CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Tests for Monsoon Instruction Subset 1
J. Young

1990, September

Computation Structures Group
Memo 307

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

LABORATORY FOR
COMPUTER SCIENCE

INSTITUTE OF
TECHNOLOGY

MASSACHUSETTS

/

Tests for Monsoon Instruction Subset 1

Computation Structures Group Memo 307 (Rev. 1)
September 11, 1990

Jonathan Young

This report describes research done at the Laboratory of Computer Science of the
Massachusetts Institute of Technology. Funding for the Laboratory is provided in
part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract N00014-84-K-0099.

\

/

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Tests for Monsoon Instruction Subset 1

Jonathan Young

September 11, 1990

1 Introduction

This document describes a series of tests which are designed to test increasingly more complicated portions
of the Monsoon Macroarchitecture Specification [2]. Our goal is to run these tests on the hardware simulator,
on MINT and other software emulators, and eventually on the actual hardware when it arrives.

This is an evolving document. The tests currently described herein test only those instructions in in-
struction subset 1 (IS1) [1].

2 The tests

All tests begin execution with a single token in the pipeline and terminate with the pipeline idle. Our goal
has been to create small tests (no more than 30 instruction and 100 pipeline beats). The RTS test takes 106
pipeline beats, and the LOCK test takes over 200 beats, but the rest of the tests are fairly small.

To each test corresponds a ”base number” n. The code for each test generally starts at #xn0, the frame
pointer at #xn0, and I-structure memory (if used) at #xn00, the initial token for the ISTR test should be
(L, #x50, #x50)(pointer to #x500).

Test Base Instructions tested
FORK-JOIN 1 | one fork, one join, identity
FLOATS 2 | fadd, fsub, fmul, fdiv, fitp, feqp
BOOLS 4 | and, or, xor, ash and .nll
ISTR 5 | faif, istr, %%istr
SEND 6 | ct, aoct

7 | (reserved for SEND)
RTS 8 | stake, id.st1, id.rnll, ap
MISC #xA | remov, swt
MDEF #xB | multiply-deferring i-structures
LOCK #xC | multiply deferring locks
PLTP #x10 | PLT, PLP, %% PLMEM, %%PLMEM1
SvC #x11 | synchronous traps

Note that the graphs presented at the end of this document depend crucially on the ability to predict
which of two tokens will be executed first. In particular, the fanout (fol.m2) instruction produces tokens
at both destl and dest2. Most of these graphs assume that the token at destl is produced first. Not all of
these graphs are completely consistent with the macroarch yet.

The graphs also assume that the token queues are configured as a stack. On the gate-level simulator this
assumption was not the case.

3 FORK-JOIN

This tests the basic execution of the machine: monadic and dyadic matching, the identity alu operation,
and the generation of 0, 1, or 2 output tokens. The first instruction split the input token into two, which

are joined by the second instruction and terminated by stop, the third insruction. Note that since stop
is the last instruction in the current microcode, this also enforces the declaration of unused opcodes and
second-level-decode entries.

4 FLOATS

This test pushes a known value (5.5) through 4 floating-point ALU operations (fadd, £sub, fmul, and f£div)
in parallel. We also exercise different matching and output modes: first, we match with an absolutely-
addressed constant and issue one token (.n1); second, we issue 2 tokens (.n2); third, we do a frame-relative
dyadic match which issues 2 tokens (.n2). Finally, we do a frame-relative dyadic match which issues only 1
token; these 4 tokens are fed into two floating compares which in turn feed a logical and. The result should
be boolean false.

5 BOOLS

This test exercises the floating-point comparison and (integer) boolean operators.

6 ISTR

This test executes several two-phase memory transations - three I-fetches and two I-stores, to be precise. We
test I-fetch from both present and empty locations, as well as I-store to both empty and deferred. (We do
not test the full functionality of the %%istr instruction, only that need for subset 0.)

This test is superseded by the MDEF test. As written, this test will not run under IS1.

7 SEND

This test uses the ct and aoct instructions to test a rudimentary function-call sequence.

8 RTS

This tests the instructions needed to implement a protypical run-time system on the Monsoon machine which
allocates storage (i.e. get-context and get-aggregate) but cannot deallocate it. The instructions particularly
needed are stake (take on read-only, spin on empty) and id.stic ("put”).

This test executes two get-context and two get-aggregate operations in parallel; one of each spins for
several cycles while the critical section of the other one is executed.

Note that because of the limitations of IS0, we are still taking advantage of the pointer/continuation
duality.

9 MISC

This final test exercises ”everything else” in IS0. We test dyadic matching when the left token arrives first,
and we test the switch (swt), fix (£ix), and remove (remov) opcodes. We also test loading a global constant.

10 MDEF

This tests multiply deferring I-structures. Three fetches occur before any store.
We do not yet test delays.

11 LOCK

This tests locks - resources to which only one process may have access at a time. Access is gained by a TAKE
and released by a PUT instruction; additional instructions in user code (TAKE-AUX and TAKE-AUX1) are
required to allow queueing of multiple takes.

There are a total of 5 takes in this test, labeled A, B, C, D, and E. The approximate order of events is as
follows: TAKE(A), TAKE(B), TAKE(C), PUT (returns to C), C sends retake to B. Meanwhile, TAKE(D)
and TAKE(E) happen, so when B does the retake — TAKE(B) — it also defers, getting a pointer to E. This
1s where the two deferred lists are merged: B sends the E continuation to A, who stores it. Eventually, more
puts happen, and everyone gets their chance to play with the resource.

12 PLTP

This test runs the PLT (processor-local take) and PLP (processor-local put) instructions. These instructions
do a two-phase-transaction-style synchronized read (write) of a location without giving up the thread on the
processor, for use in exceptions. The values are constrained to have only one reader and one writer, like
locks, but additionally, neither operation can defer.

13 SVC

This tests the SVC (synchronous trap) instruction and accompanying support instructions, %EXC1 and
%EXC2. When used at the entry point to an exception, they store the continuation and XA in appropriate
locations in the frame, passing XB to the next instruction in the exception handler.

This exception handler adds A and B and returns the value to IP+1.L (this is the conventional place for
exceptions to return values).

14 Testing Limitations

The simulation of only 600 instructions on our machine must inherently leave something out. In particular,
we did not test the FALU operations in any comprehensive manner, but only enough to establish that the
correct operation was being performed on the correct (e.g. not flipped) arguments. We do not test every
second-level-decode of every macroinstruction; we intentionally take advantage of the microcode structure
to test matching modes and ALU operations separately.

15 Appendix: Test Graphs

The dataflow graphs for the tests, annotated to include each token expected during execution, appear on
the following pages.
16 Acknowledgements

This document is the combined efford of several people. T am particularly indebted to Madhu Sharma, who
drew the pictures and debugged my code, and to Ralph Tiberio, who first executed these graphs on the
hardware simulator.

References

[1] M. J. Beckerle and J. H. Young. Monsoon instruction subsets. Computation Structures Group Memo
306a, Massachusetts Institute of Technology Laboratory for Computer Science, Cambridge MA, 1988.

[2] G. M. Papadopoulos and K. R. Traub. Monsoon macroarchitecture reference manual. Computation
Structures Group Memo 306, Massachusetts Institute of Technology Laboratory for Computer Science,
Cambridge MA, 1990.

FORK-JOIN

0 <L, x19, x10><5. 5>

i

fol. n2

8 <L, x11, x10><5] 5>
9|<R x11, x10><5. 5>

Vv ¥

fadd. ml

17 <L, x12, x1j0><11. 0>

1 dl e

5.51n

Figure 1: Fork-Join

FLOATS ‘Lo <L, x21, x20><5. 5>

1
fol.m2

2

fol.m2 fol.n2

18<L, x27, x20>

8 <L,X22'Xi2jjf)§>/////// ‘\\\\\\\\\\g\it;:fc,x20><5.5>
12

, X31, x20>

37<R, x33, x20>
. 375>

50<R, x34, x20>

5. 5> 17<L, x2D,£20> <B\5>
<5. 5> '
lz_ 0 ‘Lz. 0 lz. 0
3 7 13 17
fadd. n1 fsub. nl1 frrul . nl fdiv.nl
24<L|x24, x20>, 27<L| x28, x20> 25<L,[x2E, x20> 26<L]x32, x20>
<7]5> <3| 5> <11. 0> <2|75>
‘Lz. 0 2.0 ‘V 0 2.0
¥V ‘$ y
4 8 14 18
fadd. n2 fsub. n2 fmul . n2 fdiv.n2
35<L, x29,(x20 33<L, x2F,|x20
32:Sjé§ , Xx20 <1 5> <22 0> 34:&Z§$;xz >
39<R, x25, x20> 36<R, x29, x20> 38<R, x2F, x20>
<9. 5> 1. 5> <p2. 0> <
5 9 15 19 _
f add. n2 fsub. n2 frmul . n2 fdiv.n2
47<L, x26,|x20> 44<L, x2A, 420> 46<L, x30, [x20> 45<L, x34,|x20>
<19. 0> <0. 0> <484. 0 <1.0>
48<R|x26, x20> 51<R, x2A, x20> 9<R| x30, x20>
<19. 0> <@). 0> <484. 0> <1 0)
6 10 16 20
fadd. n1 fsub.nl frul . nl fdiv.nl
584R, x35, x20>
599R, x2B, x20> 57<L, x3§, x20> J
P\ 40’ 0> <23425% 0> <1.0>
11 6 2f1 .
feqp. nl eqp. n

%Q(» GGM,X%

0 <L, x40, x40><x55>
BOOL

fol.n2

<L, x45, x40>
8 <L, x41, x40> 55>
<x55>

19 <R\ x44, x40> , X47, x40>
<x5{> <xX85>
¢-2 & xFF. . FE
2 4 6 7
ash.nl ash.nl and. nl ior.nl
24 <L, x43, x40> 27/<R, x43, x40> 25 <L, N48, x40> 26/<R, x48, x40>
<x15 <x15> <x00.\0054> <xFF. . FF>

xor.nl xor. nl

35 <L, x
<x141> <R, x49, x40>

<xFF. . FFAB>

Xor .

43 <L, x4A, x403<xFF. . FEEA>
y

10
idle

7.0in

Figure 3: Bool

0 <L, x50, x50><pt r, x500>

0
ISTR i d
8 <L, x <L, x57, x50><pt r, x500>
<ptr, x500> lG'O
1 7
id n2 istr.n2
19
<L, x53, x50> 16
<pt r, X5OO> <L, X52, X50>
<ptr, x500> 17 <R, I P-1 STR, x500><6. 0>
xl * 18 <L, x58, x§500><pt r, x500>
1
3 2 8
ap. nl apif.nl api f.nl
27 <L, ¥54, x50>
<pt1n, x501> 26 <L, | P-1STR, x500><L, x59, x50>
‘175. 0 34 <L, x59, xp0><6. 0>
\
4 24 <L, | P-1STR x501><L, x5B, x50> 9
istr.n2 idle
35 <R | P I STR, x501><5. 0> "™,
36 <L, x5p, x50><ptr, x501>
0
\ ,/
) =43 <L, x5B,|x50><5. 0>
api f.nl Y
11
id nl
44 <L, | P-1STR, x501> 56, x50>
52 <L, x56, x50><5. 0> 51 <R x56, x50><5. 0>
/
6
feqp.nl

60 <L[x5A, x50><TRUE>
\

10
idle

9.51n

Figure 4: I-structures

61in

SEND

Base IP = x60

16 <L, x62,|x60

<x70, x70>
19|<R, x62, x60>
% <x70, x70>

V

y

2
ct.nl

27 <L, x70, x70>
<x70, x70>

Base IP = X70 \{,

0

junp. i

35 <L, x72
<x70, Xx70>

0 <L, x60, x60><x70, x70>

17 <L, x64, xj60>

<x70, x|70>
18] <R, x64, x60>
$ $<x70,x70>

26 <L, x71:x70>

N

2

Xor.nl

9 <L, x63, x60>
<x70, x70>

fol.n2

Al

4
aoct.nl

<x70, x70>

|

junp. ml

34/<R, x72, x70>
<x70, x70>

36 <L, x73,|x70><x00>

i gl e

<x70, x70>

0 <L, x80, x80><x1000>
RTS

fol.n2

8 <L, x81, x80>
<x100

9 <L, x8C, x80><x1000>

¢ %10 $ x11

1 12
id.stlc id.stlc
16 <L, x82)x80><x1000> 17 <L, x8D,|x80><x1000>
/ /
2 13
26 <L, x93, x80><x1000>
fol.np fol.n2 34 <L, x93, x80><x1000>
, 42 <L x93 x80><x1000>

50 <L, x93, x80><x1000>

24 <L, x83, x80>

<x1000> 43 <L, X87. x80><x1000> _
¢x10 x10 $x11
3 7 19
5t ake. | 1 st ake. | 1 st ake. | 1 stake. |1
32 <L, x84,|x80><x1000> 33 <L, x8F,(x80><x1000>
51 <L, x88,|x80><xF80>
58 <L, x94)x80><x1002>
$—128 Jv»128
) v Y \
4 8 15 20
ap. nl ap. nl fol ne fol.
59 <L, x89| x80><xF00>
40 <L, x85,x80><xF80> 41 <L, x90| x80> 66 <L, x95,/x80>
<x1000p <x10023)
2
x10 x10 $
v ‘l’ ‘¥ i ‘L & v o
5 9 16 % 21 A
id. stlc id. stlc ap.nl « ap. nl &z
x
© ©
N ~
x
48 <L, x86| x80><xF80> 49 <L, x01,x80> IR 74 o yds x80> |3
X <x1004> y
67 <L, x8A| x80><xF00> X %
& x11 |o J’Xll '5
v ‘ ‘ g v S
6 10 17 22 v
junmp. n j unmp. m id.st1lc id. stlc
56 <L, x8B\(80><xF80> ST <L, X921 x80>
82 <L, x97| x80>
75 <R, x8B/x80><xF00> <x1004b
') \ y
11 18 23
id.nl idnl id.nl
65 <L, x98)\x80>
83 <L, x99, x80><xF80> <x1002> 90 <R, x98, x80><1004>
25 id nl

id. nl

106 <L,x9A,x80i<xF80> 98 <R x99, x80><x1002>

0 <L, xa0, xa0> <x1>

MISC
0
fol. n2
9 <L, xa2, xa0x>» <x1> 8 <L xal, xa0> <x1>
2 1
ncd. ml renov. 1
17 <k xas xa0> 16 <R xad, xa0><6. 0>
i 25 <L, xa4, xa0><6. 0>
4
fol. n2
33 <L, xa5, xa0><6./
5 34 <R, xa6, xa0><6. 0>
nmov. rnl
41 <L, xa6,xa0><5& ‘i,
6
feqp. nl

49 <L, xa7, xa0><FALSE>

3.0

MUL-DEFERS-ISTR
0: <L, xb0[xbO><pt r, x500>

fol.m2

8: <L, xbl, xbQ=<ptr, x500>

9:<L, xb2, xb0

1 2
fol.n2

19: 18:

<L, xb5,Xb0><pt r, x500> 17: xb0><ptr, x500>
16: <L, xb9, xh0><pt r, x500>
<L, xb3, xb0><pt r , x500> &o $o *0
3 5 9 13
junp. nt api f.nl apif.nl api f.nl
25:
<L, I P-1 STR, xp00><L, xba, xb0>
24 7 A\I TR, x500 26
<L,[xb4, xb0> S b Xbos <L, | P- ' §TR, x500>
<pt|r, x500> ' { <L, xbe, Xb0>
35: 34
<R| xb6, xb0> 56: <R|xbe, xb0>
ixSS <L| xbe, xb0> <L, ¥ba, xb0>Xx55> <L,|xba, xb0>
y
4
istr.nl % - Def er % - Def er
48:
32: <L, , Xb0><x55>
<R I
<x55
49: 57:
<L{xb7, xb0O><x55> <L, xbf| xb0><x55>
40: <L, xb6, xb0> 64
<x55> <L, xbb| xb0><x55>
y v Y
7 11 15
idle idle idle

9.51n

Figure 8: Multiple Deferring I-Structures

12

LOCK

209

D

129 |
stop Z B4 ¢ 3980 A ‘\V 4 c ‘¥ y
fol e o/ |8 17 d1 \ 22 d8
i ;o [take-aux t ake-aux t ake- aux
36 i
37, : 97 [N N 48
P’ +o ‘ 49
: 9 18 d2 25 d9
33 el 40 e8 H t ake- aux]
apt.nl apt . nl H t ake- aux] t ake- aux]

44\
\v

34 e2
t ake- aux

35 e3

t ake- aux]

x50

217

36 e4

nov. rnl

38 e6
st op

9.51n

185

169
) o

41 e9
t ake- aux

/177

42 ea
t ake- aux 1

145 ‘l’ $x50

43 eb

nmov. rnl

178

45 ed
nmov. rnl

186 ‘l’s
{
46 ee

put.n2
195

47 ef
stop

Figure 9:

: 10 ca

mov. rnl

26 da

nmov.rnl

27 db

apt.nl

12 cc 39 e7 28 dc
nov.rnl mov. rnl junp. i
H 106 146 2 57
3
y vy y
13 cd 21 ds 29 dd
put. n2 put . n2 junp. nt
114 154
P18 \’ 155 65/
H Y
: 30 de
H 22 d6
' 14 ce mov. rnl
: stop stop
‘ 73
: +4
; 31 df
put.n2
__ o
82
32 e0
stop
13

Multiple Deferring Locks

nov. sl

pl p. nlc

1

4 %Pl nem

I

nov.rnl

fol. n2
1.0
2
nov. rnl
3
svc0. nl
4 \J

st op

15

