: ¢rixjak (| (i,5,%) <- 3_partitions (n-1)
& ri:ris <- remainders (radicals [il1)

& rj:rjs <- remainders (it (i == j) then ri:ris
else radicals[j])
& rk <= if (j == k) then rj:rjs

else radicals[k} } ;

Figure 3: Id program for the generating radicals for the paraffins problem.

3.1 Radicals

A radical is a paraffin with a single hydrogen atom removed, i.e., a molecule with
formula C;H,;,,. The structure of such molecules can be recursively described as
either

¢ a Hydrogen atom, or
® a Carbon atom attached to three other radicals

This is expressed in radical type-declaration in Figure 3. It consists of two disjuncts
with constructors 7 and c, respectively. In the latter case, there are four components,
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each of which is itself of type radical.

By way of illustration, here are some more examples of algebraic type declarations.
The type of booleans can be declared:

type bool = False | True ;

The type of binary trees with integers in the nodes can be declared:

type tree = Leaf | Node int tree tree ;

And, the type of lists can be declared:
type (list *0) = Hil | Cons »0 (list *0) ;

The list type is polymorphic because it is parameterized by a type variable %0, so
that we can have lists of integers, lists of booleans, lists of lists of integer-to-integer
functions, etc.

3.2 Generating radicals

Suppose we wish to generate all radicals of size n. For n > 0, the radical will have one
carbon as its “root” carbon, and three sub-radicals of collective size n — 1. Thus, we
need to partition n — 1 into three sizes in order to generate the sub-radicals. However,
if we use all possible 3-partitions of n — 1, we will generate many duplicate radicals
because the partition (7, 7,k) is equivalent to (3,%,7), (7,¢,k), and so on. We can
avoid this by insisting that ¢ < j < k. The function 3 partitions is a function to
generate a list of all three partitions of m (= n — 1) in this canonical order.

The generation of radicals of size n can defined recursively. When n = 0, there is only
one such radical— a lone hydrogen atom. When n > 0, we construct all canonical
3-partitions (%,7,k) of n — 1; for each such partition, we generate, recursively, all
radicals ri of size i, all radicals rj of size ; and all radicals rx of size k, and constuct
the new radical (¢ ri rj rk). Here is the function:
def rads_of sizen n =
if {n == 0) then
H:¥il
elze
{: Crirjaxk || (i,j.k) <- S_partitions (n-1i)
& ri <- rads of sizen i
& rj <- rads.of sizen j when (le? ri rj)
& rk <- rads_of_size n k when (le? rj zk) } ;

where le? is some function that checks that its two radical arguments are in canonical
order. The first vhen clause takes care of the following sitnation: when ¢ = 7, since ri
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and xj range over all possible pairs of radicals of size 1, they may not be in canonical
order— the shen clause filters out these pairs. Similarly, the second vhen clause filters
out duplicates when j = k.

We can avoid this generation-of-duplicates-and-filtering as follows. For each i, let ri
Tange Over iy, riz,.... Then, when ¢ = j and, when ri is, say, riy4, we make r2 range
OVer riy, rig,.... Thus, for each element of the list, we would like to have access not
only to that element, but also to the remainder of that list.

In particular, we need a function that, given ri;, ri, 713, ..., produces the list of lists:

(1‘1:1, T‘iz, 7'1:3, 1‘1:4, '."2'5, .. .), (T‘ig, Tig, T3:4,1‘i5, . .), (7'!:3,1‘1:4, 7‘3:5, ‘e .), “re

The function that performs this is called remainders (Figure 3).

Now, we can improve our rads_of_size.n function:

def rads of sizen n =
{: ¢xirjxrx Il (i,j,k) <~ 3 _partitions (n-1)
& ri:ris <- remainders (rads of_sizen i)
& rj:rjs <- remainders (if (i == j) then ri:ris
else rads of.sizen j)
&t rk <- if (j == k) then rj:rjs
else rads.of sizen k } ;

However, there is still a major inefficiency in this function. It has the classical Fi-
bonacci recursion, because to compute radicals of, say, size 3, we compute radicals of
size 0, 1, and 2, but to compute radicals of size 2, we compute radicals of size ¢ and
1, and so on. In other words, we recompute radicals of each size too often.

We use a standard trick— use an array to cache, at index n, the list of radicals of
size n, and just look up this array each time we need radicals of size n. In F igure
3, radical generator is the function that constructs this array, using rads_of_size.n to
compute each component. And, rads_of_size.n itself uses this array to find radicals of
size < n.

3.3 Paraffins from radicals

Or, Molotov cocktails?

Please refer to Figure 4.

In order to define a canonical form for paraffins, we observe that every paraffin of size
n has either

12



type paraffin = BCP radical radical | CCP radical radical radical radical ;
def BCP.generator radicals n =
if (odd? n) then
Fil
else
{: BCP r1 r2 || ri:ris <- remainders (radicals[floor (n/2)])
& r2 <- ri:ris } ;

def 4 partitions m =
{: (i,3,%x,1) |

| <= 0 to floor (m/4)

k j <~ i to £flooxr {({(m-i)/3)

&k < (max j (ceiling (m/2-i-j)))
to (floor ({m-i-j)/2))

1= m- (i+j+k) } ;

o R

det CCP_generator radicals n =
{: €CP ri xj rk 21 |l (i,j.k,1) <- 4.partitions (n-1)

& ri:ris <- remainders (radicals[i])

& rj:rjs <- remainders (if i==j then ri:ris
else radicals[j])

& rk:rks <- remainders (if j==k then rj:rjs
else radicals[k])

& rl <- if (k==1) then rk:rks

else radicals[l] } ;

def paraffins_umtil n =
{ radicals = radical generator (floor (n/2)) ;

In
{array (1,n)
| [j] = (BCP_generator radicals j},
(CCP_generator radicals j) || j <- 1 te n}} ;

Figure 4: 1d program for the paraffins problem.
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® a unique bond center, i.e., a bond with 7-sized radicals on its two sides, or
® a unique carbon center, i.e., a carbon attached to 4 radicals, each of size < 3

This is expressed in the paratfin type-declaration in Figure 4. We can then define
our canonical representation as either (BcP r1 r2) where 1 < 72, 0r (CCP ri r2 r3 r4)
where r1 < r2 < r3 < ra.

Bond-centered paraffins can be enumerated using the function BCP.generator, whose
first argument should be the array of radicals defined in the previous section, i.e.,
from the list of radicals of size %> we draw all pairs r1 and r2 such that =2 does not
precede r1 in the list.

To enumerate carbon-centered paraffins in canonical order, we follow a strategy sim-
ilar to the one used to produce radicals. For a paraffin of size n, one carbon is the
center, so we find all canonical 4-partitions (4,7, k1) of n — 1, representing the sizes
of the four attached radicals (i.e., i < j < k < l). For each of these 4-partitions, we
take all the radicals ri, rj, rk and r1 of sizes i, J, k, and [, respectively. We use the
same “remainders” trick to take care of avoiding duplicates when § — J» 7 =k and
k = l. Using these radicals, we form the paraffins (CCP r1 r2 r3 r4).

Finally, our top-level function parafins_until takes a numeric argument n and gen-
erates an array of size n such that the n’th index contains a pair of lists— a list of
all bond-centered paraffins of size n and a list of all carbon-centered paraffins of size
n. Each list is in canonical order. It would be easy to flatten this into a single list, if
desired.

3.4 A test run

The parallelism profile for (paraffinsumtil 15) is shown in Figure 5. The number of
paraflins containing n carbons, for n = 1,2,---,15are 1, 1,1, 2, 3,3,9, 18, 35, 75,
159, 355, 802, 1858 and 4347, respectively. The parallelism of this program is not at
all obvious from the algorithm.

4 A doctor’s office

It is not clear which of the following programs is requested in the problem statement.

® A determinate simulation in which the non-determinism of the real world is mod.
elled by an oracle that is a parameter to the program; or
* A program that is itself non-deterministic,
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Figure 5: Parallelism profile for (paraffins until 15)

If the intent is really to simulate a doctor’s office, then the former program makes
more sense, because it is repeatable and we can control the choices made by the oracle.
However, if the intent is to see how non-determinism is handled by the programming
language (for example to evaluate its suitability for operating systems code), then the

latter program makes more sense. Accordingly, we have developed solutions for both
interpretations.

We begin by discussing how (pseudo-)random numbers may be generated and used
in Id.

4.1 Random numbers

Here is a function for the linear congruence method of generating random numbers?®.
Given a seed 1, it returns a random number r in the range 0 to 1 and a new seed x’.

def rand fn X = {n = 26173 ; ¢ = 13849 ; m = 6BE36 ;
r=X/(m-1);
X’ = mod (a*X + ¢) m ;
In
r,x* };

Streams of random numbers: We can use this function, for example, to produce a
stream of random numbers, given an initial seed xo:

def mk random_stream X0 = { def mk.rs X = { r,X? = randfn X
In

r:# mkrs X'} ;
In

mk_rs X0 } ;

3See [5] for an extensive discussion.
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Here, we have used the “lazy-tail” list constructor “:a” to delay the construction
of the tail of the stream, since we are likely to use only a small prefix. For more
efficiency, it is possible to mix regular and lazy list constructors so that, for example,
the stream is delayed at every 100’th element.

Picking a random element of a list: Given a random number r in the range 0 to 1,
we can use the following function to pick a random member of a list. Pick_random not
only returns the random element, but also the other members of the list:

def pick_random r x» =

{n = round (r * (length x5 -~ 1)) :
def separate j (x:xs) = if (j == n) then

X,xs
elze
{ x’.,x8’ = separate (j+1) xs
In
x’,{x:xa’) }

In
Separate 0 xs } ;
Picking a random event: Suppose we want to choose one of three possible events with
probabilities 1%, 54% and 45% respectively. Here is a function we can use:
def choose.event r = if (r <= 0.01) then 0

else if (r <= 0.56) then 1
else 2 ;

where, again, r is 2 random number in the range 0 to 1.

4.2 A determinate simulator for the doctor’s office

Our determinate solution is shown in Figure 6.
The state of the system at any time can be modelled by seven items:

wellps, a collection of well patients.

vaitps, a queune of sick patients waiting for doctors.

waitds, a quene of doctors waiting for sick patients.

consults, a collection of patient-doctor pairs (in consultation).

Three “histories™: hist1, a list of patients as they fall sick, hist2, a list of patient-
doctor pairs as they go into consultation, and hist3, a list of patients as they get
cured.

There are only two kinds of events that drive the system:
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def sick event r (wellps, consults, waitps, waitds, histi, hiast2, hist3) =
if (wellps == Nil) then

(wellps, consults, waitps, waitds, hist1, hist2, hist3)
else

{ (p,vwellps’) = pick.random r wellps
In
if (waitds == Nil) then

(wellps’, consults, (waitps ++ p:Nil), waitds, p:hist1, hist2, hist3)
else
{ (d:waitds’) = waitds
In
(wellps’, (p,d):consults, waitps, waitds’,
p:histl, (p,d):hist2, hist3)}} ;

def cure_event r (wellps, consults, waitps, waitds, hist1i, hist2, hist3) =
if (consults == Nil) then

(wellps, consults, waitps, waitds, histi, hist2, hist3)
alse

{ (p.d),consults’ = pick_random r consults
In

it (waitps == Nii) then

(p:wellps, consults’, waitps, waitds ++ d:¥il, hist1, hist2, p:hist3)
else

{ (p’:waitps*) = waitps

In
(p:wellps, (p’,d):consults, waitps’, waitds,
histt, (p’,d):hist2, p:hist3) }} ;

dei process randoms (wellps, consults, waitps, waitds, histl, hist2, hist3) =
{ ri:r2:randoms’ = randoms ;

e = choose_svent ri
In

{caze & of

0 = reverse histl, reverse hist2, reverse hist3
| 1 = process randoms’

(sick_event x2

{wellps, consults, waitps, waitds,

hist1, hiast2, hist3))
| 2 = process rxandoms’

(cure_event r2
(wellps, consults, waitps, waitds,
hist1, hist2, hist3)) } };

def simulate randoms patients doctors =
Process randoms

(patients, Nil, Nil, doctors, Nil, ¥il, Nil)

Figure 6: Determinate program for the doctor’s office problem,
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® A sick_event: Some well patient p falls sick. Of course, this can only happen if
wellps is non-empty.
Effects: We use z, a random number in the range 0 to 1 to choose which patient
falls sick. If a doctor d is available (vaitds is non-empty), p and 4 go into
consultation (consulss); otherwise, p joins the queue waitps.

We record that p fell sick in hist1. If a consultation (p,q) began, we record it
in hist2,

* A cure.event: Some consultation terminates (doctor a cures patient p). Of
course, this can only happen if consuits js non-empty.

Effects: We use r, a random number in the range 0 to 1 to choose which patient-
doctor consultation terminates. The Patient p rejoins the well patients (welips).
If there is a waiting patient p’ in waitps, the doctor ¢ goes into consultation
with p’; otherwise, the doctor rejoins the queue waitds.

We record that p was cured in hists. If o consultation (p’,d) began, we record
it in nist2.

These state transitions are encoded in the functions sick event and cure_event (all
the state components are modelled as lists). Each function takes a random number
and a state and produces a new state, The sick-patients and free-doctors queues
are represented as lists, where the first element of the list represents the head of the
queue. Thus, enqueuing is performed using “++”, the built-in infix list-appending
operator. It should be observed that the histories are constructed in reverse order,
We shall reverse them at the end of the simulation.

Simlate is the top-level driver. It takes a stream of random numbers (in the range
0 to 1), the initial list of patients and the initial list of doctors, and calls Process,
passing in emptiy lists for consults, vaitps, hist1, hist2 and hist3.

The function process chooses an action randomly: stop, a sick-event, or a cure-event.
In the first case, it reverses the histories and returns them as the final result. In the
latter two cases, it applies the appropriate state-transition function, and recursively
calls process on the new state.

4.2.1 A test run

We ran the following test program:
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def test (patients,doctoxs,seed) =
{ randoms = mk random_stream seed ;
(ps,pda,cs) = simulate randoms patients doctors ;

In
(length ps),(length pds),(length cs),ps,pds,cs } ;
supplying a list of 20 patients (Po" through "p19"), a list of 4 doctors (*po* through
“p3") and an initial random seed. The first three components of test’s resulting 6-
tuple showed that during the simulation, patients fell sick 92 times, doctors were
paired with patients 76 times, and doctors cured patients 72 times.

It is clear from the parallelism profile shown in Figure 7 that the program does not
have much parallelism.

70- Crit. path length: 11,166
60 Total operations : 184,612

I | ] 1 ] I | ] I T
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,00(1,00012,000  steps

Figure 7: Parallelism profile for determinate Doctor program (20 patients, 4 doctors)

4.3 Non-deterministic programming in Id

As mentioned in the introduction, Id is a layered language. The first two layers
(functional, and I-structures) retain determinacy— results depend only on inputs.
However, in operating systems code and other applications, we may require non-
deterministic behavior. The doctor’s office problem may be viewed as an abstraction
of the resource manager problem in operating systems. The doctors may be regarded
as resources that are demanded and held non-deterministically by client processes
(patients).!

To express such computations, Id has another layer called “managers”. Managers
are a relatively recent addition to Id. Although the technical ideas behind managers

*We take this asymmetric view only because of the wording of the problem statement. If doctors
went away for random periods between seeing patients, then we would have symmetry. We would
model “consultations” as the resource that is demanded by two kinds of clients (doctors and patients).
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are quite well understood, the notation is still experimental and is not yet part of
the Id manual. We have a prototype implementation, and a test run of the program
described in the next section was executed on this implementation.

There have been various attempts to introduce non-determinjsm into functional lan-
guages. Perhaps the most common approach is to use a special non-deterministic nerge
operation: given two stream inputs, merge produces an interleaved output, where the
interleaving is non-deterministic. In an actual implementation, the interleaving is
typically done in the temporal order in which elements of the input streams become
available. In order to distribute results from a resource manager to requestors, it
is necessary to: tag the requests in the input-streams with unique stream-identifiers
before merging them non-deterministically; carry these tags along with the resource-
allocation computation so that they identify which result is meant for which requestor,
and split and distribute the output stream according to these tags.

This approach to non-determinism is highly unsatisfactory for severa] reasons. First,
it is very difficult to use when the number of streams to be merged (number of users of
a resource) is not manifest, leading to a “spaghetti” of tagging and plumbing. Second,
it is very difficult to follow a statje type discipline, because all the different kinds of
requests to a resource manager, each with different arguments, must be merged into

A more elegant attempt is described in [6], from where we have inherited the term
“managers”. A manager was specified as a stream-to-stream function, and the tagging
and non-deterministic merge at the entry to the manager was hidden with clever
notation and clever implementation. While eliminating the “plumbing” problem of
explicit non-deterministic merges, the static-type-checking issue still remained,

The Id nanager construct not only solves all these problems, but also lends itself to
very efficient implementation.

Non-determinism and side-effects are closely related— each can be used to simulate
the other. However, managers are an attempt to facilitate disciplined use of side-
effects in the presence of parallelism. The manager construct declares a new, abstract
type, i.e., objects of this new type may only be manipulated by the set of interface
procedures (called handlers) specified in the manager construct. However, unlike
ordinary abstract types, these objects have state that may be updated by the handlers.

We begin with a simple random-number generator manager that uses rand fn, the
linear congruence method from Section 4.1:
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manager rand supplier = Cons_cell float

{
def make rand supplier seed = Cons cell seed ;
def next_rand (Cons_cell seed) = { r, seed’ = rand fn seed ;
new seed = seed’
In
r};
}

The first line is similar to an algebraic type definition. It defines a new type,
rand_supplier, and specifies the constructors for this type— here, just one unary con-
structor Cons_cell. By using the keyword manager instead of type, we indicate (a) that
it is updateable and (b) that the constructor Cons_cell is visible only in the statements
that follow between braces, thus making rand supplier an abstract type with respect
to the rest of the program. The statements in braces consist of two handlers. The first
is a constructor of new rand supplier objects. Given a seed, it creates a new object
containing the seed, and returns the new object as its result. This object is first-class,
i.e., in the rest of the program, it can be an argument or result of a procedure, it can
be stored in data structures, efc. However, because cons_cell is not visible outside the
manager declaration, the object is opague to the rest of the program. To do anything
that requires manipulation of the internal state (reading it or updating it) it has to
be passed to one of the handlers, which are the only procedures that can examine
and update the internal state,

The second handler, when applied to a rand supplier object, applies rand.fn to the old
seed value to produce a random number r and a new seed seed’. The update to the
state is specified by the binding that uses the new keyword. The procedure returns
the value r.

Because a rand_suppliexr object is a first-class object, there may be many references to
it. Thus, there may be many concurrent attempts to apply next_rand to it. Managers
guarantee that such concurrent accesses are serializable, even though the user has not
mentioned any locking or synchronization. The reading-out of the seed, application
of rand #n to it, and storing of the new seed is performed as an atomic action. Thus,
two concurent accessors can never see the same seed.

In general, a manager object can contain multiple components, and each handler may
read and update more than one component. Atomicity is still guaranteed, i.e., an-
other concurrent execution of a handler on the same object cannot read intermediate
states. These properties of a managed object make it easy to establish and maintain
invariants on the state of the object by ensuring that the each state update by a
handler maintains the invariant.

Thus, managers are akin to Hoare’s monitors [7). However, there is an important
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difference that has far-reaching consequences. Within a handler, the new value of
each state component can be specified at most once. This allows handlers to be non-
strict, i.e., the state update (critical section) and the return-value computation can
be decoupled. '

One consequence of this decoupling is increased concurrency. The return-value com-
putation does not have to be in the critical section, so that the critical section may
be released before the return-value is computed. Conversely, the critical section does
not have to be in the critical path of the caller of a handler, so that a result may be
returned to the caller before the critical section is completed.

A second major consequence is that a manager can have complete control over the
scheduling of concurrent accessors {(events, wait’s and signal’s, in monitor terminol-
ogy). To achieve this, we use a feature in Id called “I-structures”. I-structures are
dynamically allocated and, at first, appear to be ordinary updateable cells. For ex-
ample, the function make.ce11 allocates & cell, the procedure put_ce11 stores a value in
the cell, and the procedure get_cell reads a value from the cell. However, I-structure
semantics make them different from updateable cells. In particular, a value may be
put into a cell af most once, and get_cell automatically blocks on an empty cell until
a value has been written there. An error occurs if an attempt is made to put a value
twice into a cell.

We illustrate this device with a manager for a gueue of strings. A small modification
of this example will be used later in our Doctor’s office solution. We wish to use
handlers eng and deq to enqueue and dequeue strings from the queue, respectively.
A fundamental difference from, say, the rand supplier manager is that the quene
manager may have to respond to requests out of order. In particular, if one process
attempts deq on an empty queue, its response must be deferred until another process
performs an enq operation. We call such managers scheduling managers, as opposed
to simple managers like rand_supplier.

The code for the queue manager is shown below.

mAnager queus = Cons.queue (list S) % queued strings
( (list (cell s)) % waiting dequeuers
def make_queue xs = Cons_queus xs Nil ;
def enq (Cons_queue xs cs) x = % x is a string
{case cs of
Fil = { new xs = xs ++ (x:Nil) % Enter x af end of queue
In
Ok }
| (e:e5) = { new cu = cg? ;
call put_cell ¢ x % Send x 1o the dequeueing
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In % process that is blocked on ¢

0k } }

def deq (Cons_quene xs cs) =
{case x5 of

Nil = { ¢ = make_cell _ ; 4 Make a cell to block on
now os = c3 ++ (o:Nil) % Enter it at end of dequeuers
In
getcell ¢ } % Block, trying to read the ceil
| (x:x8') = { new xs = xs’ ;
In
x}}

}

In the first line, we indicate that the internal representation of a queue object is
built with the Cons_queue constructor, and contains two components— a list of strings
(“s” is the type for strings) and a list of cells that can contain strings (cells are typed
objects). The first list represents the strings that are currently enqueued. The second
list represents the cells on which dequeuing processes are waiting. Note that both lists
will never simultaneously be non-empty, i.e., either there can be strings enqueued or
there can be waiting processes, but not both.

The constructor make_queue takes an initial list of strings xs, builds a queue object
containing these strings and an empty list of waiting cells, and returns this object.

The enq handler checks if there are any waiting processes (cells cs). If not, it attaches
the given string x at the end of the list of enqueued strings (using the built-in list-
concatenation operator “++”). If there is a waiting process (blocked on cell <), it puts
the string x into the cell (thereby unblocking the waiting process and giving it the
string), and updates the list of cells to be the rest of the cells cs*. In either case, the
constant Ok is returned as a result to the enqueueing process. The keyword call is
used to indjcate that the expression following it is executed purely for its side-effect
(in this case, the call to put_ce11).

The deq handler checks if there are any enqueued strings xs. If not, it allocates an
empty cell ¢, appends it to the list of waiting cells, and blocks trying to read the cell e.
Because of the non-strict evaluation mechanism, the blocking takes place outside the
critical section, i.e., the state update can take place and the object is then available
for other concurrent processes, one of which will Presumably unblock this process by
writing a value into ¢. Note that we use “_” as a “don’t care” argument to make_cell.

If there is an enqueued string x available to a deq request, it is returned as a result,
and it updates the state to contain the remaining enqueued strings xs’.

Thus, the semantics of managers are such that it allows us to choose the order in
which it responds to requests. This is in contrast to the implicit scheduling imposed
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by the wait and signal constructs in Hoare’s monitors.

4.4 A non-deterministic simulator for the doctor’s office

From the queue example, it is but a small step to the non-deterministic doctor’s office
simulator. The code is shown in Figure 8. The top-level function is simulate, which
takes a random-number supply (an object as discussed above), a list of patients, a list
of doctors, and a number max_iter which determines the duration of the simulation.
It creates a doctor’s office initialized with all doctors free (to be described below).
The tor p-loop, being a parallel loop, simulates all patients simultaneously.

The for j-loop simulates the life of each patient. Until the end of the simulation®,
patient p repeatedly behaves like this. He is healthy for a random duration (using the
procedure delay) and then falls sick, at which point he asks the office for a doctor,
When he gets a doctor, he consults with him for a random duration (second delay)
and is then cured. He then returns the doctor to the office and repeats the cycle.

The THEN separator is used to force a sequencing where otherwise things would have
been done in parallel. When all the loops have terminated (ensured by the last TaEx),
we extract and return the histories maintained in the office.

The manager definition for the doctors’ oftice is shown next in Figure 8. Like the
queus manager, it also maintains two queues: a queue of free doctors and a queue of
waiting sick patients; in addition, it maintains the three history lists (patients falling
sick, patients-and-doctors going into consultation and patients cured). We model a
doctor by a string (the doctor’s name). A waiting patient is modeled by a string (the
patient’s name) and a cell that represents the place where a doctor should be put
when one becomes available.

The constructor maxe_office simply creates a new office ob ject with the free-doctors
component initialized to the given list of doctors, and all other components empty.

The handler get_doctor checks if there is any free doctor a. If so, he is removed from
the free list ds; p and 4 are entered in history n2, and a is returned to the requestor. If
there is no free doctor, then the response is deferred using a cell ¢ which is appended
with p into the list of waiting sick patients. In either case, p is entered in history ni.

The handler put doctor checks if there is any waiting sick patient p». If 50, p' is taken
off the waiting lst, the released doctor is immediately sent to P’ via the associated
cell ¢, and p’,d is entered in nz. If there are no waiting patients, the doctor is returned

5We have modeled the duration of the simulation as a fixed number of iterations, since the
problem statement does not specify anything. Another possibility would be to consult a real-time
clock (which would, of course, be implemented as a manager object.)
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def simulate rand supply patients doctors max_iter =
{ office = make office doctors ;
{tor p <~ patients do % For each patient,
{for j <~ 1 to max_iter do
delay (next.rand rand supply) ; % Be healthy for random time

THER d = get_doctor office p ;

THEN delay (next_rand rand supply) ; % Consult for random time
THEN call put_doctor office p d

THEN }} ;
THEN
In
histories office } ;
manager office = Make office (liat §) % waiting doctors
(list (S,cell 5)) % waiting patients

(list 5) (list (S,5)) (list S) % Hhistories
def make office doctors = Make_office doctors Nil ¥il Ril ¥il ¥ii

def get_doctor (ds,sps,hi,h2,h3) P =

{case ds of
(d:ds?) = { new ds = ds’ ; % Doctor 4 available
new h2 = (p,d):h2 ; new hi = p:hi
In
a}
| Nil = { ¢ = makecell _ ; % No doctor available

new sps = aps ++ (p,c):Nil ;
new hi = p:hi

In
get_cell ¢ }} ;

def put_doctor (ds,sps,hi,h2,h3) pd=
{case sps of

((p?,c):sps*} = { new sps = sps’ ; % Patient p' waiting
call put _cell ¢ d ; % Send doctor to him
new h2 = (p?,d):h2 ; new h3 = p:h3

In
0k }
| mil = { new ds = ds ++ d:§il ; % No patient waiting
new h3 = p:h3
In
Ok }} ;

def histories (ds,sps,hi,h2, h3) = (reverse hi), (reverss h2), (roverse h3)

} s ;

Figure 8: Non-deterministic program for the doctor’s office problem.
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to the free doctors list. In either case, the cured patient p is entered in history ns,
and an acknowledgment (0x) is returned to him.

Finally, the handler histories returns the three histories, first reversing them because
they were collected in the reverse order.

4.4.1 A test run

The code we ran was a small variation on the code shown in Figure 8 because our
experimental implementation is based on an older notation. The parallelism profile

is shown in Figure 9.

50_
Crit. path length: 3,985
40 ] Total operations : 52,140
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Figure 9: Parallelism profile for non-determinate Doctor program (20 patients, 4
doctors)

5 Skyline matrix solver

5.1 Crout’s method for LU decomposition

To solve the system of linear equations Ax = b, our approach is based on LU
decomposition using Crout’s method, as described in [8]. We first show a solution
for dense matrices, and then modify it for skyline matrices. Suppose we express A
as the product of some L and U, which are lower and upper triangular matrices,
respectively: :

L-U=A
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For example (n = 4):

la 0 0 O U3 U1z d13 Y14 aj; G173 aG13 @14
lr Lz 0 0 | | O wspp uss wae | _ | @12 a2 @23 a2
Iyn. laz g O 0 0 wugs wuaqa |~ | a1s a3z ass agy
lyg Lz ls L 0 0 0 g Q14 G4z G43 Gau

Then, it is clear that:
A x=L-U.x=b

So, we can solve for x in two stages. In the forward substitution stage, we find y such

~ that:

L-y=b

and then, in the backward substitution stage, we find x such that:

U.x=y

Each of the last two equations involves triangular matrices, and so the solution is
easy. For forward substitution:

Y ,—t:'
Yi = [bs' — 3 lij'yj] 2<ign
and, for backward substitution:
-
z; = ui” [y,- - it ugja:,-] 1<i<(n—-1)

Let us consider how to decompose A into L and U. It is clear from the equation
L - U = A that the ij’th element of A is the inner-product of the #’th row of L and
the j’th column of U, i.e.,

Lavwg; + lug; + o dipun; = ayj

However, since I;; is zero whenever ¢ < j and u;; is zero whenever ¢ > j, this equation
can be separated into two cases (note the final term in each case):

1<j: Ly + Lpugs + o iuy; = ey
1> 7 l,-lul_.,- + l,'zugj + ...I,-_,-u_,,-j = ay

Further, it is always possible to choose the diagonal elements of L (i.e., I;) to be 1.
The last two equations can then be rearranged as:
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u;; = a:‘j‘_Ei_:lllik“kj 1<;j<nl1<i<jy

L o= = (“ij_z\::;:llls‘kukj) l<j<nj+1<i<n
Since L’s diagonal elements (i) are assumed to be one, we do not compute them, and
we do not store them. When this diagonal of L is omitted, the remaining L and U
elements have disjoint indices. Therefore, they can be stored in a single n X n matrix
called LU. This structure, along with the computation of the L and U elements, is
depicted in Figure 10.

Yo == A— 2T TrTIA
A LU v

, ¢

v

v l‘.,.

g = (v— EEY e B3 5

Figure 10: Computation of LU from A,

The forward and backward substitution computations are depicted in Figures 11 and
12, respectively.
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Figure 11: Solving L . ¥ = b (forward substitution)
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Figure 12: Solving U .z =y (backward substitution)

5.2 LU decomposition of dense matrices

The 1d code for LU decomposition of a dense matrix follows the equations given above
exactly (Figure 10):

def LUDCMP_dense A =
{ (-,),(.,n) = matrix_bounds & :

LU = {matrix (1,n),(1,n)

|[i,j]=utnij||j<-1ton&i<—1toj % uppex
I[:i.,j]=1£n:i.jIIj<—1tonti<—(j+1)ton};'/.10wer
def ufn i j = sum down 1 (i-1) Ali,3] (term i j) ; % upper

def 1fn i j = (1/LU[F,j1) * (sum downm 1 (i-1) 4[i,j] (term i §)) ; % lower

def term i j k = LU[i,kI*LU[x,j] ;
In
LU } ;

In the first line in the block, we find n, the dimension of the problem. The primitive
function matriz bounds returns the index bounds of A, represented as a pair of pairs.
The pattern on the left-side of the binding shows this pair-of-pairs structure, and
ignores three of the components (using “_* for a “dont-care” pattern) and binds n to
the fourth. Here, we are assuming that 4 has bounds ( Ln),(1,n)— it would be quite
easy to bind all four components and verify that this is indeed so.

The second binding defines the actual LU matrix, using Id’s array comprehension
notation. It specifies the contents of the 2-dimensional array in two regions corre-
sponding to U and I, respectively, using the functions ufn and 1n, Each expression
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of the form (sum_down k; k5 a f) computes

ke
a— 3 f(k)

k:hz

the Id code for which is:

def sum.down k1 k2 a £ = {for k <~ k1 to k2 do
next a = a - (f k)
finally a } ;

Here is the code for the forward and backward substitutions. Again, the code is
self-evident, corresponding exactly to the equations and Figures 11 and 12.

def LUBKSB dense LU B =
{ (-.,n) = bounds B :

Y = {vector (1,n)
I [1] = B[1]
[ [i] = sumdowm 1 (i-1) Bli] (ytn i) || i < 2 to a} ;

def yfn i j = LU[i,j] * Y[j] ;

X = {vector (1,n)
' [n] = Y[n] / LU[n,n]
I [i] = (1/LU[i,i])»
(sum_down (i+1) n Y[i] (xtn i)) || § < (n-1) downto 1 } ;

def xfn i j = LU[i,j]1 » x[§] ;
In
x};

5.3 LU decomposition of skyline matrices

A second important observation js that it is clear from the equations that the LU
matrix will always have exactly the same skyline shape as the original A matrix, so
that the data structure for LU can be identical to the data structure for A,

The data structures that we choose for A (and LU) is shown in Figure 13. The sub-
diagonal elements of A are held in AL, which is an n-vector of vectors. The ’th row is
represented by a vector with dimensions (41, — 1), where 1 <71 <iis the minimum
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index. When 31 = i, the lower index is greater than the lower index, representing an
empty row vector. These are depicted by little circles “o” in the figure. The diagonal
and super-diagonal elements of A are held in AU, which is also an n-vector of vectors.
The j’th row is represented by a vector with dimensions (41,7), where 1 < j1 < j is
the minimum index. Note that none of the column vectors can be empty.

; AU

AL

Hiney EE\E’ ] |
|

§

L ol o S |

Figure 13: Data structure for A (LU is similar).

The code for the decomposition function is shown in Figure 14. In the definition of
U, the j’th column vector is specified as a vector with the same bounds as the j’th
column vector in v (from i1 to j ). In calling utn, we supply it i1 and j1, the lowest
indices of the column vector and row vector of the inner-product. In utn, we clip the
iteration to begin at maz(i1,j1). A similar strategy is used in the specification of L.

The code for forward and backward substitution is shown in Figure 15. Recall that
in the dense version, yfn was defined thus:

def yfn i j = LULi,j1 » Y[j]1 ;

Now, however, the term LU[i,j] must be replaced by L[i1[j1. However, L[1] is fixed
for each sum down traversal, and so we optimize it by passing the entire row vector L[i]
to ytn, which then just indexes it with j.

In xfn, we run across the following problem: the inner-product traverses a row of
v. However, because of our representation of the skyline v, not all elements in a
particular row may be present. So, our code first extracts the 7'th column vector,
and then extracts the index bounds of that vector. If { js outside the bounds, the
term is 9; otherwise, we extract the normal LU, 5] (i.e., U[j][i], which is uj [il).

Of course, this conditional is executed O(n?) times (once for every position in the
upper triangle). We could trade time for space by first reformatting v into a full
upper triangular matrix (filling in all the zeroes) and then indexing it as usual. We
do not pursue this possibility here.

Finally, the top-level function to solve a given set of equations is shown in F igure 16,
where we assume that 4 is a pair of skylines (aL,au).
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dof LUDCMP sky (AL, AU) =
{ (cin) = bounds AU ;

U = {vector (1,n)
I [31 = { (i1,.) = bounds 4aU[j]
In
{vector (ii,j) _
I til = { (j1,.) = bounds AL[3)
In
ufn i1 j1 i j} I1i<- i1 to j})
I1'j <~ 1 ton} ;

L = {vector (2,n)
I [41 = { (§1,.) = bounds AL[i}
In
~ {vector {j1,i-1)
I 051 = { (i1,.) = bounds 4U[j]
: In
1fn i1 j1 i j} 3 <= 31 to (i-1)}}
Il i< 2 ton} ;

def ufn il j1 i j = sum_down (max ii J1)  (Gi-1) AUCILi]  (term i jJ ;

dof 1fn i1 j1 i j = (1/U[§1[j1) »*

(sum down (max i1 j1) (j-1) AL[i1[3]1 (term i j)) ;

def term i j k = L[iJ[x] * U[jI[x] ;
In
LU} ;

Figure 14: LU decomposition for skyline matrices.
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def LUBKSB_sky (L,U) B =
{ (.,n) = bounds B ;

Y = {vector (1,n)

I [11 = B[1]
{ [i} = { (j1,.) = bounds L[i])
In

sumdown ji (i-1) B[il (ytn L[il i)} 1] i <- 2 %o n} ;

def yfn Li i j = Lil[jl = Y[j1 ;
X = {vector (i,n)
' [n] = Y[n]l / ©ndn]
I Til = (1/0li][iD)=
(sum.down (i+1) n Y[il (xfn i)) || i <- (n-1) downto 1};

def xfn i j = { uj = U[j] ;
(i1,.) = bounds uj ;

In
if (i < i1) then
0.0
elne
UjLi]1 * x[31 } ;
In
X}

Figure 15: Forward and backward substitution for skyline matrices.

def solve_sky (A,B) = LUBKSB.sky (LUDCMP_sky i) B

.
>

Figure 16: Top-level skyline matrix solver,
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5.4 'Test runs

We generated a random 50 x 50 1 matrix (i.e., picked a random envelope and filled
with random numbers) containing 1210 elements, i.e., a density of about 50%. We
also generated a randomly-filled B vector of size 50. Figure 17 shows the parallelism
profile generated by GITA when solve_sky is run on these inputs. Figures 18 and 19
show the individual contributions of ludcmp_sky and lubksb_sky, respectively, to the
composite parallelism profile.

3,000

Crit. path length: 4,948
2,500 Total operations : 8115,401

2,000
1,500_
1,000
500
0

ops

I ¥ I 1 L
1,000 2,000 3,000 4,000 5,000 step
Figure 17: Parallelism profile for solve_sky (50 x 50 example)

3,000.. ,
Crit. path length: 984
2,500 Total operations : 728,205
2,000
2 1,500
1,000_
500
1]
{ ' T 1 B
1,000 2,000 3,000 4,000 5,000 step
Figure 18: Parallelism profile for ludemp_sky (50 x 50 example)

It is clear that almost all the parallelism in the skyline matrix solver is in the LU
decomposition stage. This is actually quite obvious if we analyze Crout’s algorithm,
which exhibits “wavefront” parallelism. Fach element in the LU matrix depends only
on those above it and to the left, so that a frontier that is perpendicular to the
diagonal can be computed in parallel. This frontier sweeps across the matrix like a
wave from the top left to the bottom right.
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3,000._

Crit. path length: 4,534
2,500 Total operations : 117,143

2,000

2 1,500
Q

1,000
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¥ ] I i L)
1,000 2,000 3,000 4,000 5,000 step

Figure 19: Parallelism profile for 1ubksb_sky (50 x 50 example)

In the forward and backward substitution stages, since the y and x matrices are filled
using linear recurrences, there is hardly any parallelism at all.

In languages with explicit parallelism, the wavefront parallelism of LU decomposition
could be expressed with a little effort for dense matrices. We could have a sequential
loop that iterates down the diagonal, and a nested, parallel loop that computes all
the cross-diagonal elements in parallel. Unfortunately, it does not appear so easy to
extend such a solution to skyline matrices, because of the irregular shape of the cross-
diagonals. In Id, on the other hand, implicit parallelism gives us automatic producer-
consumer synchronization, allowing it to adapt dynamically to such irregular parallel
structures.
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A Problem statements

The following are the statements of the four problems addressed in this paper.

A.1 Hamming’s problem, extended

Given a set of primes {a,b,c,...}, of unknown length, and an integer n, output in increasing
order and without duplicates all integers of the form

ai-bri-ckx... <n

A.2 The paraffins problem

The chemical formula for paraffin molecules is C;Hz:y2. Given an integer n, output without
repetition and in order of increasing size the structural representation of all paraffin molecules
for i < n. Include all isomers, but no duplicates. You may choose any representation of
the molecules you wish, so long as it clearly distinguishes among isomers. The problem is
discussed by Turner in

Turner, D.A., “The Semantic Elegance of Applicative Languages”, Proceedings of the ACM
Conference on Functional Programming Languages and Computer Architecture, Portsmouth,
New Hampshire, October 1981, pp. 85-92.

Note Turner’s solution is inefficient. To generate paraffins without duplicates, see the dis-
cussion of enumerating trees in:

Knuth, D.E., The Ari of Computer Programming, Volume I: Fundamental Algorithms, Addi-
son Wesley, Reading, Massachusetts, 1973.

A.3 A doctor’s office

Given a set of patients, a set of doctors, and a receptionist, model the following interactions:
initially, all patients are well, and all doctors are in a queue awaiting sick patients. At
random times, patients become sick and enter a queue for treatment by one of the doctors.
The receptionist handles the two queues, assigning patients to doctors in a first-in, first-out
manner. Once a doctor and patient are paired, the doctor diagnoses the illness and, in a
randomly chosen period of time, cures the patient. The patient is then released until such
time as he or she becomes sick again, and the doctor rejoins the queue to await another
patient. Return a list of patients in the order they become sick, a list of patient/doctor
tuples in the order patients are assigned doctors, and list of patients in the order they are
cured.
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This is not a time-driven simulation. There is no a priori knowledge of when events are to
occur; there is no global clock, no global communication, and no global knowledge. You may
use any distribution functions you wish to decide when a patient becomes sick and how long
a patient sees a doctor. The interactions of the patients, doctors and receptionist should
be true to life. The purpose of this problem is to see how each language expresses a set of
concurrent processes that interact asynchronously and must respond to asynchronous events.

A.4 Skyline matrix solver

Solve the system of linear equations,
Ax =b

without pivoting, where A is an n xn skyline matrix. A skyline matrix has nonzero elements
in column j in rows 1 < i < 7, and has nonzero elements in row ¢ in columns 1 <j<it
The first constraint defines the skyline above the diagonal, which is towards the top, and the
second constraint defines the skyline below the diagonal, which is towards the left. The shape
of a skyline matrix is depicted in Figure 1 (only the shaded region contains non-zeroes),

“1

Figure 1: The shape of a skyline matrix.
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