MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

r p

ID Run-time System

Computation Structures Group Memo 311
November 10, 1990

Stephen Brobst
James Hicks
Gregory Papadopoulos

Jonathan Young

This report describes research done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Funding for the Laboratory for Computer
Science is provided in part by the Advanced Research Projects Agency of the De-

\ partment of Defense under Office of Naval Research contract N0G0014-84-K-0099. ‘
IV R

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

ID Run-time System

Stephen Brobst James Hicks Gregory Papadopoulos Jonathan Young
November 10, 1990

Contents

1 ID Run-time System External Specifications 3
LL File SystemInterface 3
1.2 Storage Allocation Interface 5

2 Context Management [

2.0.1 Heap Mamagement 7

3 File System Implementation 7

4 Storage Management Implementation 7
4.1 Milestone 1: In-line allocation, norecycling 8
4.2 Milestone 2: SVCs for contexts, free-list management . . . , ..., 8
4.3 Milestone 3: Performance optimization, .., 9
4.4 Milestone 4: Storage management across multiplePEs 9
4.5 Storage Management: Schedule and Status 9

4.5.1 Status: Milestone 1.,, _ " 10
4.5.2 Status: Milestone 2., .., .., 7 10
453 Status: Milestone 3.,, T 10
454 Status: Milestone 4., T 10

5 Implementation of the First Milestone Storage Management System 10
Bl Get-Context......... oL 11
5.2 Retum—context..................., 11
53 Get-Aggregate ..., Lo 11
b4 Retumn Aggregate.l 11

6 Implementation Details for the Second Milestone Storage Management System 11
61 Context Management = 12

611 Get Context, 12
6.1.2 Return Context. _ "7 12
6.1.3 Initialization of Context Free List. 13
62 Heap Management10ttt 14
0.8 Get Aggregate it 14
6.3.1 Return Aggregate, . . . 7Tt 14
6.3.2 Initialization of Heap Storage L L 14

7 Initialization 14

7.1 Exception Handler Initialization 14
7.1.1 Initialization of Intrinsic Operation Code 14
7.2 Initializationof Memory L 15
721 RTS Initialization 15
722 Global Comstants, 15
7.3 ExecutionManager. _ . 15
73.1 Boot CodeBlock i iuu 15

1 ID Run-time System External Specifications

This section describes our first cut at the external specifications for the ID Run-time System (RTS).
These specifications are by no means intended to be exhaustive, but rather represent a starting point
for development of the RTS. We expect to experiment with a number of different implementations
as the RTS matures. We divide the specifications into two types: file system interfaces and storage
management interfaces. These are described in the next two subsections.

1.1 File System Interface

The file system interface is modeled after Common Lisp [2] system calls for low level I/0. To open
{close) files for reading and writing the standard functions are required. Note that we will not,
initially, implement protection modes on the file system interfaces,

open filename &key :direction :if-ezists sif-does-not-erist = fd {RTS Operation]
The filename argument is a pointer to a character string containing the name of the file to be
opened. The element type for the stream transactions will be defined as buffer of unsigned bytes.
The return value of this function is an integer file descriptor for the opened file.
:direction
This argument specifies whether the stream should handle input, output, or both.
s :input
The result will be an input stream. This is the default.
s :output
The result will be an output stream.
® :io
The result will be a bidirectional stream.
iif-exists
This argument specifies the action to be taken if the :direction is :output or :io and a file of the
specified name already exists. If the direction is tinput, this argument is ignored.

® eIror

Signals an error. This is the default.

s :rename-and-delete

Renames the existing file to some other name and then deletes it. Then creates a new file
with the specified name,

® overwrite

Uses the existing file. Qutput operations on the stream will destructively modify the file. If
the :direction is :io, the file is opened in a bidirectional mode that allows hoth reading and
writing. The file pointer is initially positioned at the beginning of the file; however, the file
is not truncated back to length zero when it is opened.

s :append
Uses the existing file. Qutput operations on the stream will destructively modify the file.
The file pointer is initially positioned at the end of the file. If the :direction is tio, the file is
opened in a bidirectional mode that allows both reading and writing.

e nil
Does not create a file or even a stream, but simply returns a file descriptor with the value —1
to indicate failure.

:if-does-not-exist
This argument specifies the action to be taken if a file of the specified name does not already
exist.

® lerTor

Signals an error. This is the default if the :direction is :input, or if the :if-exists argument is
:overwrite or :append.

e :create

Creates an ampty file with the specified name and then proceeds as if it had already existed
(but does not perform any processing directed by the :if-exists argument). This is the default
if the :direction is :ouput or :io, and the :if-exists argument is anything but :overwrite or
:apend.

& nil
Does not create a file or even a stream, but simply returns a file descriptor with the value —1
to indicate failure.

close fd = void [RTS Operation]
The CLOSE operation breaks the connection between the file descriptor fd and its associated open
file. The file is closed and the file descriptor is freed for re-use with some other file. It is an error
to call an I/O function using a file descriptor after it has been freed for re-use.

Note that subsequent calls to OPEN may recycle fd. As in previous sections, interleaved calls to
OPEN and CLOSE will use a hounded number of file descriptors.

The standard read and write functions are required as a means of performing the actual I/0
functions:

read fd buf n = nread [RTS Operation)
This function takes as arguments a file descriptor (fd), a pointer to a pre-allocated buffer (buf),
and the number of bytes to read (n). It then reads n bytes from the file specified by fd into the
pre-allocated buffer (buf). Its return value (nread) is an integer indicating the number of bytes
read. A return value of zero means end-of-file, a value of —1 means an error of some sort, and a
value less than n means that only nread bytes were remaining in the file,

write fd buf n = nwritten [RTS Operation)

This function takes as arguments an integer file descriptor (fd), a pointer to the buffer to be written
(buf), and the number of character bytes to write (n). It then appends n character bytes to the file

specified by fd from the specified buffer (buf). Its return value (nwritten) is an integer indicating
the number of bytes written, There is generally some kind of error condition if nwritten is not equal
to n.

The read and write procedures both use buffers for passing character byte-vectors. These
buffers have imperative (non-i-structure) semantics. Using imperative buffers allows efficient recy-
cling of buffers, because they do not have to be explicitly cleared between uses — their contents
are overwritten. This also makes the implementation of write easier because it does not have to
defer on empty elements of the buffer.

ERROR string [RTS Operation]

Signals an error to the host. Qther threads executing on the machine will not be interrupted; as
in the TTDA model, when the machine becomes idle, the execution manager will try to print out
the string from each error on the console.

1.2 Storage Allocation Interface

The storage allocation system has two classes of interfaces: one for context allocations and deallo-
cations, and a second for heap allocations and deallocations. These interfaces will be described in
this section.

The Monsoon PE is a pipelined architecture., Currently, the machine can execute up to eight
separate “sequential threads” in parallel, Although the ID language and compiler ensure that
no two user threads can interfere with each other, the RTS routines must use locks and careful
discipline to avoid interfering with any other thread.

RTS routines are called via asynchronous traps from user code. On the Monsoon PE, asyn-
chronous traps are allocated a special ephemeral context. There is a different ephemeral context
for each thread. Thus, trap code such as the RTS is constrained to be an uninterrupted thread of
instructions unless it allocates another context.

Non-local memory references are two-phase, and may take an arbitrary amount of time to
transmit and process. Thus, low-level RTS routines may access only processor-local state. This
restriction is most exacting on the context-management routines; all other traps may simply allocate
a context (e.g. make a procedure call) in order to access non-local state.

2 Context Management

A conteztis a continuation (as defined in SWIS) whose IP? points to the beginning of a code block
and whose Node and FP point to the beginning of a portion of local merory on a processing element,
called a frame. A frame is assumed to be a contiguous, non-interleaved block of storage. Fach
context also has associated with it a color (for statistics) and a mode (for system/user distinctions).

A code block descriptor pointer (cbdp) points to the beginning of a data structure containing
four pieces of information: (1) a code pointer, (2) a symbol pointer, (3) a thunk pointer (if present),
and (4) the color and mode of the code block. For the purposes of context management, we are
interested only in fields (1) and (4) of this data structure. A code pointer (cp) points to the beginning
of a code block in instruction memory. When making a procedure call, it is the responsibility of
the calling procedure to determine the code block descriptor pointer of the procedure being called.

1t is assumed that an IP points to the same insiruction on each PE.

Contexts are either fized-size or variable-size; the size of a fixed-size context is not specified
here. It is expected that fixed-size contexts are more efficiently allocated than variable-sized ones.
(On the other hand, no similar performance differential is expected between the allocation of local
and non-local contexts.)

Since each context points to storage on one particular PE, we plan to achieve load balancing in
the near term by distributing the contexts randomly to all PEs, so each PE manages a collection
of contexts from all other PEs. Currently, there is no plan to achieve load balancing by migrating
contexts across PEs; a context will always be managed by the same PE.

GET-CONTEXT cbdp = contezt [RTS Operation]
Returns a context for use in calling the procedure described by the code block descriptor pointer
cbdp. Allocates temporary frame storage on an arbitrary PE and returns a continuation containing
the initial IP of the procedure, the color of the procedure, and a pointer to the frame storage.
Every word in the active area of the frame is guaranteed to have presence bits empty.

RETURN-CONTEXT context =>void [RTS Operation]
Informs the RTS that all activity has ceased in procedure activation corresponding to contert, which
must be a context which was returned by GET-CONTEXT. In particular, every word in the active area
of the returned context must have presence bits empty. Executing this instruction enables the reuse
of the temporary storage allocated.

We do not guarantee that a GET-CONTEXT which immediately follows a RETURK-CONTEXT will
return a context which points to the same portion of frame storage. However, any interleqved
sequence of calls to GET-CONTEXT and RETURN-CONTEXT in which each call waits for the previous
call to finish? and in which each context allocated is returned is guaranteed to use no net resources;
the amount of frame storage available at the end of the sequence will be the same as the amount
available at the beginning.

It is an error to return a context more than once,

GET-VARIABLE-CONTEXT cp length => context [RTS Operation]

Returns a context, fully instantiated, for use in calling the procedure described by the code pointer
cp. Allocates temporary frame storage of at least size length (integer) on an arbitrary PE and
returns a continuation containing the initial IP of the procedure, the color of the procedure, and a
pointer to the frame storage.

RETURN-VARIABLE-CONTEXT contezt = void [RTS Operation]
Like RETURN-CONTEXT.

GET-LOCAL-CONTEXT cp = contezt [RTS Operation]

Same as GET-CONTEXT except the PE of the context returned is constrained to be the same as the
current PE.

RETURN-LOCAL-CONTEXT contezt = void [RTS Operation)
Like RETURN-CONTEXT.

GET-LOCAL-VARIABLE-CONTEXT cp length =>context [RTS Opecration)

Returns a context, fully instantiated, for use in calling the procedure described by the code pointer
¢p. Allocates temporary frame storage of at least size length (integer) on the current PE and returns

A token returned by an invocation of an SVC is sufficient to indicate that the call has finished.

6

a continuation containing the initial IP of the procedure, the color of the procedure, and a pointer
to the frame storage.

RETURN-LOCAL-VARIABLE-CONTEXT contezrt = void [RTS Operation]
Like RETURN-VARIABLE-CONTEXT.

2.0.1 Heap Management

The ID heap consists of those storage locations which are managed as aggregates by the ID RTS.
The heap is a global resource; the system makes no effort to allocate objects near to a given
Processor.

Similar to the contract obeyed by the frame management instructions, we guarantee that there
is a discipline under which repeated calls to the allocator will not use an unbounded amount of
storage.

GET-AGGREGATE length = object [RTS Operation]
Returns an ID aggregate object reference (type “head”) to a newly allocated heap object whose
active area is of length at least length (an integer). Every word in the active area is guaranteed to
have presence bits empty.

RETURN-AGGREGATE object = void [RTS Operation)

Informs the RTS that no more memory requests will reference object, which must be a pointer
returned by GET-AGGREGATE, and thus that the storage allocated may be reused. It is an error to
return an object more than once.

Like the frame manager, we do not guarantee that a GET-AGGREGATE which immediately follows
a RETURN-AGGREGATE will immediately reuse the same storage. However, any interleaved sequence
of calls to GET-AGGREGATE and RETURN-AGGREGATE in which each call waits for the previous call
to finish® and in which each ob Ject allocated is returned is guaranteed to use no net Tesources;
the amount of heap storage available at the end of the sequence will be the same as the amount
available at the beginning.

Note that unlike frames, returned aggregates may still have words in the active area which are
not empty. The RETURN-AGGREGATE call ensures that all words become empty before this storage
is reused.

Do we want GET-LOCAL-OBJECT & RETURN-LOCAL-OBJECT as well?

3 File System Implementation

Using the file system interfaces given in the previous section, along with primitives for sequential-
izing I/0, we will begin work on the file system in mid-July. However, necessary language support
issues are not scheduled to be resolved for a full-blown 1/0 system in the ID language. Priority
will be given to storage management implementation until that time.

4 Storage Management Implementation

This section provides a description of our plan for storage management implementation in the ID
run-time system (RTS). The plan is broken into four milestones, as follows:

YA token returned by an invocation of an SVC is sufficient to indicate that the ¢all has finished.

1. In-line allocation, no recycling.
2. Supervisor call traps (SVCs) for context allocation, free-list management.
3. Performance optimization.

4. Free-list management of contexts across multiple PEs.

Each milestone represents an enhancement upon its predecessor, based on improved instruction
set support or more sophisticated algorithms for storage management.

4.1 Milestone 1: In-line allocation, no recycling

Milestone 1 of the RTS is implemented with I50, our initial subset of the Monsoon Instruction
set. IS0 is limited in that it supports only spin-locks, and does not support exceptions or tempo-
raries. Our first prototype of the RTS involves primitives for get-contezt (frame allocation) and
get-aggregate (heap allocation). The code for these primitives is generated in-line by the compiler
where needed by the program to perform storage allocation.

Storage is allocated by simply incrementing a pointer into a free space area. Separate pointers
at each end of a free space monolith are used to facilitate partitioned allocation of contexts and
aggregates. However, since the pointers advance from opposite end of the free space monolith,
the size of the partitions allocated to contexts and aggregates may vary dynamically according to
program requirements (i.e., there is an overall maximum of storage that can be allocated, but no
arbitrary limit is placed on the proportions allocated between contexts and aggregates). Figure 1,
below, illustrates this scheme.

In this simple model there is no recycling of storage. When the context-pir and aggregate-ptr
shown below meet, there is no space left for allocation. In such a case, the behavior of the machine
is undefined; it may crash or it may continue executing erroneously by allocating over non-free
space.

gt

.

\

Context-Ptr Aggregate-Ptr

Figure 1: Allocation scheme for get-contert and get-aggregate.

4.2 Milestone 2: SVCs for contexts, free-list management

Milestone 2 of the RTS storage management system is also implemented. It makes use of exceptions
as provided by the IS1 subset of the Monsoon instruction set. The milestone 2 storage allocation
scheme gets rid of in-line coding for both context and aggregate allocation. Moreover, free-list

management is performed in both cases to facilitate storage recycling. Instead of code in-lining,
SVC trap instructions will be generated by the compiler which cause a supervisor call to the
appropriate storage management code.

Contexts will be allocated and deallocated from a free list of fixed size frames. Contexts larger
than the fixed size are allocated from the heap. Heap management is performed within the supervi-
sor via procedure calls to allocate and deallocate primitives. The free-list management algorithms
employed make use of the “true” locks and multiple deferred reads and takes, as provided in the
IS1 instruction subset.

4.3 Milestone 3: Performance optimization

Milestone 3 represents a performance tuning of our storage management system. We will experiment
with a number of algorithms, including first-fit, quick-fit and the buddy system. The outcome will
be to select and optimize a free-list management algorithm which minimizes fast-path code length
and keeps its critical section to a minimum. Qur goal is to bring storage management overhead
down to 20% of instructions executed during a program run. Currently, this overhead is upwards
of 45%. Much of this overhead will be trimmed once we go to bulk clearing of memory rather than
doing this on a cell-by-cell basis.

To speed up context allocations, a collection of fixed size contexts will be maintained for “quick”
context allocation. Whenever size requirements are less than or equal to the fixed size frames, a
fast allocation can be made from this free-list. In cases where a larger context is required, the heap
mechanism is employed.

In addition, a “caching” scheme will be implernented that allows efficient allocation of fixed size
contexts on a thread-local basis. The goal is to avoid interference between threads during context
allocation, and to mirnimize code path lengths. The scheme maintains a small number of contexts
which are associated with active threads in the processor.

Fixed size context allocation (and deallocation) under this scheme requires approximately 6
instructions (exception, load cache pointer, return fetched context to caller, increment pointer,
store pointer) upon a “cache hit”, and approximately 20 instructions when we run out of contexts
(or overflow) in the “cache.” Statistically, the inefficient case occurs once per 16 requests, so the
averaged cost for an allocation (deallocation) is less than 7 instructions.

For a more thorough analysis of tradeoffs and a discussion of various algorithms that have been
undertaken in this study, the reader is encouraged to read [5].

4.4 Milestone 4: Storage management across multiple PEs

Although each PE will attempt to allocate contexts from its local store, a request to the “global”
store must be issued whenever the local store is exhausted. The global store will be interleaved

across multiple PEs in the Monsoon architecture. Moreover, storage allocation requests will be
handled by multiple PEs, in parallel.

4.5 Storage Management: Schedule and Status

Our goal is to put an efficient storage allocation system into full production by October 1, 1990.
However, free-list management across PEs is not targeted until after the I/ O system is put into place.
The schedule below lists our start and end dates for each of the four phases in the implementation
of the RTS.

Milestone Target Date

Milestone 1: In-line allocation, no recycling. Complete

Milestone 2: SVCs for context allocation, free-list management. Complete
Milestone 3: Performance optimization. Ongoing
Milestone {: Free-list management across multiple PEs. To be determined

4,5.1 Status: Milestone 1

Milestone 1 is complete. The simple allocators have been in use since April. Their purpose is
primarily as an interim measure to allow software development in other areas to continue to make
progress. ’

4.5.2 Status: Milestone 2

Milestrone 2 is complete. SVC implementation for context allocation and free-list management
have been in place since the summer of 1990.

4.5.3 Status: Milestone 3

Performance optimization of existing free-list algorithms has already begun. A singly-linked list
version of the first-fit algorithm has been implemented which reduces both fast path length and
resource contention for heap management. Coalescing in this implementation occurs only when
there are no free blocks left which are big enough to satisfy a request (as opposed to on a per
release basis in the doubly-linked list version of first-fit with boundary tags). This algorithm has
been verified on both GITA and Lisp-MINT.

A third version of first-fit which sorts a singly-linked list of free blocks by address will allow
coalescing on a per release basis. This algorithm has been implemented and tested on GITA, but
is still under debug for Monsoon in the Lisp-Mint environment. Performance analysis of fast path
length and parallelism is now underway.

We have also begun analysis on dynamic program profiles of storage allocation and deallocation
requests. In particular, we are interested in deriving the size profile of heap requests during program
execution to facilitate an efficient selection of storage thresholds for the quick-fit algorithm. The
quick-fit has been implemented, but not integrated into the “production” system.

The “caching” scheme for context allocation has been designed, but not implemented. We
expect this to be straightforward, however.

4.6.4 Status: Milestone 4

Milestone 4 is on hold until after the I/O system has been implemented. The milestone 3 storage
allocator should be sufficient for most large applications. Code has been written for across PE
allocations, but not debugged. Further design discussions need to take place in regard to how
allocated storage will be interleaved and so on.

5 Implementation of the First Milestone Storage Management
System

This section gives the implementation details of the milestone 1 storage management system. This
code has been implemented and tested, and has been running successfully on ID World 0 for some

10

time now.

5.1 Get-Context

This code is inlined wherever a call to get-contezt is performed, because SVC instructions are not
implemented in IS0. :

This version of Get-context ignores the value on the incoming token. Get-Context takes the
free-frame pointer, decrements it by the frame size, stores this frame-pointer back to the free-frame
pointer, This new frame pointer is also returned as the pointer to the frame that has been allocated.

Here is the Monasm code for get-context:

get_context:

stake [FRAME_POINTER] >
ap v, [NEG_FRAME_SIZE] >
mov v, [FRAME_POINTER]

5.2 Return-context

This call is not implemented in the milestone 1 storage management system.

5.3 Get-Aggregate

Again, because SVC instructions are not available in IS0, the code for this manager call is inlined
directly into ID code wherever get-aggregate is called.

Upon entry to the get-aggregate code, v contains the length of the abject to be allocated. Get-
aggregate takes the heap pointer, returns the current contents as the pointer to the object, then
increments the contents by the length to be allocated, and stores that pointer back as the new heap
pointer.

Here is the Monasm code for get-aggregate,

got_aggregate:

stake [HEAP_POINTER] >
fork OUTPUT >
ap v, [fp+r] >
mov v, [HEAP_POINTER] >

fork SIGNAL

5.4 Return Aggregate

This call is not implemented in the milestone 1 storage management system.

6 Implementation Details for the Second Milestone Storage Man-
agement System

This section gives the details of the milestone 2 storage management system. This implementation
requires ID World 0 running microcode for Instruction Subset 1[1] plus the ID Compiler v1 and

11

the restricted loader (described in Monsoon Software Interface Specifications{{]). ID World 0 will
also have a simple execution manager.

The second milestone storage management system requires a context manager, a heap manager,
and execution manager support. The context manager consists of three handlers: get-context,
return-context and initialize-free-contexts. Likewise, the heap manager consists of three handlers:
get-aggregate, return-aggregate and initialize-heap.

6.1 Context Management

Contexts are managed by a simple free list. Get-Context consists of popping a frame off of the
free list and creating a continuation whose IP is the entry point of the procedure to be called and
whose FP is the address of the allocated frame. Return-Context consists of pushing the frame to
be deallocated onto the free list. Initialize-Contexts builds the initial free frame list.

8.1.1 Get Context

Here is the code that the compiler will generate for get-context, expressed in monasmf{3].

;33 CB-Name enters in v:
goet_context: :

fol ge.L, mc.L
ge: svc) v, [VOID] i send trigger
mc:[r] mc vl,vr || jump dest ; form continumation

The handler for the get-context SVC is:

svcO_entry:

mov v, [£p+0] > ; save return continuation
stake v, [FREE_POINTER] > ; take free-list

mov v, [fp+1] > ; save frame

Plt v, > ;i take rest of free-list
mov v, [FREE_POINTER] > Put new free-list

mov [£p+0], v > return continuation

send frame to instruction
following SVCO.

aics v, [fp+1], 1

wr e mg W

6.1.2 Return Context

Here is the code that the compiler will generate for get-context, expressed in monasm(3).

;;; Continuation enters in v:
re: svcl v

The handler for the return-context SVCis:

12

svcl handler:

mov v, [fp+0] ; Bave return continuation
Il Yexcl xa, v > i and read xa (frame-pointer)
mov v, [fp+1] > ; save frame
stake v, [FREEPOINTER] > ; take free-list
plp v, [fp+1] > ; add frame to free-list
mov [fp+1], v >
mov v, [FREE_POINTER] > ; store new free-list
mov [fp+0], v >
aics v, [VOID] ; send ack

6.1.3 Initialization of Context Free List

define free_pointer_offset, 32
define frame_size, 128.0
define frame_area_lb, 3000x
define frame_area ub, 10000x

absolute dm, node, offset {
FREE_POINTER:
word Pb_read_only,tb_tb_internal,
<ptrinfo>0 -~ <map>0 - <node>0 - <offset>free.pointer_offset

FRAME_SIZE:

word pbread_only, tb_float, frame size
FRAME_AREA_1B:

word pb_read_only, tb_signed, frame_area_lb_offset
FRAME_AREA_LEN:

word pb_read_only, tbfloat, frame.area_ ub_offset
}
absolute im, node, offset {
CLEAR_CONTEXTS:

mov [ZERD], v

mov v, [£p+0] ; INDEX
LOOP: fgep v, [FRAME_AREA_LEN]

swt v, [fp+0] ,done

fol APC.R, $+1

mov [FRAME_AREA LB], v Il jump APC
FCIT: fcit v, [£p+0] Il jump $1.r
APC: [fp+1]:

apc vl,vr ; clear location

mov [fp+0],v ; increment INDEX

fadd v, [slit$float$one]

mov v, [£p+0]

jump loop
DONE: stop
}

13

6.2 Heap Management

The heap manager will be invoked by procedures calls to the Id procedures that implement the
heap manager.

6.3 Get Aggregate

Procedureget_aggregate is called with a single argument, an integer, which indicates the number
of words of storage to allocate. Get_aggregate will allocate the object and return a pointer to the
ohject.

6.3.1 Return Aggregate

Procedure return aggregate takes a single argument, which must be a pointer to the first word
of the active area* of the object to be deallocated. This call will deallocate the object and return
an acknowledgment signal.

8.3.2 Initialization of Heap Storage

The heap manager requires a rather complex data structure to be constructed before any calls are
made to get_aggregate or Teturn.aggregate. This initialization is accomplished by the invocation
of the procedure init_heap.

7 Initialization

This section describes the steps to be performed in setting up Monsoon so that Id Programs may be
run on it. This starts with the clearing of frame and heap memory and ends with the initialization
of the heap data structures. We will assume that the loader is managing its own areas of memory,
and that those have been initialized already. Some of these steps could be performed by loading
MOC records.

7.1 Exception Handler Initialization

This step initializes the exception vectors so that when the processor executes an §VC instruction
or takes an exception, the correct handler will be invoked. This step consists of loading code into
the exception vectors and loading any other code that is necessary to support the processing of
exceptions. This step is performed only once,

7.1.1 Initialization of Intrinsic Operation Code

This step consists of loading the code for the handling of intrinsic operations, such as %%ISTR,
which simulates the second half of split phase I-structure operations on the processor. This step is
performed only once.

See Chapter 5 of (4] for more details.

14

7.2 Initialization of Memory

This clears all of frame and heap memory, if necessary. Frame memory must be cleared whenever a
program terminates improperly. Normally, programs are self-cleaning — when a frame is returned
all slots are empty — and frame memory does not have to be cleared. Heap memory must be
cleared whenever it becomes full.

7.2.1 RTS Initialization

The context and structure managers are initialized by executing initialize_contexts and then
initialize_ heap.

7.2.2 Global Constants

The value cells for global constant identifiers must be reset so that if they are forced during execution
they will be recomputed. This is described in Chapter 5 of [4].

7.3 Execution Manager

A single frame is reserved for use by the invocation manager. The invocation manager must read
the arguments and transmit them to the procedure being called. It then must cause the processor
to execute instructions, while collecting statistics, until the procedure terminates. Finally, it should
return or display the result.

7.3.1 Boot Code Block

This code block catches the results from the procedure being invoked, and writes the result and
termination to an absolute frame slot, so that the execution manager can read them from the host
processor.

References

[1] Michael J. Beckerle and Jonathan Young. Monsoon instruction subsets. Technical Report
Internal Memorandum, Motorola Cambridge Research Center and Massachusetts Institute of
Technology, Cambridge, MA, June 1990.

[2] Guy L. Steele. Common Lisp. Digital Press, 1990.

[3] Kenneth R. Traub. Monasm reference manual. MCRC-TR 5, Motorola Cambridge Research
Center, Cambridge, MA, April 1990.

[4] Kenneth R. Traub, Michael J. Beckerle, James E. Hicks, Gregory M. Papadopoulos, Andrew
Shaw, and Jonathan Young. Monsoon software software interface specifications. Technical
Report MCRC-TR-1 and CSG Memo 296, Motorola Cambridge Research Center and Mas.
sachusetts Institute of Technology, Cambridge, MA, J anuary 1990.

[5) Jonathan Young. Context Management in the ID Run Time System. Computation Structures
Group Memo 319, Massachusetts Institute of Technology, Cambridge, MA, September 1990.

15

