MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC
Computation Structures Group

Memo No. 31

RESOURCE ALLOCATION IN A COMPUTER UTILITY
by

Peter J. Denning

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering

Cambridge, Massachusetts

Proposal for thesis research in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Title: Resource Allocation in a Computer Utility

Submitted by: Peter J. Denning Signature of Author:
99 Orchard St.

Somerville, Massachusetts UZL :?~, A;?,tL n.bp:;)
/

Date of Submission: July, 1967

Expectdd Date of Completion: June 1968

Brief Statement of Problem:

The problem of distributing limited resources to a user community

in a computer utility is investigated. The problem of allocation

is reduced to the problem of balancing demands of running programs
against available equipment. To do this, a model for program behavior
-- the "Working Set Model" -- is defined; starting from this model,
precise mathematical meanings can be attached to the notions

"demand" and "balance"; these in turn lead to a viable philosophy

of allocation within a precise framework. Probabilistic analysis,
applied to the models, will characterize the behavior of the

computer system from the standpoint of a user and his program.

CONTENTS

CHAPTER I -- Introduction

CHAPTER 1I -- Framework

CHAPTER III ~-- The Working Set Program Model
CHAPTER IV -- Balance Allocation

CHAPTER V ~-- Future Work

CHAPTER 1 -~ INTRODUCTION

Intrpduction

Distribution of limited resources to users in.a computer utility --

the resource allocation problem -- has been Lll-defined because of difficult-

to-understand interactions &mong computer system components. Two major
factors contributing to the absence of a general treatment are the lacks
of adequate models, one for the user, the other for his program.

It is not easy to construct models for either the user or his program,
because it seems that for all but the vaguest of models it is easy to contrive
counterexamples. Part of the trouble arises from attempts to model all users
in all kinds of computer systems. In this thesis we will define very carefully
the computer system that serves as a context before beginning the modelling
process; then we will find that the user and his program can be characterized
quite conveniently by their demands on computef facilities.

Despite sophisticated techniques, such as "multiprogramming"l,"segmentation"z,
"paging“z, and "traffic cnntrol"3, the resource allocation problem is far from
solved. Terms such as these four denote techniques which are but tools, not
solutions, for the problew. Without such tools resource sharing would not
be possible; with them there is still no guarantee that allocation is being
handled properly. One of our goals, therefore, is to evolve a general,
practical philosophy regarding allocation and sharing, with well-defined
objectives. Only then will we be able to say that a computer system is
.achieving allocation aims "properly".

Basically, then, our aim in this thesis is to set up a framework within
which we can formulate rcasonable models for users :nd programa; applying
techniques of probability theory to a system whose computational activities are
regafded in the light of our models, we hope to characterize important behavioral

parameters.

I-2

Approach

Our philosophy will hie concerned throughout with two concepts, "demand"
and "balance". Roughly speaking, the demand presented by a program is its
probable fractional resource consumption during the next few time units.
Balance is a condition that will exist when the sum total of demands by
running ﬁrograms just consumes (balances) available resources. Resource
allocation then becomes the question: "Which programs should be run in order
to keep the computer system in balance?' Balance has been chosen as a
criterion rather than criteria such as "maximum equipemnt utilization" or
"user satisfaction" primarily because of mathematical simplicity and secondariiy
because, with modifications, it encompasses these other, somewhat vaguer, criteria.
In the remﬁinder of this chapter we will examine the responsibilitiea of
the management personnel (hereafter called the "administration") with regard Fo
maintaiping balance using available equipment and, through correct interpretation
.of demaﬁd statistics, predicting new equipment needs. In Chapter II we will describe
carefully the nature of the computer system whose computational activity we intend
to model. In Chapter III we begin the modelling process with a detailed investi-
gation of the "working set model" for program behavior. This model enables
us to decide which information is in use by a running program and which i{s
not; this knowledge is vital in dynamic memory management. In addition, this
model enables us to determine, &t any time, the demand by a running program
~on the memory resources of the computer. In Chapter IV we study in detail the
concepts "demand" and "balance". These are used to formulate resource allocation
as a miﬁimization problem, whose objective function attains a minimum whenever a
balance condition exists. We introduce a possible allocation algorithm

whose overhead in scheduling depends not on the total demand,

o

I-3

but only on the degree of imbalance. A policy of this nature is vitally

important, for it assures that the ideas apply to any size computer system, that

scheduling overhead is nesrly the same in a large system as in a small one.

In the fifth chapter we will discuss the intended course of the thesis
;esearch. Of particular interest will be an analysis of a balanced computer
system from the viewpoint of a user and his program. Another important aspect
is generalization of the ideas to include computer systems haviﬁg multilevel

memory hierarchies and computer systems where a great deal of information is

shared.

Administrative Aspects

In this section we will touch briefly on the economic structure underlying
our thinking. We do not, however, intend to become invelved with issues of
computer-utility economics, a field all its owm.

4,5,6

The goals of a computer utility ~- to which an allocation strategy

must conform -- are these:
1. Distribution of "computing power' to a community of users, who
individually would not be in a position to afford the full services
of a computer system, who collectively can pay the costs.
2. Accumulation of a vast storehouse of publicly-available shared
procedures and programming language systems.
To be consistent with the first of ﬁhese two goals, am allocation policy should be
efficient, "fair", and should not behave foolishly under extremely heavy or

extremely light loading conditions. Yet the first of these two goals is not attainab:

only within the confines of a utility, for the day of the inexpensive desk-top

I1-4

computer is not far off. The first goal, therefore, is not the essence of a

computer utility. It is the second goal that is at once the most basic and
the most troublesome. Techniques for dealing with communicating computations
are sti11 in the formative stages; there still is no "nice" approach to this
problem of "protection while sharing". We know how to handle computations that
share equipment but not computations that share information.

Allocation is partly under human control, partly under machine control;
‘é;ch ﬁﬁiﬁhidecisions on his own time scale, humans handling I;ng-term (hours,
days) decisions, the machine making short-term (milliseconds, seconds) decisions.

Although our prime concern is with decision procedures for use by the machine,

we cannot ignore the tremendous influence the pricing structure has on a human

user and thence on the behavior of his program. From a user's standpoint the
pricing structure is supply-and-demand oriented, rates for equpment use being
lower in "off" hours than during peak periods, and in general varying with the
demand.

The basic structure is this: each user is allotted so many chips (Qkin to
"message units" in a telephone utility) per billirg period. The rates at
which a chip is expended on different typesrof resource (e.g., processor,
memory) depend partly on the user himself and partly on the total demand by
other users for these same resources. It will, however, be an individual's
perogative how he uses his chips; one user might consume his allotment paying
for space in storage media, another might spend his chips paying processor
costs. When there,is a "fad" (a trend toward exceptional dem:v.) for thetuse
of a particular type of equipment, the adm’' - ..stration can counter by raising the
rate of chip consumption for that equipment, thereby discouraging excessive use.
This would imply that there is some kind of price schedule {via a system éommand?)
available to users ipdiﬁétiﬁg current rates for eachh type of resource. Thus

there is feedback between administration and users via the pricing structure;

¥
".\ t

I-5

however here we are concerned neither with questions of stability nor with
questions of time lag before price changes are felt.

An essential component of price structure is the ability for a user to
bid. If he desires improved service (at correspondingly higher costs), a user
may outbid his fellows. If he is unconcerned with the quality of service,

a user may underbid, obtaining poorer service at reduced cost. Needless to

say there must be‘some gort of automatic limiting mechanism that prevents some
customer with unlimited chips from pre-empting the entire system. This need not
imply limited chip allotments; it implies only that the wealthy subscriber be
somehow inhibited automatically from keeping subscribers of modest means from
obtaining service. Moreover, by assuming the existence of a bidding mechanism
we can ignore the delicate questions surrounding "user dissatisfaction", hoping
that unhappy users can raise bids if needed.

Many refinements of this basic structure are possible. The most notable
of these is the "group structure'" -- chips are allotted to groups, whose
individual members obtain chips as needed from a group leader. Such refinements
do not concern us here.

There are two miscellaneous responsibilities the administration has:

1. Since it is a goal of a utility to provide service to all customers,
the administration ought not be efficiency-oriented. Some sacrifice in
efficiency is mecessary to assure good service,

2. Billing periods ought to be staggered uniformly throughout the
month, so that the same number of customers have their billing
periods expire the same day. This will avoid fhe problem arising
if everyone should receive his monthly allowance at the same time --
for a week, while customers were affluent, the demand on the system

could be staggering.

i-6

There are two schools of thought concerning the administration's posture
toward the question of total demand from the user community, a total that
over a period of weeks or months may rise rclentlessly:
1. The administration should exercise control over the total demand at
any time by limiting the number of chips outstanding. In some ways
this resembles the policies used by parking lot officials, who allocate
150 stickers to fill 100 spaces, on the grounds that (on the average)
only 100 cars at a time will show up. That is to say, the
administration can ration chips, based on careful interpretation of
demand statistics, hoping that the number of users logged in will
present a total demand only slightly larger than whatever is required
to achieve balance.
2, The administration should be willing to meet customer demand backed
by money, adding whatever equipment is needed to expand the capacity
of the system, so long as there is anyone willing to pay for it.
Rather than take a stand on this issue, we prefer to develop a strategy
acceptable to both schools. This means we must define overload and specify
how to detect it; then the administration can decide whether to ration chips
or to purchase new equipment. Overload can be defined as follows. First,
set tolerance limits on serviée, such as maximum allowable response time, or
minimum allowable processing rate (i.e., fraction of available memory cycles
received byla user per unit time). Overload is said to exist when the
probability;that service does not fall within these limits exceeds some specified
number. [This probability would be measured as the fraction of time that service
is poor.] We expect that the model we will set up, using balance notions,
will be able to predict overload conditions, and enable yg to specify

measurements that can be made to decide when overload is imminent.

CHAPTER II1 -- FRAMEWORK

Introduction

We begin this sectiou by discussing a very important assumption of computer
utility system design: no advance information on allocation will be available
to assist the operating system make scheduling decisions. Then we turn
attention to important technical details and terminology.
The models we will set up are intended to model the behavior of computations
in the general-purpose computer, the computer utility. For this reason we
assume that the operating system must on {ts own determine the behavior of
programs it rums; it cannot count on outside help. Two commonly proposed
sources of externally-supplied allocation information are the user and the compiler.

We claim neither is adequate.

Because resources are multiplexed, each user is given the illusion that he

has a complete computing system at his sole disposal: a virtual computer. For
our purposes, the basic elements of a virtual computer are its virtual processor
and an "“infinite" one-level virtual memory. Dynamic "advice" regarding resource
requirements cannot be obtained successfully from users for several reasons:

1. A user may build his program on the work of others, frequently sharing
procedures whose time and storage requirements may be either unknown
or, because of data dependence, indeterminate.

2. It is not clear what sort of "advice" might be solicited. Nor is
it clear how the operating system should use it, for overhead
incurred by using advice could well negate any advantages attained.

3, Any advice acquired from a user would be intended (by him) to optimize the
environment for his own program. Configuring resources to guit individual
may interfere with overall good service to the community of users.

Thus it seems inadvisable at the present time to permit users, at their

discretion, to advise the operating system of their needs.

If-2

Likewise, compilers .:annot be expected to supply information, extracted

from the structure of the program*, regarding resource requirements:

1. Programs will be medular in construction: information about other
modules may be unavailable at compjlation time. Because of dependence
on data there may be no way to decide tuntil run time)} just which
modules will be included in a computation.

2. Compilers cluttered with extra machinery to preduct memory needs will
be slower in operation. Many users are less interested in whether
their program operates efficiently than whether it operates at all,
and so are concerned with rapid compilation. Furthermore, the
compiler is an often-used component of the operating system; if slow
and bulky, it can be a serious drain on system resources.

Therefore in this thesis we are advocating mechanisms that monitor the behavior
of a computation, making allocation decisions on the basis of currently observed
characteristics. Only a machanism that oversees the behavior of a program in

operation can cope with arbitrary interconnections of arbitrary modules having

arbitrary characteristics.

* 7
Ramamoorthy’ has put forth a proposal for automatic segmentation of programs

during compilation.

II-3

The Basic Computer Systen

Although we assume that the reader is already familiar with the concepts
of a computer utilitya’s'e, of segmentation and pagingl’z, of program and address
structuree, and of a process and its statesl’B, we will review these topics tere.

We will restrict attention to a two-level memory sy stem, indicated by
Figure 2.1, because all the complexity of the allocation problem can be found
even in this simple system. Only data residing in main memory is accessible to
a processor; all other data reside in auxiliary memory, which we regard to
have infinite capacity. There is a time T, the traverse time, involved in
transferring a unit of data (to be called a page) between memories. T is
measured from the moment a page is found to be missing from main memory until
the moment the missing page is in main memory ready for use. T is actually
the expectation of a random variable composed of waits in queues and mechanical
positioning delays. Though it usually takes less time to store imto auxiliary
memory than to read from it, we shall regard the traverse time T to be the
same regardless of whicﬁ direction the page is moved.

Two basic principles in the design of gemeral puspose computer systems
are the abstractions of the notions "process" from "processor'" and "address
space" from "memory". As we stated earlier, each user is to be given the
illusion that he has the entire computing facility at his disposal; accordingly
he is given a virtual processor (pseudo-processor) which has most of the
capabilities of a real processor, and a virtual memory which has many times
the capacity of the real memory. It is the job of the operating system to
run a real processor occasionally on behalf of a given virtual processor,

giving the user the illusion that his private virtual processor is running

at a reduced rate, a rate (under normal load tonditions) quite sufficient

PROCESSORS
Data flow from main memory

{controlled by memory manager)

d
Y

MAIN AUXILIARY

. Process data
in main memory

Data flow into main memory
(controlled by atlocation policies)

FIGURE 2.1. Two-level Memory System,

IT-4

for his needs. There is a8 mechanism (in Multics called the traffic-controller3)

that handles the assignment of processors to pseudo-processors.
The notion of process is a program in execution by a pseudo-processor. The

states of a process are these:

nning: the pseudo-processor is currently in execution by a real processor.

1.

[la]
1

2, rpeady: the process is suspended because there is no real processor

currently available.
3. blocked: the process could not use a processor even if one were
available (perhaps it is awaiting a response from a user or the
arrival of data from auxiliary memotry) .
When talking of processes in execution, we will have to distinguish between
"processltime" and "real time'". Process time is time as seen by a process;
that is, as 1f it ran without interruptions.

The second abstraction -- '"address space" -- can also be called "virtual
memory"ior "name space". The virtual memory is the set of names (addresses)
availabie to a pseudo-processor for use as data identifiers. There is no
a griori relation between a name in name space and the location of the corresponding
datum iﬁ physical memory. For convenience (to the user) che name space is divided
into segments, of arbitrary size. To reference a datum, a two-component address
(S,W) is given, S being the name of a segment, and W the name of a word within S.
The address-mapping mechanism establishes the correspondence between a name in
name space and the physical location of a data item in memory. For convenience
(to the system) in mapping segments of arbitrary size into a memory of fixed saize,
segménts and real memory are sliced into equal-length blocks, called pages.

Thé page, invisible to the programmer, is the standard unit used by tﬁe system
for information storage and transmission. Hereafter we can (without ambiguityj

refer to movement of data as page traffic.

1I-5

Associated with each pseudo-processor is a segment tabie listing each
segment known to the process. Associated with each segment is a page table
listing each page of the segment. 1If a page is not present in main memery an
| "in-core" bit* of the corresponding page table entry is OFF; an attempt to
reference such a page automatically causes a page fault, which interrupts
the process (blocking it} and initiates action to secure the missing page
from auxiliary memory. Once the page is loaded in main memory ready for use,
the proper page table entry is set to point to the physical memory location
of the start of the page, the "in-core" bit is turned ON, and the process
leaves the blocked state and enters the ready state. Later on, when the page
is removed from main memory, the "in-core" bit of its page table entry
is again turned OFF.

A basic allocation problem, "core memory management', {s that of deciding
just.which pages are to occupy main memory. The strategy advocated here --

a compromise against a lot of expensive main memory -- is to minimize page
traffic. There are two reasons for this:

.1. The more the data traffic between the two levels of memory , the more
the computational overhead involved in deciding just what to move and
where to move it,

2. Because the traverse time T is long compared to a main memory cycle,
too much data movement can result in congestion and serious interference
with processor efficiency.

Roughly speaking, a working set of pages ("working set" for short) is

the minimum collection of pages that must be loaded in main memory for a
process 'to operate efficiently, without "umnecessary" page faults, According

to our definitions, a “process" and its "working set" are but two mani festations

of the same ongoing computational activity.

x
Consistent with current usage, we wi
R will use the terms "core memory" "
memnrv! intarerhancanhile ' . : . mq y" and Mi“

II-6

Summar

éThis chapter has been a brief review of major computer system concepts:
its ;ain purpose is to be sure that the reader and the author both attach
the same meanings to terms. We stressed that in a truly general-purpose
computer.system allocation information can be obtained only by dynamic
measurements of ongoing computations, not by soliciting user advice or compiler
counsél. We exhibited the basic two-level memory system that will command
much of our attention. We discussed the notions of a process and its states;

of address spaces, segments, pages; of address-mapping mechanisms, segment

and page tables, page faults, and page traffic.

CHAPTER II1 -- THE WORKING SET MODEL FOR PROGRAM BEHAVIOR

Introduction

In this chapter we iuvestigate in detail the working set model for
program behavior, which embodies certain important behavioral properties of
programs operating in the utility environment. We precede discussion of

the model with a brief review of proposals for techniques of memory management.

Previous work

In this section we outline strategies that have been set forth in the
past for memory management; the interested reader will be referred to the
literature for detail.
We regard management of paged memories to operate in two stages:
1. paging in: locate the required page in auxiliary memory, load it
into main memory, turn the "in-core" bit of the appropriate
page table entry ON.
2. gggig& out: remove some page from main memory, turn the "in-core"
bit of the appropriate page table entry OFF.
Management algorithms can be classified according to their methods of paging
in and paging out. It is a common characteristic of nearly every strategy
that paging in is done on demand; that is, mo action is taken to load a page
into memory until some process attempts to reference it. To date there have
been no proposals recommending look-ahead, or anticipatory page-loading, because
(as.we have stressed)'there is no reliable advance source of ailocation information
be it the programmer oY the compiler. Although the working set ig the desired
{nformation, it might still be futile to pre-load pages: there is no guarantee
a process will not block shortly after resumption, having referenced only &
fraction of its working set. The operating system could devote its already
precious time to activities more rewarding than loading pages which may not

be used. Thus we will assume that paging in is done on demand only, via the

I11-2

page fault mechanism.

The chief problem in memory management is not deciding which pages to load;
it is deciding which pages ought to be removed. For if the page with the least
likelihood of being reused in the immediate future is retired to auxiliary
memory, the best choice has been made. Nearly every worker in the field has
recognized this. Debate has arisen over which strategy to employ for retiring
pages; thaf is, which page-turning, er replacement, algorithm to use, A good
measure of performance for a paging policy is page traffic (the number of pages
per unit time being moved between memories), since errvoneously removed pages

add to the traffic of returning pages. In the following we will use thias as

a basis of comparison for several strategies.

;In m selection. Whenever 8 fresh page of memory is needed, a page is selected
at random to be replaced., Although utterly simple to implement, this method

frequently removes useful pages and resultsg in high page traffic.

cyclic selection. The pages of main memory are ordered in a cyclic list.
Suppose the M pages of main memory are numbered 0,1,...,(M~1) and that a

pointer k jpdicates that the kth page was most recently paged in. Hhenever.

a fresh page of memory is needed, [(k+l) mod M] 4 k, page k is retired, and
another pége brought in to fill the now vacant slot. This method -- also utterly
simple to realize -- ie based on the principle that programs tend to follow
seqguences of.instructions, so that references in the immediate future will most
likely be close to present references. Assuming there is this tendency for

page references to cluster, and assuming some kind of uniformity in scheduling

techniques, the page which has been in memory longest is least likely to be

reused: hence the cyclic list. We see two ways in which this algorithm can fail.

I11-3

First we question its basic assumption. It is not at all clear that modular
programs, which execute numerous inter-module calls, will indeed exhibit
sequential instruction fetch patterns. The thread of control will not string
pages together; rather, it will entwine them intricately. Second, this
algorithm is subject to overloading when used in multiprogrammed memories.

When core demand is too heavy, ome cycle through the list completes rapidly

and the pages deleted are still needed by their processes. This can create

a self-intensifying crisis. Programs, deprived of still-needed pages, generate
a plethora of page faults; the resulting traffic of returning pages displaces

still other useful pages, leading to more page faults, and so on.

ction. Each page table entry contains a "use" bit, set ON

each time the page is referenced. At periodic intervals all the page table
entries are searched and usage records are updated. When a fresh page of memory
is needed, the page unreferenced for the longest time is removed. One can see

that this method is intrinsically reasonable by considering it acting in a computer
where there is exactly one process whose pages cannot all fit into main memory.

In this case the most reasonable choice for a page to replace is the oldest

unused page. Unfortunately this method too is susceptible to overload when

many processes compete for main memory.

Atlas loop detection method. The Ferranti Atlas computer9 had proposed a page-
turning policy that attempted to detect loop behavior in page reference patterns,
then minimize page traffic by removing pages not expected to be needed for the
longest time. It was successful -- only for looping programs. Performance

was unimpressive for programs exhibiting random reference patterns. Implementation

was costly.

IIT-4

Various studies have apperared concerning behavior of paging algorithms.
Fine, McIssac, and Jacksonlo have investigated the effects of demand paging
policies and have questioned whether paging is beneficial. We do not feel that
their conélusion applies to the kind of multiprogrammed environment we have
described. They studied fixed-size programs, that quickly acquired and retained
a large fraction of their pages. Highly interactive, modular prdgrams are likely
to behave differently. Not only may program size vary dynamically (according
to data dependencies), but also such programs should be using a small fraction
of their pages at any one time, and the membership in this set of working pages
should be changing constantiy.

Belady11 has compared some of the algorithms mathematically. His most
important conclusion is that.the "{deal" algorithm should possess mich of the
simplicity of random or cyeclic selection (for efficiency) and some, though
not mich, accumulation of data on past reference patterns. He has shown that
too much "historical® data can have adverse effects (witness Atlas).

In the next section we begin investigation of the working ﬁet concept.

12,13,14

Even though the ideas are not entirely new , there has been no detailed

documentation publicly available.

I1I-5

The Working Set Model

From the programmer's standpoint, the working set of information is the
smallest collection of procedure and data items that must be present in main
memory to assure efficient operation of his program. We have already stressed
that there will be no advance information from either the programmer or the
compiler regarding what information "ought" to be in main memory. It is up to
the operating system to determine on the basis of page reference patterns
whether a page is in.use. Therefore the working set of information associated
with a process is, from the system standpoint, the set of most recently
referenced pages.

We define the working set of information W(t,T) of a process at time t to
be the collection of data items referenced by the process during the process time
interval (t-r,t).

Thus, the data items a process has referenced during the last 7 seconds
of its execution comprise its working set. T will be called the working set
parameter. We will regard the data items in W{(t,T) as being pages, although they

could just as well be any other named data objects. The working set size w(t,r) is
(3.1) , w(t,r) = Number of pages in W(t,r)

A working set W(t,T) has two important, general properties. Both are
properties of typical programs, and need not hold in special cases.
PL.. gggg. It should be clear immediately that the working set size
w(t,0) = 0 since no page reference can occur in zero time. It should
also be clear that w(t,T) as a function of v is monotonically
increasing, since more pages can be referemced in longer process time

intervals. Because a process will reference its more-needed pages

P2,

IIT1-6

rapidly and its less-needed pages slowly, we expect w(t,r) as a
function of T to have a steep initial slope which diminishes to

a more gradual slope. The general character of w(t,T) is suggested
by the idealized curve of Figure 3.1.

gg£=§ggg;gg. Program modularity enables us to say something about the
correlation between working set sizes at two times, t and (t+8).
Correlation is useful in constructing storage allocators, for the
higher the correlation between w(t,T) and w(t+8,T), the better

a prediction w(t,r) is of w(t+B,r). In modular programs, control
passes randomly from one module to another, in such a way that a
working set is more likely to change smoothly, less likely to change
abruptly. Thus, for small time separations B, w(t,T) and w(tfﬁ,T)
are highly correlated, meaning that a measurement of w(t,r) will be
& good estimate for the memory requirement during the process time
interval (t,t+B). For large time separations B, control will have
passed through a great many modules during the interval (t,t+f);
thus w(t,T) gives little information about w(t+p,T), and so wlt,T)

and w(t+B,T) have much less correlation than for small B. Tuis

behavior is suggested in Figure 3.2.

w(t,T)

FIGURE 3.1. Behavior of w(t,T).

Correlation between w(t,T) and w(t+p,T)

—p B

FIGURE 3,2, Correlation between working set sizes.

111-7

Choice of ¢

The value utimately selected for T will reflect efficiency requirements
and will be influenced by system parameters such as core memory size and
memory traverse time. For example, if T is too small, pages may be removed from
main memory while they are still useful, and high page traffic may result.
If 1 is too large, pages may remain in main memory long after being used last,
and wasted main memory may result., Thus the value of 7 will have to represent
a compromise between too much page traffic and too much wasted memory space.

The following considerations lead us to recomménd for T a value
comparable to the memory traverse time T (Figure 2.1). Assuming that memory
allocation procedures balk at removing from main memory any page in a working
set, once 8 page has entered a working set W(t,T) it will remain in main memory
for at least T seconds. Under the very worst of page-shuffling conditions, a
page could be dispatched to auxiliary memory and be recalled immediately; the
time for this round trip is two traverse times, 2T. Therefore a highly-shuffled
page would spend roughly T/2T of its time in main memory. So, for example,
if we wished to insure that a page is available in maiﬁ memory {when needed)

not less than 50 per cent of the time, we would have to choose T a 2T.

I1I-8

Use of Working Sets for Memory Allocation

In our discussion so far we have seen two alternative quintities of possible
use in storage allocation: the working set W(t,T) and the working set size w(t,r).
Complete knowledge of W(t,T), page for page, would be neaded if look-ahead

were contemplated. We have already discussed why past paging policles have shunned

' look-ahead, due to the strong possibility that pre-loading could be futile.

A program organization iikely to be typical of interactive mocdular programs, shown
in Figure 3.3, fortifies our previous argume;t agginst look-ahead. The user sends
requests to the interface procedure A; having interpreted the request, A calls

on one of the procedures Bl""’Bn to perform an operation on the data D. The
called B-procedure then returms to A for the next user request. Each time the
process of this program blocks, the working set W(t,T) may change radically --
sometimes only A may be in W(t,r), at other times one of the B-procedures and D
may be in W(t,r). We can see that when the process blocks for an interaction

with the user the pages of W(t,T) are likely to be different after blocking from

~before blocking. Thus, the fact that a process blocks for an interaction (not

page faults) can be a strong indication of a change in W(t,T). Therefore the
look-ahead, most often used just after a process unblocks, would probably load
pages not likely to be used.

Knowledge of w(t,T) with demand paging suffices to manage memory well.
Before running a process we insure that there are enough pages of memory free
to contain its working set W(t,7), pages of W(t,7) filling free slots on demand.

By implication, enough free storage is reserved so that no page of another working

set is digplaced by a page of W(t,T) [as can be the case with the random, cyclic,

or oldest-unused policies]. Accordingly we will use the working set size w(t,T)

as a measure of memory demand for storage allocatiom.

USER <> A

FIGURE 3.3. Organization of a Program.

I1I-9

Detecting W!t,Tz

According to our definition, W(t,T) is the set of its pages a process has
referenced within the lasi: T seconds. This suggests that memory management
can be controlled by hardware mechanisms, by associating with each page of main
memory a timer. Each time a page is referenced, its timer is set to T and begins
to run down; if the timer succeeds in running down, a flag is set to mark the
page for removal whenever the space is needed. In the appendix we describe
such a hardware memory management mechanism, hardware that can be housed within
the memory boxes. The mechanism has two interesting features:
1. It operates asynchronously and independently of the supervisor,
. whose only responsibility in memory management is handling page
faults. Quite literally, memory manages itself.
2. Analog devices such as capacitative timers could be used to measure
time intervals.
Unfortunately it is not practical to add on hardware to existing systems.
We seek a method of handling memory management with the software. The procedure
we propose here samples the page table entries of pages in core memory at

intervals of O seconds (0 is called the sampling interval) where 0 = 7/K,

K an integer constant being chosen to make the sampling intervals as "fine grain"
as desired. On the basis of page referenced during each of the last K sampling
intervals, the working set W(t,Ko) can be determined, as follows.

As indicated by Figure 3.4, each page table entry contains an "in-core"
bit M, where M=1 if and only if the page is present in main memory. It alsq
contains a string of use bits uO’uI""’uK' Each time a page reference occurs,

12 At the end of each sampling interval O, the bit pattern contained in

0’

uo,ul,...,uK is shifted one position, a 0 enters Uy and u 1s discarded:

“"in-core"

e

O N

TYPICAL PAGE TABLE ENTRY

use bits pointer to page
-

-‘t——

S - QI

SHIFT AT END OF SAMPLING INTERVAL ¢

FIGURE 3.4. Page tahle entries used to detect W(t,Kz).

II1-10

K-1 K

(3.2) .
u, oY
+ u,

{(3.3) U = u, +u + ... +u

so that U=l if and only if the page has been referenced during the last K
sampling intervals, that is, if and omly if it is in W(t,K3). TIf U=} when

M=1 the page is no longer in 'a working set and may be removed from main memory.

III-11

Implementation

The previous discussion has indicated a skeleton for implementing memory

management using working sets. Now we will fill in the flesh.

If the working set ideas are to be consistent with our stated allocation

aims, an implementation should have these properties:

1. Since there is such an intimate relation between a process and its
Qorking set, memory management and process scheduling must be closely
related activities. One canmnot take place independently of the other.

2. Efficiency should be of prime importance. When sampling of page
tables 1s done, it should be only on pages in currently changing
working sets, and it should be dome as infrequently as possible.

3. The mechanism ought to be capable of providing measurements of current
working set sizes and processor time requirements for each process.

Figure 3.5 displays an implementation having the desired properties. Each

rectangular box represents a delay. The solid arrows indicate the paths ﬁhat
may be followed by a process-identifier while it traverses the network of
queues. The dashed boxes and arroﬁs show wheq operations are to be performed
on the time-used variable ti associated with process {; proceésor time used by
process 1 since it was last blocked (page faults excluded) is recorded in ti'
We shall follow a single process through the system to see what transpires:

1. When process i is created, an identifier for it is placed in the
ready liggl’a, which is a 1ist of all processes in the ready state.
Process are seleéted from the ready list to enter service according
to the prevailing priority rule.

2, Once selected from the ready list, process | is assigned a quantum q,»

which upper-bounds its time in the running list. This }ist is a

cyclic queue; process i cycles through repeatedly, receiving bursts ¢

ti<qi

[quantum runout]

[burst over]

Run on a
{page fault] processor [blocked]
for burst g
[quit] |
F-——-ﬂ
[Y ti +qg +t
L——--J
Acquire page
(T seconds) .
RUNNING
o : LIST 47[////]/' Checker
. BLOCKED
. LIST
l [unblocked]}
-~
-
e
i 0~ ti '
I READY
LIST

e
/

e

lAssign quantum q

L—————_

[run process i)

FIGURE 3.5. Implementation of Scheduling.

I1I-12

of processor time until it blocks or exhausts its gquantum q,- Note
that the processor burst 0 is also the sampling interval.

3. 1f process 1 blocks, its identifier is placed in the blocked list,
where it remains until the process unblocks; it is chen re-entered

in the ready 1list.

Perennially present in the running list is a special process, the checker.

 The checker performs core management functions (and as we will see in the next

chapter, it also performs other allocation duties). It samples the page tables
of each process that has received service since the last time it (the checker)
was run, removing pages according to the algorithm discussed at equations 3.2.
It should be clear that if the length of the running list is ¢, sampling of
page'tables takes place only every g0 seconds, not every g seconds.

Asgociated with process { is a counter v, giving the current working set
size wi(t,T). Each time a page fault occurs a new page enters wi(t,T) and so

v, mugt be increased by one. Each time a page is removed from wi(:,w) by the

checker, wi is decreased by one.

Having completed its management duties, the checker replenishes vacancies
in the running list by selecting jobs from the ready list according to the

prevailing priority rule. More will be said about this in the next chapter.

II1-13

Sharing

Sharing finds its place maturally.

When pages are shared, working sets will overlap. If Arden's’ sugzestion
concerning program structute* is followed, sharing of data can be accomplished
without modification of the regime of Figure 3.5. If a page is in at least one
working set, the "use" bits in the page table entry will be turned on and the page
will not be removed. To prevent anomalies, the checker must not be permitted to
examine the same page table more than once during one of its scans. Allocation
policies should tend to run two processes together in time whenever they are
sharing data (symptomized by overlap of their working sets) in order to avoid

unnecessary reloading of the same information.

*If a segment is shared, there will be an entry for it in the segment tables
of each participating process; however, each entry points to the same page
table. Each physical segment has exactly one page table describing it, but
a name for the segment may appear {n many segment tables.

ITI-14

Summary

In a synopsis of previous work on core memory management culled from varied

sourcesg we saw that memory management operates in two basic stages: page-in

"and page-out. Page-in should be done on demand, without look-ahead- page-out can

be done in any of several ways. Page-out is the heart of the problem, for if

pages least likely to be reused in the near future are removed, the traffic of
returning pages is minimized. The working-set strategy, which attempts to have
present in main memory every page ''needed” by each running process, which balks
at the idea of displacing any page in a working set from main memory, is offered
as a viable solution to the problem. Choice of the working set parameter T

will depend on compromises among page traffic, amount of unused memory, and
required aﬁailability of pages. The working set size is the best quantity to
measure for memory allocation purposes, and leads to economical implementation
of scheduling and allocation functions.

Lﬁoking at this chapter from a slightly different viewpoint, we have seen
four major contenders for paging policies: Kandom, Cyclic, Oldest-unused, and
Working-Set. Fér modular programs, the type ultimately expected to predominate in
the utility environment, Random brings on the highest page traffic, Working-Set
the lowest. Although Random and Cyclic are the most inexpensive to implement, the
added cost of Working-Set is more than offset by its accuracy and its compatibility
(as we shall ree) with generalized allocation functions.

In the next chapter we look into notions of 'balance'; there we will

‘see how the notion of working ret, operating together with the implementation

proposed by Figure 3.5, blends into one decision function the heretofore

independent activities of process-scheduling and memory-management.

" CHAPTER IV -- BALANCE ALLOCATION

Introduction

In Ehis chapter we are seeking to formulate an allocation policy as a

minimization problem
{minimize f}

where the function f is at a minimum whenever a condition of "balance'" exists.
We begin by defining carefully the notions "demand" and "balance", and showing
how demand is measured dynamically by the operating system. The last part of
the chapter illustrates a possible allocation policy founded on the ideas defined;
the resulting policy has the feature that overhead will depend on the '"degree

of imbalance" and not on load conditions or the size of the computer system.

Demand
Our purpose in this section is to define "memory demand" and "processor
demand" , then combine these into the single notion "demand".

We define the memory demand m, of process i to be

1

w
i
(4.1) m, min(M ,1) Ogmigl

where M is the pymber of pages of memory, and wi = wi(t,T) is the working

set count maintained by the allocation strategy of Figure 3.5. If a working
set contains more than M pages (it ia bigger than memory) we regard its demand
to be m = 1. Presumably M is large enough so that the probability (over the

ensemble of all procesées) Pr[m=1l} is very small.

Iv.2

Processor demand is Jifficult to define without some discussion. We want
to define the processor demand Py of process i to be the expected fractional
processor requirement.before the next time process i blocks {exclusive of page
faults). One method of doing this is described below.

Let q be the random variable of processor time used by a process between

*

interactions . In general character, the probability density function for g,
fq(x), is hyperexponential (for a complete discussion, see Fifels):

-&x -bx O<cach
(4.2) fq(x) c ae + (1-c) b e Ocecel

fq(x) is diagrammed in Figure 4.1; most of the probability is concentrated
toward spall values of q, and fq(x) has a long exponential tail. Given that
it has been y seconds (process time) since the last interaction, the conditiohal

density function for time until next interaction is

fq(x-W) c a e-axe-ay + (l-¢c) b enbxe-bY
(4- 3) fqu(x) = s = :
_ J f (z) dz c e ® + (1-0) e bY
Y q

which is‘just that portion of fq(x) for q > y with its area normalized to ﬂnity.

The conditional expectation is

o £ eﬁav + 1-¢ e-bY
a b
(4.4) Qly) = J x £, (x) dx =
af ¥ . -ay -by
0 c e + (l-¢) e

* . .
A process "interacts" when it communicates with something outside its name
space, such as a user at a console, or another process.

fq(x)

e - -

FIGURE 4.1. Behavior of fq(x).

Q(y)

}

Q)]

Q(0)

o= Y

FIGURE 4.2. Conditional expectation function Q(Y)

IV-3

The conditional expectation function Q(y) is shown in Figure 4.2, It

' -~ 1
starts at Q0) = § + Le and rises to a constant maximum of Q=) = W

b
Note that for large enough y, the conditional expectation becomes independent
of y. The conditional expectation Q(y) is a useful predict;on function --
if vy seconds of processor time have been used by some process since {ts last
interaction, we may expect Q(y) seconds to elapse before its next interactionm.
It should be clear that the conditional expectation function Q(y) can be determined

and updated automatically by the operating system.

We define the processor demand P, of process i to be

(4.5) L
' Fi N Q) - hE

- A

where N {s the number of processors and £, is the time-used variable maintained by

the allocation strategy of Figure 3.5.

We define the demand gi of process i to be a pair

(4.6) _t_i_i = (Pi ’mi)

where pi is its processor demand (equation 4.5) and mi is its memory demand
(equation 4.1). That the processor demand is P; tells us to expect process i
to use P, of the processors for the next Q=) seconds, before its next

* .
interaction . That the memory demand is my tells us process 1 is most probably

going to use (miM) pages of memory during the next few time units.

* .
A reasonable choice for the quantum qy (figure 3.5) granted to process i

might be q = k Q(ti) for some suitable constant k > 1.

IvV-4

Balance

The computer system is sald to be balanced if simultaneously

4.7 Z P = « 0<agt

processes in
running list

i‘ﬂ
(4.8) 24 m
procesges in
rumming list

O<cpgl

0
=

where p is a processor demand, m a memory demand, and &, are constants
chosen to cause any desired fraction of resource to constitute balance. If
the system is balanced, the total demand presented by running list processes
Just consumes the available fractions of processor and memory resources, If
equation 4.7 alone holds we will say that the system is balanced with respect
to processor; if equation 4.8 alone holds, we will say it is balanced with

respect to memory, We can write equations 4.7 and 4.8 in the more compact form

(4.9 Y 4 (@,B) 0<a,pg 1

processes in
running list

where d = (p,m) i8 a demand, defined by equation 4.6. Balance exists when

equation 4.9 holds.

iv-5

Demand and Usage Spaces

To help visualize the operation of balance-seeking allocation policies,

*
it is useful to define two metric spaces : the demand space D and the usige

space U, both having the same metric A(x,y). The purpose of a metric is to
enable us to assign a "magnitude" to a demand. Both D and U are two-dimensional
spaces; any point in either space can represent a demand (p,m). The metric

Mx,y) might be the usual one

(4.10) My m) = (ypp” + (oypomyp’)1/2
or perhaps

(4.1D) A (("1"“1)’("2’”2)) = °1|P1'p2‘ + Cz““l"mzl

for some positive constants c, and C,- Metric 4.10 might be chosen 1f it
were desirable to interpret D and U as Euclidean spaces; metric 4.11 might be
chosen if it were desirable to define differences between demands in terms of

equipment costs. To preserve generality, we will deal in an arbitrary metric.

*A metric space is a set S of elements and a metric A(x,y) defined for altl
x,y in S. The metric A(x,y) is a distance measure between points in S, and
satisfies these properties for all x,y,z in S:

1. A(x,y) > 0 and A{x,y) = 0 iff x = y.
2. AMx,¥) = A(y,x)
3. A(x,y) < Mx,2) + A(z,Y)

IV-6

In the space D there is a set of special points, the demand points.

Each demand point stands for the demand of some process in the ready list.

This set is

(46.12) {(p,m) € D |(p,m) = (p,»m), i some process in ready list|

All this says is that the demand space D is regarded as a two-dimensional

queue containing points representing processes in the ready list,

In the space U there are two special points. One is the desired demand

point
(4.13) u - (o, B)

where equation 4.9 defines ¢ and f. The other is the total demand point

(4.14) u = z d d = (p,m)

processes in
running list

u is simply the left side of equation 4.9 and u, the right side,

The degree of imbalance A is the deviation from balance:

(4.15) A = Mﬂ.y,o)

The magnitude of a demand d is its distance from the origin in D:

(4.16) ko= Ad,0) 0 = (0,0)

All these ideas are illustrated in Figure 4,3,

m m
* demand points | ‘
g ®
° * ' .
) ./ Y = @R
‘_1,1 = (Pi ’mi) u
ui‘—' 7\@_1 ,Q)
e D = P
Q 1}
- DEMAND SPACE D USAGE SPACE U

FIGURE 4.3, Demand and Usage Spaces.

Iv-7

Example of a Policy

The remainder of this chapter describes a possible balance-seeking
allocation policy. We must emphasize that this is not the only possible policy;
it illustrates an approach motivated by the desire for a load-independent, |
economical strategy.

Basically, the idea of the policy is: whenever the system is below balance
(u is closer to the origin than go) choose as next for service a process in
the ready list whose demand is most nearly (go-g). That is, whenever u ¢ Yy

attempt to move u closer to Yy Expressed as a minimization problem, the

¥

policy is

(4.17) {minimize A(u,u,)}

The checker process (Figure 3.5) plays an important role in the realization
of this policy. When run, it updates the demand (p,m) for_eaéh process run
sipce the last check, at the same time keeping track of the total running list
demand u (equation 4.14). The checker admits new processes to the running
list according to the policy 4.17.

So simply stated, policy 4.17 does not satiefy one of our most basic
requirements: fairness. There is discrimination against large demands. Suppose
the typical demanq is of magnitude Hg» 80 that the running list is populated
principally by processes whose demands are of magnitude Ko When such a process
exits the running state it typically causes the degree of imbalance to become koo
causing a demand to magnitude kg to be serviced next. Demands of magnitude
much larger than Ho will typiceally receive little service. The remedy for this

compiicates the policy. The price for fariness will be an increase in the

*
average degree of imbalance , since it will be necessary to reserve resources

in order to make them available to large demands.

*
 Since the total demand u is a (time-dependent) random variable, the random

variable A = A(u,u,) has a (time-dependent) expectation.

V-8

The method we have chosen to resolve the problem divides the space D into

K shells and guarantees that shell j receives a fraction f-1 of resources. The

following discussion outlines a procedure for accomplishing this.

Figure 4.4 shows the space D divided into shells whose boundaries are

of constant distance (on the metric M(x,y)) from the origin; the center of

shell j is at a distance ui.

Corresponding to this, the ready list is divided

into K levels, a demand point in shell j being listed (in increasing order of

magnitude) in level j.

Define a resource cycle to be a time interval during which the sum of the

magnitudes of the demands serviced is some constant p.

may not be of equal duration.

Two resources cycles

During each resource cycle shell } is guaranteed

to receive fjp units of resource. We want to find integers nl,nz,...,nx, where

nj is the number of jobs from shell j to be serviced during a resource cycle

to insure its fraction fj of resource.

Figure 4.4 shows that “j can be regarded as typical of the demand magnitude

of demand points within shell j. If, during a resource cycle, nj jobs are

gserviced from shell j we must have

(4.18)

however

(4.19)

80

(4.20)

n
¢ = 1
|
nlul + ... + nKFK
P = nlul + ... + nKuK

fj p
n = =
h| My

1=1,2,...,K

3=1,2,...,K

shells:

DEMAND SPACE D

Level 1

FIGURE 4.4.

Levéel 2

READY LIST LEVELS

‘Shells in Demand Space.

Level K

= p

Iv.9

Figure 4,5 shows the algorithm used by the checker to implement policy 4.17.
Until run, the checker is in the blocked state; after completing its duties,
it re-enters the blocked state. In the diagram there are two blocks deserving
comment, labelled A and B. 1If level ¢ is an "underserviced level", then fewer
than n. jobs have been serviced from it during the current resource cycle;
that is, Nz > 0. Suppose nj jobs have already been serviced from level }j
(so that Nj = 0); Block A is entered. If there are jobs waiting in a level
higher than } it is necessary to reserve resources: the system is left unbalanced
so that the next time the checker is run the degree of imbalance may be large
enough to accomodate the waiting demand. If there are no such higher-level
jobs waiting, a job of smaller &emand might as well be serviced, so Block B
1s entered. A job in an underserviced level g is eligible for service if it
satisfieg these two requirements:
1. Its demand i = (p,m) 18 not larger than (Eo'g) [vector inequality]
so that if it is serviced, the total demand point u is moved closer to,
but not beyond, the désired demand point Y-
2. Its demand magnitude p = A(d,0) is the largest of all demands in
level g. [If the jobs are ordered by demand magnitude, the required
L]
job is the first ome in level g satisfying requirement 1.]
_ The algorithm operates iteratively; that is, additional jobs will be

L

serviced, one by one, until u is so close to 4y that no new job can be serviced

without moving u beyond . Therefore the computation time required to restore

0 |
balance depends roughly on the degree of imbalance A and not on the total demand u.
This means that this balance policy will operate with about the same overhead

regardless of the total demand u.

[new resource cycle]
n1 -+ Nl,...,nK-b NK -
0 l X >
4 BLOCK &
l [uﬁblocked]
compute u

!

v

’(\(ﬂag) H h(}.l.o%
l <
Mu,u,) + A
(shell in which A lies) + j

[no job found}

search underserviced levels
among j,...,2,1 for eligible
job

any job waiting in
underserviced levels
among (j+1),...,K

[job found]

(shell in which job found) +
{demand of job) 4 (p,m)

FIGURE 4.5. Balance policy used by Checker Process.

IvV-10

Sﬁmmar

The demand of a process, its most probable resource usage during the

immediate future, has been carefully defined. When the total demand by running

processes equals the available resource, balance exists. A "balance policy”
strives to allocate resources to maintain balance. Demand and usage spaces
were introduced to serve as conceptual aids to understand the operation of
balance policies. We described in detail a possible policy, which attempts
to move the total demand point toward the desired demand point in usage space.
An important feature of this policy is that overhead depends primarily on the
degree of imbalance, not on the total demand or the size of the computer
system. Another important feature of this policy is that all jobs receive

service, not just those having "typical" demands; but the price for fairmess

1is increased aberage imbalance.

CHAPTER V -- FUTURE WORK

It is quite clear that, even with the simplest processor-memory computer

system, the allocation problem is far from trivial. This thesis proposal has

devoted nearly all its time to isolating issues, clarifying concepts, and

making models. The thesis itself will be devoted primarily to analyzing these

models.

1.

More specifically:

‘We propose to analyze the balanced-computer-system model in order to

discover how it looks to a process. To do this, we will have to make
reasonable agsumptions about demand probability distributions;
fortunately there is conaiderable data available in the literature

'
showing the general form of such distributions. One very promising
method of analysis, similar to that used by Scherrle, is this: it
is difficult to model a single demand, not so difficult to model a
whole collection of demands. Starting from a few known prdpertles of
the whole collection of demands, we can postulate a hypothetical entity,
the "virtual demander", which has (in some sense) 1)n of the properties
of a collection of n "virtual demanders". No claim can be made that a
virtual demander is like any real demander. However we can establish
cénfidence levels describing the accuracy with which a virtual demander
models a real one. Using the analysis we can predict such quantities
as response times, processing rates and chip consumptions. As described
in Chapter I we can also define and predict overload. To date no model
of a multi-process computer system has Been set forth that can can be
"analyzed" by means other than simulation. Such an analysis would

constitute a significant contribution.

2. We have yet to turn a persplcacious eye toward allocation problems
arising from sharing -- that is, when working sets of different
processes overlap. Of particular interest are questions like: 1Is
the allocation problem complicated {or simplififed) by sharing?

What is the meaning of "memory demand' when it includes shared pages?
How are processes to be charged for memory that is shared? Is there
anything to be gained by attempting to run two process concurrently
when they are sharing infofmation?

3. We have yet to show howrthe pricing structure -~ chips, bidding --
affects allocation decisions. In particular, we shall show how
our model may be interfaced with an economic structure such as
we have demcribed; this has two aspects:

A. Description of how user bids are employed, how
his account is charged.

, B. Description of how the administration acquires and

interprets data on demand and usage.

4. We want to generalize the structure of ﬁhe computer system of Figure é.l
where memory has two levels to that of Figure 5.1 where memory has

.n levels. The main problem here is the traverse time from main to
auxiliary memory is no longer simple to determine. It may require
.generalizations of the notion "working set'" and affect the behavior

~ of the allocator with respect to handling page faults. The n-level

memory system is expected to become increasingly prevalent in

computer systems.

MAIN AUXTLIARY

AN o e
[P =

M M
1 2 .
oty ——— g — -]
Tl TZ Tn-l
0<T1<T2< <Tn_1
FIGURE 5.1. n-level Memory Hierarchy,

APPENDIX A -- HARDWARE IMPLEMENTATION OF MEMORY MANAGEMENT

Just as hardware is used to streamline the address-mapping mechanism,
so too hardware can be used to streamline memory management. The hardware
deseribed here associates a timer with each physical page of main memory teo

measure the working set parameter 7.

Each process, upon creation, is assigned an identification number, i, which

th
is used to index the process table. The 1 entry in the processtable contains

th
information about the i process, Iincluding its current demand (pi’mi)' Because
this demand information is stored in a common place, the memory hardware can

update the memory demand m, without calling the supervisor. Whenever a page

i

fault occurs, the new page is located in auxiliary memory and transferred to
main memory; then a signal is sent to the management hardware to free a page of
main memory. The hardware selects a page not in any working set and dispatches
it directly to auxiliary memory, without bothering the supervisor. This hardware
modifies the page table entry pointing to the newly deleted page, turning the
"in-core" bit OFF and leaving a pointer to the new location of the page in
auxiliary memory.

Figure A.1 indicates that with each page of memory there is assocliated a

page register, having three fields:

1. x-field: x is a pointer to the memory location of the page table entry
pointing to this page. A page table cannot be moved or removed without
modifying =.

2. t-field: ¢t is a timer to weasure off the interval 1. The value of T |
to be used is found in the t—registerf The supervisor modifies the
contents of the t-register as discussed below.

3. A-field: A is an alarm bit, set to 1 if t runs out.

t-register

———
L L]

: 4
. n t A

Timer

|

Page table Alarm
entry pointer

TYPICAL PAGE REGISTER

PAGE REGISTERS

MAIN MEMORY

FIGURE A.1. Memory Management Hardware.

A2

Operation proceeds as follows:
1. When a page is loaded into main memory, = is set to point to the
correct page table entry. The "in-core" bit of that entry ia turned ON.
2. Each time a reference to some location within a page occurs, ilts page
register has T - t and 0 + A, The timer t begins to run down
(in real time), taking T seconds to do so. |
3. 1If ¢t funs down, 1 + A, Whenever a fresh page of memory is needed, the
supervisor sends a signal to additional memory hardware (not shown)
which scans pages looking for a page with A=(3. Such a page is
diapatched direcﬁly to auxiliary memory. n is used to find the page
table entry, turn the "in-core'" bit OFF, and leave information there
 to permit fpture retrieval of the page from auxiliary memory. Note
that a page need not be removed when A=0; it is only subject to removal..
This means that a page may leave and later re-enter a working set
without actually leaving main memory.
The timers t are running down in real time. The value in the t-register
must be modifiable by the supervisor for the following reason. As in Figure 3.5
the running list is cyeclic, except now we suppose that each process is given a
burst B of processor time (P need not be related to the sampling interval), and
continue; to'feceive bursts p until iﬁs runping-list quantum is exhausted. 1If,
on a par%;cular cycle, théré are n entries in the running list and N processors
in serviée, a given process will be unable to reference any of its pages for
about ng seconds. So the supervisor should be able to set 1 to some multiple

N
of Eﬂ » for otherwise management hardware will begin removing pagea of running

processes. However T should never be less than some multiple of the traverse time T,

(Figure 2.1}, otherwise when a process interrupts for a page fault its working

set may disappear from core memory.

REFERENCES

"J.B.Dennis and E.C.Van Horn. "Programming Semantics for Multiprogrammed
Computations.”" Comm ACM 9 (March 1966), 143-155.

J.B.Dennis. ''Segmentation and the Design of Multiprogrammed Computer
Systems." JACM 12, 4 (Oct 1965), 589-602.

J.H.Saltzer. "Traffic Control in a Multiplexed Computer System."
MAC-TR-30, Project MAC, July 1966.

R.M.Fano and E.E.David, "On the Social Implications of Accesgible Computing."
AFIPS Conf. Proc. 27 (Nov 1965). Baltimore: Spartan Books, 243-247,

L.L.Selwyn. '"The Information Utility." Industrial Management Review 7, 2,
Spring 1966.

D.Parkhill. The Challenge of the Computer Utility. Addison-Wesley, 1966,

C.V.Ramamoorthy. "The Analytic Design of a Dynamic LookAhead and
Program Segmenting System for Multiprogrammed Computers." Proc. 21
Nat'l Conf. ACM (1966).

B.W.Arden, et al. "Program and Address Structure in a Time-Sharing
Environment." JACM 13, 1 {(Jan 1966), 1-16.

T.Kilburn, et al. "One-Level Stroage System.' IRE Trans. on Elec. Computers.
Vol EC-11, 2, April 1962.

G.H.Fine, P.V.McIssac, C.W.Jackson. 'Dynamic Program Behavior Under Paging."
Proc. 21 Nat'l Conf. ACM (1966).

L.A.Belady. "A Study of Replacement Algorithms for a Virtual-Storage
Computer.' IBM Systems Journal, Vol 5, 2, 1966. 78-101.

P.J.Denning. "Memory Allocation in Multiprogrammed Computers."
MIT Project MAC Machine Structures Group Memo No. 24, March 1966.

Progress Report III, MIT Project MAC (1965-1966), 63-66.

J.B.Dennis. "Program Structure in a& Multi-Access Computer." MAC-TR-11,
Project MAC.

D.W.Fife. "An Optimization Model for Time-Sharing." Proc. 1966 s8JCC.

A.L.Scherr. "An Analysis of Time-Shared Computer Systems." MAC-TR-18,
Project MAC, June 1965. ' :

A~
e

