MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

4)

The Explicit Token Store

LABORATORY FOR

Computation Structures Group Memo 312
June 8, 1990

David E. Culler
Computer Science Division
University of California, Berkeley
Berkeley, CA

Gregory M. Papadopoulos
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA

To appear in the Journal of Parallel and Distributed Computing,
: January 1991

This report describes research done at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-89-J-1988. David Culler was

\ supported in part by an NSF Presidential Young Investigator award and Motorola j
_ Ime.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

The Explicit Token Store

David E. Culler Gregory M. Papadopoulos
Computer Science Division Laboratory for Computer Science
University of California, Berkeley Masachusetts Institute of Technology

Abstract: This paper presents an unusually simple approach to dynamic dataflow execution,
called the ezplicit token store architecture, and its current realization in Monsoon. The essence
of dynamic dataflow execution is captured by a simple transition on state bits associated with
storage local to a processor. Low-level storage management is performed by the compiler in
assigning nodes to slots in an activation frame, rather than dynamically in hardware. The
processor is simple, highly pipelined, and quite general. There is exactly one instruction
executed for each action on the dataflow graph. Thus, the machine oriented ETS model
provides new insight toward the real cost of direct execution of dataflow graphs.

1 Introduction

The Ezplicit Token Store (ETS) is a simplified model of dynamic dataflow execution, centered
on the notion of an activation frame which provides explicit storage for operands and “presence
bits” that guide instruction processing, It eliminates the associative matching and implicit storage

* allocation present in tagged-token dataflow models, relying on the compiler to determine the use

of slots within a frame and to install frame allocation and deallocation operations in the dataflow
graph. This report describes the ETS model and its realization in Monsoon, a large-scale dataflow
multiprocessor[39]. A single-processor Monsoon prototype is operational at the MIT Laboratory
for Computer Science, running large programs compiled from the dataflow language Id{37]. A full-
scale multiprocessor system is under development in conjunction with Motorola Inc.[5] and should
become operational during 1991. Formulation of the ETS began in 1986 as an outgrowth of work
on the MIT Tagged-Token Dataflow Architecture (TTDA). We believe that it preserves the most
valuable aspects of the TTDA, yet overcomes the most serious limitations of that design. The ETS
is simpler, more powerful, and easily understood in its own terms.

The philosophic premise of the ETS /Monsoon effort is that progammability must accompany
performance if highly parallel machines are to be useful where they are most needed — in solving
problems significantly more complex than those addressed on current supercomputers. Applica-
tions possessing a static, uniform structure have demonstrated reasonable performance on current
multiprocessors, but only if careful attention is paid to the detailed mapping of program activities
and data onto the machine[12, 19, 27, 32], Much like the use of overlays prior to virtual memory,
this effectively lowers the level of programming(34] and introduces obscure and €ITor-prone program
constructs[35]. Moreover, many realistic applications exhibit neither static nor simple structure[36].
As long as synchronization and communication is expensive, it is unlikely that large amounts of
useful parallelism can be exposed antomatically in complex programs. On the other hand, ample
parallelism is easily exposed in compiling high-level Id programs into dataflow graphs[6, 8, 41].
Realizing this potential parallelism requires that the underlying machine provide both a very large
synchronization namespace and cheap synchronization. The ETS addresses this dual challenge.

1.1 Dynamic dataflow influence

Dynamic dataflow execution is characterized by three properties: the program representation is a
partial order, i.e., a graph, of essentjal dependences, instructions are scheduled based on availability

1 DRAFT June 8, 1990

of operands, and iteration and recursion are supported in full generality. The latier property
distinguishes the model from earlier static dataflow models[20, 22] and gives rise to the need for
dynamic management of storage and “synchronization names. Dynamic dataflow execution is
formalized as rules for propagaling tagged data tokens through graphs[7]. A node fires when tokens
with identical tags are present on the input arcs, producing result tokens on the output arcs.
Tagged-token dataflow architectures, represented by machines developed at MIT|2], Manchester
University[26], and the Electrotechnical Laboratory[29, 43), approximate this model quite closely.
Data is conveyed within the machine as packets, i.e., tokens, containing a fixed sized value and
a tag, roughly equal in size to a value. In these machines, the dataflow firing rule is realized by
a sophisticated hardware matching-store, essentially a large associative memory. When a token
arrives at a processor, the tag it carries is checked against the tags on tokens in the matching-store.
If no match is found, the incoming token is added to the store. If one is found, the matching token
is extracted and the corresponding instruction is enabled for execution, eventually producing new
tagged tokens. The tag serves as a name for synchronization point of two values destinated for the
same instance of the same instructjon. Each loop iteration or function invocation must be provided
with a new set of synchronization names.

The tagged-token instruction scheduling paradigm supports a non-blocking processor pipeline
that can overlap instructions from closely related or completely unrelated computations. Thus, par-

that it can be wasted.

One means of avoiding this problem is to “precompute” the worst-case token storage requirement
of portions of the dataflow graph at compile-time and reserve sufficient matching-store resources
at run-time[1]. Typically, a Program is represented by a collection of disjoint graphs, called code-

block invocation and eliminate the implicit aliocation in hardware. Thus, both engineering and
management concerns led us to consider how to make token storage ezplicit in the dataflow model.
A third factor influencing the development of ETS was the I-structure concept{11]. An I.

2 DRAFT June 8, 1990

between the producers and consumers of a data structure and eliminates the overhead of functional
arrays[20], while retaining determinacy. The ETS extends the use of presence bits to all forms of
synchronization. '

Finally, we believed it important that the execution model be general enough to allow construc-
tion of a stand-alone parallel machine. It should not require additional conventional processors to

tion is a compromise: low-level run-time system services are supported in sttu, demonstrating the
generality of the ETS approach, yet, for expedience, a host processor provides file system services
and the like.

1.2 ETS dataflow execution

The ETS approach shifts much of the low-level storage management burden associated with dataflow
execution to the compiler in order to simplify the hardware and the run-time system. We only con-
sider well-behaved datafiow graphs produced from a high-level language, such as Id. A program is
comprised of a collection of code-blocks, e.g., funciton and loop bodies, as mentioned above. When
a code-block is invoked, the caller dynamically allocates an activation frame, thereby providing
local storage for the activation. This bears obvious similarity to the use of stack frames in sup-
porting imperative languages on conventional machines, The arcs in the code-block, (i.e., the local
variables for the function) are statically mapped onto slots in the frame by coloring the graph[14].
Each instruction specifies the location of its operands, as a simple effective address calculation, so
no matching is required.

The basic structure of an executing program is illustrated in the lower portion of Figure 1.
The sample code computes the expression Z[i] = asX (il + Y[i]. A token comprises a value, a
pointer to the instruction to execute (1P), and a pointer to an activation frame (FP). The latter two
form the tag. The instruction fetched from location 1p specifies an opcode (e.g., ADD), the offset »
in the activation frame where the match will take place (e.g., FP + 4), and one or more destination
instructions, encoded as 1P-relative diplacements, that will receive the result of the operation (e.g.,
instruction 1P + 2). An input port (left/right) is specified with each destination.

The unusual quality of ETS activation frames, is that each frame slot has associated presence
bits specifying the disposition of the slot. The dynamic dataflow firing rule is realized by a simple
state transition on these presence bits, as illustrated in Figure 2. At time ¢, the first token arrives
and is processed. The slot is found empty, so the value on the token is deposited in the slot (making
it full) and no further processing of the instruction takes place. At time ¢ 4+ n,n > 1, the second
token arrives, the slot is found to be full, so the value is extracted (leaving the slot empty) and
the corresponding instruction is executed, producing one or more new tokens. Observe, each token
causes an instruction to be initiated, but when an operand is missing the instruction degenerates to
a store of the one available operand. In general, the order of arrival of tokens is indeterminate, so
the first token may be for either port. Initially, all slots in a frame are empty and upon completion
of the activation they will have returned to that state. The graphs generated by the compiler
include an explicit release of the activation frame, usually by the caller, upon completion of the
invocation.

An executing Program generates a tree of activation frames, rather than a stack, because a
procedure may generate paralle]l calls where the parent and children execute concurrently. The
concurrent children may themselves generate paralle] calls, and so on. For loops, several frames are
allocated, so that many iterations can execute concurrently[16],

Other matching rules are possible. In Figure 1, the slots marked with ¢ indicate a constant
operand which is not implicitly reset to empty after the match takes place. These constants play

3 DRAFT June 8, 1990

1 Instruction Memory

; 'i' OPCODE 7 dests
i [et e
FyICR FRETCER AP | FETCH
a -EEXCH | 2 Sharable, Relocatable
T o

| l .
; AR Instruction Text for
x| g ' AD. 0 _[+iR Code Block
5 +1L,3R

<FP.IP, 1'004>R

. ADD
SZ[10]
i
STORE
h Runtime-Allocated
FP + 4: : Activation Frame
521101 For Code Block
Presence Bits

Figure 1: ETS Representation of an Executing Dataflow Program

DRAFT June 8, 1990

l <FP.IF, 1.004> g

PLLLLLIYS PLLLLES FLLITYS L™ PrLLLY™ pesVEsaL __gusVig LT
._.-‘ --------- *aanya go?® *repausert” “rranggart® hl TP o TEauyypnnt? b
S e T UL LT Ambadmy auday (ULLL TS anefueg, nErdEey .
o Tanpnart® gt Ll E T " T eangcxnt® bl PR Teraqupart® oy,
» -

read value & compute

j t+n+1

? <FP.(IP+1l}, 6.004> L

Figure 2: Explicit Dyadic Matching Operation

5 DRAFT June 8, 1990

an important role in optimizing loops, where the constants are allowed to persist across a series of
iterations.

In this way, an ET1'S architecture can achieve the power of tagged-token dataflow architectures
with a leaner cycle and much less complexity. The graph schemas used for tagged-token dataflow
programs can be used almost without change under ETS. (We assume the reader has some fa-
miliarity with dataflow graphs; a good overview can be found in the references(2, 10].) Exposing
the operand store provides a natural means of supporting a variety of extensions to the dynamic
dataflow model, including loop constants, I-structures, and accumulators. In addition, by supply-
ing instructions which ignore the presence bits, i.e., that directly read and write locations in the
activation frame, the model supports traditional, imperative execution as well.

1.3 Overview

The informal discussion above is properly viewed as a strategy for using a specific set of mechanisms
to support dynamic dataflow execution. The content of the ETS model is manifested in these mech-
anisms. To highlight the essential mechanisms Section 2 introduces them formally, independent
of their realization in a machine. Section 3 demonstrates in greater detail how the mechanisms
are used in the parallel execution of dynamic dataflow graphs including k-bounded loops and data
structure operations. Section 4 describes how the ETS is realized in Monsoon. Finally, Section 5
gives preliminary performance measurements and reflects on the basic approach.

2 ETS Model of Computation

The explicit token store is a simple, inherently parallel mode! of computation. In this section, we
develop a fairly precise view of the ETS model, apart from the particular implementation decisions
and engineering concerns embodied in Monsoon. The ETS is not specifically bound to the dataflow
model of execution. Rather, dataflow execution is an example of a set of compile-time and run-
time disciplines that lie on top of the ETS model. An analogy is the difference between the von
Neumann model and the compile-time and run-time conventions of a stack-oriented language. The
stack discipline is just one way to rationalize the use of storage and control transfer Primitives
provided by the underlying von Neumann machine.

2.1 Storage, Tokens and Instructions

A basic feature of the ETS model is a global linear address space that holds instructions, heap
objects and activation frames. Every addressable location is augmented with a small number of
state bits to indicate the “presence” of data in the location.

Definition 1 The ET'S store is a linear array of locations, M. Each addressqble location M[i]
conlains q.v, where v is a fired-size value and ¢ is the presence state of location M/i].

An ETS machine state comnprises the store and an arbitrarily large number of tokens. Each token
is a compact computation descriptor encoding an instruction pointer, a pointer to an activation
frame, and a single data value. The token may be viewed as an extremely lightweight “thread”.

Definition 2 4n ETS token is a tuple <¥P.IP,DATA>, where DATA is q fized size data value, 1p
is the address of an instruction, and FP is the frame pointer, referring to the base of a contiguous
block of locations in the store called an activation frame. The pair of pointers FP.IP is called ¢
tag. DATA can encode a tag or a simple value, such as an integer, a floating point number or
storage address.

6 DRAFT June 8, 1990

The ETS machine state evolves as a result of processing tokens. For each token < FP.IP,DATA>,
the instruction at location M[ip] is fetched and executed. During its execution, the instruction
will typically refer to a location in the activation frame referenced by PP, perform an arithmetic
operation, and then produce zero, one or two new tokens. An activation frame supplies the dynamic
storage required for the local state of a procedure invocation, loop iteration, or more generally a .
code block. An activation frame corresponds roughly to a stack frame in conventional sequential
languages. Two concurrent invocations of the same procedure will share the same code, but will
use two distinct activation frames for local storage.

The novel feature the ETS is that every reference to storage by an instruction involves a presence
state transition and the transition affects the subsequent behavior of the instruction. For clarity, we
have decomposed ETS instructions into a specification of four separate actions performed on each
token processed: computing an effective address into storage, accessing the computed location,
performing an ALU operation and, finally, producing result tokens. This is akin to the actions
specified by a von Neumann instruction: accessing register and memory operands, performing
an ALU operation, storing result values, and either implicitly or explicitly updating the program
counter.

Definition 3 An ETS instruction is a tuple <E,S A, C> where

E specifies the effective address calculation used to locate the storage operand: E € {FP+r,1P + 1},
where r is encoded as a literal in the instruction.

S specifies the presence state transition rule on the state-part of the storage location computed by E
and, indirectly, control information: g 2, (¢',M-oP,FLOW), where ¢ is current state of the
location, ¢’ is the new state of the location, M-op ¢ {READ,WRITE,EXCHANGE} is an action
to perform on the value part store location computed by E and FLOow € {COMPLETE, STOP}
determines whether further processing of the instruction will take place.

A specifies the arithmetic operation to perform on the DATA operand and, possibly, the value v read
from the store, as determined by M-op. This yields a result value: result = A(DATA,v).

C specifies the continuation rule, when FLOW = coMPL ETE, which dictates how result tokens are
to be formed: C € {continue, fork, switch, extract, send}. The tokens produced by each rule
are given by:

continue: <FP.IP + 8, result>

fork: <FP.IP + 81, result> and <PP.IP + s;, result>
switch: if DATA = true then <FP.IP + sy, resull>
if DATA = false then <FP.IP + s,, result>
eziract: <FP.IP + 85,FP.IP 4 $;>
send: <DATA,result> and, optionally, <FP.IP + 33, result>

where sy and s, are encoded as literals in the instruction. If FLow = sTOP, no tokens are
produced.

In Monsoon, E,S8,4 and € are encoded as a single instruction op-code, with separate r, s,
and s, fields. In most cases, one of sy and s, is not explicitly encoded into the instruction, but
implicitly set to one.

It is important to understand that the presence slate is not Just extra bits associated with each
location; each operand access to a location specifies a possible transition of the presence state, S{¢),

7 DRAFT June 8, 1990

WRITE then the token’s paTA is written into the location and paTa is the only operand available
to the ALU. If M-OP = EXCHANGE then the location is first read, yielding v, and then the token’s
DATA is written, and both v and DATA are ALU operands. The state transition on the location
also dictates whether the instruction accessing the location can execute to completion {FLow =
COMPLETE) or is to be aborted (Frow = STOP). Thus, the presence state dictates the dynamics
of instruction execution.

synchronization paradigms. The simplest paradigm ignores the presence state bits entirely, specifies
- either a read or write of the value part, and always continues processing; this is traditional von
Neumann impertative execution. More initeresting rules can directly support the dataflow matching
operation, I-structure operatjons, and even non-blocking semaphores and locks,

The ALU operation, 4, is the full complement of arithmetic and logical operations, possibly
extended with efficient operations on tags. As explained below in Section 3, dataflow execution
associates an instruction with each arce. Thus, the “left” and “right” operands to an instruction
like subtract actually specify two different instructions; the left operand will specify subtract,
(DATA — v) while the the right operand will specify subtract-reverse, (v — DATA). Since the
two operations differ only in the orientation of the operands, the Monsoon implementation encodes
left /right information as a separate bit in the tag, called the PORT, and has both operands specify
the same instruction.

The continuation rule defines one or more successor activities. Continue simply passes control
and data to the next instruction in a logical sequence. In a concrete implementation, it may be
valuable to distinguish consecutive execution (s; = 1) and branching, as in most modern machines.

Fork allows multiple successor instructions to Proceed in parallel by creating separate tokens
for each successor, differing only in their 1p fields. For instructions to fit in 4 fixed size word, the

on one of the input values. If the left operand is true then a token is generated with instruction
pointer IP+ s;, otherwise a token is generated with Instruction pointer 1p4 3.
Send supports efficient inter-frame transfer. It takes as operands an arbitrary vahie (DATA) and

8 DRAFT June 8. 1990

2.2 Split-Phase Memory Operations

Conspicuously absent from effective address computation of an ETS instruction is the ability to
directly specify an arbitrary storage location, say the location pointed to by DATA, M[DATA]. ETS
is intentionally prejudiced towards implementations where activation frames are stored local to
processing elements so that the activation frame references are fast and non-blocking. In contrast,
a reference to a remote (or global) location might induce an arbitrary delay in the processing of an
instruction. .

Instead, ETS supports split-phase memory operations. A split-phase read involves two actions.
First, the reading instruction issues a request for a location, and continues processing without
waiting for a response. The request encodes the location to be read as well as the tag of the
instruction that is to receive the contents of the location. Second, the request is processed by
a read operation “local” to the accessed location, generating a new token that comprised of the
response tag provided by the request and the contents of the accessed location.

Definition 4 An ETS request token is a tuple <@.0p,DATA>, where a is an address of a storage
location in M, op is the request operation, and DATA is a tag or a simple value.

A read request is represented as <a.read, FP.IP >, where FP.IP is the tag of the instruction
that is to receive the contents of location a. The response would be the token <Fp.ip, Mia]>.
An arbitrary amount of time may elapse between issuing the read request (i.e., executing a fetch
instruction) and receiving the response (i.e., enabling the successor of the fetch). In particular, a
read request might be deferred by the memory system until the requested location is written, as
indicated by the associated presence state. This supports L-structure semantics.

A write request is represented as <a.write, DATA>, where DATA is the value to be deposited
in location M[a]. Other request ops might also be necessary in an implementation, including ones
that explictly write and read the presence state associated with a location.

2.3 Parallelism in ETS

Given a token, the basic machine mechanism involves fetching the instruction specified by 1p, com-
puting the operand address, performing a read-modify-write on the presence state bits, performing
an operation on the data part of the operand location, computing a result value, possibly emitting
& memory request, and generating zero, one, or two tokens for further processing,

The total number of tokens in the system grows whenever a fork is executed, and shrinks
whenever a presence state transition dictates a sTop. At any time, the overall state of the machine
is the store, M, and the set of existing tokens, each representing the local state of an execution
thread. 7

Importantly, the ETS model does not place any restriction on the order of processing tokens
from the set of existing tokens. Execution must only obey the atomicity of the transition rule
applied to the presence state and value part of a location. An implementation may choose to
process any subset of tokens concurrently, and this is the fundamental source of parallelism in the
modell.

The ETS model efficiently virtualizes the state of a very simple processor, permitting an essen-
tially unbounded number of concurrent threads, represented by the set of unprocessed tokens. The
only form of interaction amongst threads is through the presence state and value parts of words in
the store. The presence state bits on each word of store support fine grain synchronization within

'An implementation might want to apply the requirement that the scheduling is fair — a given token will be
processed within finite time.

9 DRAFT June 8, 1990

activations, across activations, and for shared data objects. Although there is no explicit notion
of processor or inter-processor communication in the model, the set of operations are carefully
restricted so that the model can he implemented with only local operations and inter-processor
messages. The basic mechanism allows arbitrary parallel constructs to be formulated, however,
deterministic execution can be achieved through an appropriate choice of presence state transition
rules and by following the compilation methodology embodied in dataflow graphs,

3 ETS Execution of Dataflow Graphs

In this section, we show in some detail how the ETS mechanism is employed to support dynamic
dataflow execution. In addition to the basic scheduling paradigm, discussed briefly above, this
includes management of activation frames, the realization of control structures, and the implemen-
tation of synchronizing data structures.

3.1 Firing rule

The dataflow firing rule states that a node may execute when a operand value is available on each of
its input arcs. Upon firing, it consumes the input values and produces a value on each of its ontput
arcs. Furthermore, values are tagged to distinguish between potentially concurrent firings of a node.
Thus, a dataflow operation can be broken down into four components: a synchronization operation
on the input arcs, a function computed on the input values, the generation of the result values,
and finally a naming convention for identifying the operands, i.e., the tag. These components are
made explicit in the ETS formulation, as indicated by Figure 3. An ETS instruction describes how
a single token is processed; thus, there is an ETS instruction for each arc in the graph. One of

the synchronization point and specify the “match” transition rule, described in Figure 3. If the
location is empty, the operand value is written into it and the execution thread is terminated. If the
location is full, its contents are read, the state is reset to empty, and the operation is performed
on the two operands. We note that the Monsoon implementation allows the two target instructions
for dyadic operation to be combined into a single instruction that gets executed twice: once by the
first arriving token, and again by the second token. This is accomplished by providing an extra 1p
bit, called the PORT, whose state does not affect the address of the instruction fetched, but serves
to distinguish the left /right orientation of the operands for the ALU.

The second one will find it to be full, empty it, and perform the operation. A token is produced
for each destination arc, as represented by the continuation rule in the ETS instruction.

Unary operations do not require use of the activation frame, 50 the “ignore” status transition rule
Is specified, i.e., no frame store operation is performed. Operations that are enabled by a single
token, but that have a constant as a second operand, specify the “read” transition rule, which

the appropriate constant., The rp + r addressing mode may be used, in which case the constant
operand is retrieved from the activation frame. This is particularily useful for loop constants,
discussed below, and also provides a means of avoiding unnecessary synchronization.

Although the ETS is easily understood as a mechanism for propagating tokens through dataflow
graphs, an alternative view is that it describes a very large number of very simple “virtual proces-
sors” working in concert. The DATA portion of the token js essentially an accumulator and the rp

10 DRAFT June 8, 1990

Dataflow Node

State Transition Rule _ _ _
(synchronization)

inst:

ALU Operation — — — — — — +—-=9
|

[

|

SUB
| .
(w Continuation Rule ~ — — — — I

mstj tnst,

M-op) FLOW

E, §

I
7 >
write, STOP FP
r IP ;| FP+ r, match,DATA- v, fork 5,48,
IPg:| FP+ r, match,v - DATA, fork S, 55,
v

read, COMPLETE

match State Transition Rule Operand Location ETS Instructions

Figure 3: Correspondence of Dataflow Graphs and ETS Instructions

an index register. The instruction set provides 1+x addressing, but when the storage operand is not
present the instruction can be transformed into “store accumulator” with no successor. Although
this addressing capability is restrictive compared with most modern machines, it is precisely what
is required for direct execution of dataflow graphs. This partly accounts for the observed difference
in instruction counts on dataflow and conventional machines|[3].

3.2 Procedure Call

The dynamic dataflow model allows many activations of a particular node to be enabled or partially
enabled (i.e., have tokens present on one arc) simultaneously. Different activations are distinguished
by tag information carried on the token. In the ETS, this differentiation is provided by FP in speci-
fying different activation frames, Thus, where tagged-token models name different synchronization
points by their context in the program, under the ETS model the synchronization name identifies
the resources used to perform the operation.

Invocation of an ETS procedure (or, more generally, a code block) involves allocating an activa-
tion frame and sending arguments to it, i.e., generating tokens with Fp referring to the base of the
activation frame and 1p referring to instructions within the procedure. Figure 4 shows an example
ETS procedure call convention, in graph form, that invokes a function of two arguments. :

The caller of must allocate an activation frame of the appropriate size and send the two ar-
guments and the return adddress to the first three instructions in the callee, The return address
carries the Fp for the caller frame and the 1P for the mstruction within the caller code-block that
is to receive the result. This call linkage can be seen in Figure 4, The ALLOC-FRAME node causes
a fresh frame to he allocated and produces a tag as a result, comprising the address of the newly

11 DRAFT June 8, 1990

FPf. Ip £

1Pr,. A SEND instruction is used to communicate the values and return address to the the new
allocated frame. SEND is parameterized by a small tonstant, which is used to adjust the 1P on
the result token. Note, SEND is a trivial operation that takes two values

I operators are simply identity instructions, used to establish conventional entry points, A less
structured ETS calling convention would permit the compiler to Pass the arguments directly into
known offsets within the callee body, eliminating the identity operations.

ﬁ Caller | Callee

ALLOC F";"‘N ,.-..---""'" e,
FRAME (rai o~ RN <FPf, (Ipf+1) ; 3.14>
’ FP,IP o) b
‘..... . E g
b 9ss Pt T B
SEND SEND SEND { Ra X ¥ y
+0 +1 +2 Ip
T ERIENIE
%3.....k.. .'..-...,.,...-":::::: ‘r
+ body
I IPra
Fp.IP
i t ra
. | " £(x,y)
EALLOG SEND
FRAME +0

Yay »'
DAL T L

Figure 4: ETS Example Procedure Calling Convention

At first, the calling convention may look somewhat complex, but is surprising efficient. On

12 DRAFT June 8, 1990

conventional sequential machines, ALLOC-FRAME corresponds to allocating stack space by advane-
ing the stack pointer. The EXTRACT-TAG/SEND+0 combination is equivalent to pushing a return
address?, and the SEND+1 and SEND+2 are like pushing the arguments. The SEND+0 executed by
the callee corresponds to a return value convention, and the final DEALLOC-FRAME executed by the
caller corresponds to cleanup code. Of course, the ETS convention is completely transparent with
respect to crossing processor boundaries, and should really be compared with a remote procedure
call on a conventional machine. By these standards, the ETS mechanism is exceptionally efficient.

Frames are allocated dynamically as part of the call linkage, but the use of slots within the
frame is determined statically by the compiler. The simplest means of assigning frame slots is to
give each node in the graph a unique slot. However, this may result in poor utilization of the
frame, since many of the slots will be empty most of the timne. Each dyadic instruction specifies the
frame slot () used as a rendezvous point for its operands, thus it is possible for two operations to
specify the same slot. It is valid for two node to be mapped to the same slot as long as they cannot
interfere, i.e., if it is impossible for operand tokens to exist for both of them simultaneously. This
is the case if all the inputs of one depend unconditionally on the result of the other or if the two
nodes appear in different arms of a conditional. The compiler forms an interference graph, where
edges represent potential coincident operands and colors this graph using simple heuristics. Nodes
with a single input, including unary operations and binary operations with one constant operand,
need not be assigned a frame slot.

Observe, the execution schedule of code-block Figure 4 depends on the arrival order of the
arguments. Parts of the graph are enabled as each input arrives and concurrently enabled operations
may be performed in parallel. The operation that sends the result to the caller has a “local®
successor that releases the current frame (in practice, this too may require several instructions).
The compiler systematically adds signal arcs to the dataflow graph to detect when an activation is
complete and the frame can be released. In general, it is not sufficient to determine that the results
have been sent, as suggested in the figure[45], but also that all instructions that do not produce
results, e.g., I-store, have completed.

We have not specified how frames should be mapped to processors or in what order threads
(i.e., tokens) are scheduled. The called procedure could execute on the same processor as its caller
or on a different one. However, using dataflow graphs as a programming methodology, we are
guaranteed that all execution schedules will produce the same result, regardless of the mapping,.
Clearly, activation frames provide a natural unit of distribution. In general, a code-block may
generate many simultaneous invocations that can be assigned to different processors.

3.3 Loops

Tagged-token models of dynamic dataflow execution(7] provide an eflicient means of expressing
iteration as a cyclic graph. The tag on a token carries an iteration identifier to distinguish between
different iterations and each cycle in a loop graph includes a single operator, that increments
the iteration identifier. Loops may unfold, allowing an arbitrary number of concurrent iterations,
constrained only by data dependences. Thus far, we have not demonstrated how to express the
same behavior in an ETS framework. To allow an arbitrary number of concurrent iteration, the loop
would have to be represented essentially as tail recursion, where each iteration allocates a frame
for the next. The full generality of dataflow loops turns out to be difficult to support in tagged-
token dataflow architectures as well, because no limits are placed on the number of concurrent
iterations. Any fixed-size iteration identifier may overflow, requiring some additional mechanism
to handle this case. Furthermore, the resource behavior of programs is extremely unpredictable

ZA simple optimization, used in Monsoon, combines the EXTRACT-TAG and SEND+0 into a single instruction.

13 DRAFT June 8, 1990

with no constraints on loop unfolding[15, 16]. This led us to cousider A more restricted form of
loops, called k-bounded loops, where the maximum number of concurrent iterations is established
dynamically at the time the loop is invoked.

k-bounded loops can be irnplemented quite naturally in the ETS framework., When a loop is
invoked, k activation frames are allocated and formed into a ring by storing into each a pointer
to the predecessor and successor frames. The compiler generates graphs in such a way that each
iteration detects its own completion and signals its predecessor that the frame is available for reuse.
A methodology for assigning the k-bounds is given elsewhere[16].

In examining the cyclic dataflow graphs generated for loops, it becomes apparent that certain
values used in the loop are circulated from iteration to iteration, but never change[4, 23, 43].
These “loop constants” correspond to free variables of the loop in the Program text or invariants

the innermost loop of a straight-forward matrix-multiply routine references seven variables, five of
which are loop constants. In the ETS framework, these need not be circulated. When the ring
of frames is constructed, copies of the loop constants are deposited into the frames, They are
referenced using Fp-relative addressing, but the presence bits are not reset,

3.4 Synchronizing data structures

instructions could cause the processor that hosts them to suspend for large and unpredictable
amount of time. For synchronizing operations, such as I-structure fetches, it is necessary that the
processor be able to perform other tasks while the read is outstanding to avoid deadlock[46]. Thus,
any potentially remote reference should be Tepresented as a split-transaction, part is performed by
the operation that makes the request and part is performed local to the element that is accessed.
Refer to Figure 5.

I-structure semantics require that all reads against an element teceive the (one) value written
into the element. Thus, reads that arrive prior to the write must be deferred. This is easily

the I-structure read was executed to provide room for the deferred-read list{39]. These techniques
can be extended to very efficient event-driven locks[44;.

3.5 Summary

The ETS model js essentially a multithreaded 1-address machine, yet it captures the essence of
the dataflow execution model based on propagating values through graphs. Compilation of graphs
from a high-level language is only slightly changed from tagged-token dataflow architectures to
provide explicit allocations and deallocation of frames. Each operation on the graph is represented
by the execution of a single instruction. A simple state transition rule dictates that an operation is

14 DRAFT June 8, 1990

I

£

¥ Qo &

| <Address.Read,

I i Request

FP.IP>

Global Memory

FETCH FETCH
% a
2
MULT
ADD
§Z{10
STORE

&

h 1.004

<FP.IP, 1.004>
Response

Figure 5: ETS Split-Transaction Memory Read

15

DRAFT June 8, 1990

carried to completion only when all its operands are available. In fact, an action is taken for each
value that is produced. The machine simply carries out the logical sequence of steps described by
an execution thread, allowing a thread to be terminated if an operand it requires is not available.

4 Monsoon

Monsoon is a general purpose multiprocessor which incorporates an explicit token store, A Monsoon
machine comprises a collection of highly pipelined processing elements (PE’s), connected via a
multistage packet switch network to each other and to a set of interleaved memory modules (157s)

communication.

4.1° Overview

A fundamental design decision in Monsoon concerns the mapping of activation frames across pro-
cessors. Specifically, activation frames do not Span processors. A frame required by a procedure is
dynamically allocated by the caller on some processing element at invocation-time, and executes

cality (i.e. reduce network traffic) without squandering the fine-grain parallelism — the parallelism
within an activation is used to keep the processor pipeline full. Observe, we do not support load
balancing algorithms that move activations, once allocated, amongst processors.

By insisting that frame references be local to a processing element, we are assured that instruc.
tions which perform frame accesses are non-blocking., In contrast, an instruction that reads an
arbitrary storage location (say, an element in a shared array) might incur substantjal latency as
the read request and response traverse the interprocessor network, Instead, the system employs
split-phase transactions for all data structure references and relies on the capability of the proces-
s0r to generate multiple outstanding memory requests to fill the Processor-memory “pipeline.” In
addition, data structures are word-by-word interleaved over memory modules in attempt to make
structure memory traffic more uniform. Data structures are not cached.

In combination with the policy of mapping a given activation frame to a single PE, the lack
of global memory caches implies that interprocessor token traffic is generated by data structure
requests (reads and writes) and transmission of procedure (code-block) argument and return values.
The interprocessor network is therefore appropriately sized to handle this fraction, approximately
30%, of the total number of tokens produced during the course of a computation.

Another distinguishing feature of Monsoon is that the pool of unprocessed tokens is distributed
across processing elements in the form of hardware managed token gueues. A simjlar design decision
was taken in the TTDA and the Sigma-1[43], in contrast to the centralized token queue of the
Manchester machine[26]. In the present implementation, two queues are provided on each processing
element. A high priority system quewue and a low priority user queue. The system queue operates
as a first-in first-out queue, whereas the user queue is a last-in first-out stack.

cycle® a token is dropped into the top of the pipeline and, after eight cycles, zero, one or two tokens

*A processor eycle usually correspands to a single processor clock, Sometimes, for instance during a frame store
exchange or a floating point divide, the pipeline is stalled for one or more clocks. In this case, it may take several
clocks to make a cycle. In any event, the difference in clock times only affects the performance, not logical operation,

L6 DRAFT June 8, 1990

Instruction
emory
| Eight
Stage
Pipeline Erame
Store

Network

Request Token
' |-Structure
Me

mor!
\ ¥

) | —
—

Network

Interprocessor

Interprocessor

NODE 0:

Processing

Element |g—

NODE 1:

Processing ———>
Element |g— |

L]
-
*

Processing

Element [q .

Memory
Module

Memory
Module

L
L]
L]

NODE N:

Memory
Module

y

Multistage
Packet Switching
Network

| Figure 6: Top Level View of the Monsoon Multiprocessor

17

DRAFT June 8, 1990

emerge from the bottom. Along the way, an instruction is fetched from instruction memory, an
effective address in calculated into frame store, an read-modify-write occurs on the presence biis
of the addressed location, followed by a read, write or exchange to the value part of the location.
The incoming token’s value and any operand read from frame store are processed by a three stage
floating point ALU and, in parallel, two new tags are derived from the incoming token's tag. Finally,
the result token(s) are composed by the form token section.

‘One of the output tokens can be recirculated, i.e., immediately placed back into the top of
the pipeline. Tokens produced by the pipeline that are not recirculated may either be inserted
into one of two token queues or delivered to the interprocessor network and automatically routed
to the correct PE. A more detailed description of the pipeline operation is presented below, after
developing the basic programming model and instruction set.

?<PE: (FP.IP), V>p

Instruction 3 Inst
" Fetch
N144 %
Effective
Address
Presence Bits [Presence
Operation -\ Bits
Frame 72
- Operation }#>-#{ Frame
* < < Memory

Sys UsEr dbrmgsARVEARNRtANS N =
Queue Queue Tz
2 : Zi -
Form Temporaries
T 1 Token

Interproc. T
Network 144N \
Figure 7: Eightl'ﬁﬁage-Nm—B-bek‘mg-MgJ soon Pipeline

because tokens advance from one stage to the next only at cycle boundaries,

18 DRAFT June 8, 1990

4.2 The Token

Monsoon tags and values are 72 bit quantities comprising eight bits of hardware type information
and 64 bits of data. A token is a tag-value pair, 144 bits in size.

- Token ‘ |

TYPE TAG TYPE VALUE
8 64 8 64

4.2.1 Values

The hardware provides direct support for five value formats. A value can be a 64-bit signed integer,
an IEEE double precision floating point number, a bit field or boolean, a data memory pointer or,
of course, a tag.

4.2.2 Tags

A tag encodes two pointers: a pointer to the next instruction to execute, IP, and a pointer to
the activation frame, Fp, that provides the context in which to attempt execution of the next
instruction. On Monsoon, a given activation frame resides entirely on a single processing element,
The frame pointer and instruction pointer are conveniently segmented by processing element as
follows,

TAG = PE:(FP.IP)

where PE is the processing element number and 1P and FP are local addresses on processor PE.
Adding a small offset to FP results in an address that maps to the local store of same processing
element as Fp. That is, all activation frame references are local and are considered non-blocking—
activation frame reads and writes can take place within the processor pipeline without introducing
arbitrary waits. PE, FP and 1P are encoded into a 64-bit tag as follows:

[TAG]

b3 P PE FP
8 ' 24 8 24

Note that 1P is a local reference as well. The next instruction is fetched on processor PE from
instruction address 1p. Furthermore, the most significant bit of the instruction pointer encodes a
PORT bit which, for two-input operations, establishes the left /right orientation of the operands,

4.2.3 Pointers

A data structure pointer encodes an address on a processing element or I-structure memory module.
Pointers are always represented in a “normalized” format as the segmented address NODE:OFFSET,
where NODE denotes the processing element or I-structure module number and OFFSET is a local
address on the NODE. Additionally, pointers contain interleave informationin the MAP field, which
describes how the data structure is spread over a collection of nodes. One option is for the entire
data structure to be mapped to a single node. In this case, adding one to the pointer will yield the
new pointer NODE:(OFFSET+1). Another option is for the data structure to be interleaved on a
word-by-word basis across the entire machine. In this case adding one to the pointer will yield the
new pointer (NODE+1):0FFSET.

The interleave pattern can be generalized into subdomains{4]. A subdomain is a collection of
2" nodes which starts on a modulo 27 NODE number boundary. If n = (then increments to the

19 DRAFT June 8, 1990

pointer will map onto the same NODE. If n = 1 then increments to the pointer alternate between
NODE and NoDE+1. Figure 8 illustrates address interleaving as a function of n for subdomains of
size one, two and four. Interleaved pointer arithmetic is performed by a special ALU called the
pointer increment unit (or PIU).

n=4_¢ n =
NODE k NODE k+1
0 / ¢
1 1
2 2
3 3
F] 4
5 5
6
7

Figure 8: Data Structure Interleaving as a Function on n

A pointer and a tag share a similar set of field assignments:

[_ ' POINTER 1

MAP INFO NODE OFFSET
8 24 8 24

The MAP simply encodes n, the size of the subdomain. Because MAP is used only when adding
to a pointer, aliasing is not a problem. Two pointers refer to the same location if and only if they
have identical NODE fields and identical OFFSET fields. The INFo field is not interpreted by the
hardware and is available for use by the compiler and runtime system.

4.2.4 Requests

A request encodes a data structure operation, like read or write, A single data value is appended to
a request to create a request token which is destined to a memory module. For example, writes are
encoded as a write request and the value to write, while reads are encoded as a read request and the
return tag. A processor wishing to perform a read or write operation does so by composing a request
token and issuing the token to the interprocessor network, where it is routed to the appropriate
NODE. Thus, a request plays a role very similar to a tag, and, not surprisingly, requests and tags
have very similar formats:

[REQUEST

L X oP NODE OFFSET 7

8 24 8 24

20 DRAFT June 8, 1990

The op field encodes the request type (e.g. read, write)®, The address of the location is given
by NODE:OFFSET. The neat correspondence of requests and tags permits a processing element to
process a request token as if it were a regular token. In this case the op field becomes the 1p. So
a processor that wants to emulate 1s behavior need only provide a set of support instructions at a
small number of “wired” locations. From another perspective, an IS can be viewed as a processing
element which is specialized for the processing of request tokens.

4.3 Instructions

The 1P field of the token is used as a direct address into the instruction memory of a PE. Following
the ETS model, the instruction dictates the offset in the frame, the kind of matching operation that
will take place (i.®. the state transition function on a word in frame store), the operation performed
in the ALU and the way that new result tokens will be formed. Al Monsoon instructions are of
uniform size with the following format: '

| Instruction j
OPCODE F1 F2
12 10 10

The OPCODE determines the meaning of the 1 and f2 fields. There are three basic combination
of f1 and f2 assignments.

I Instruction Formats I

CLASS fl f2
dyadic | bEsT] r
monadic | DEST1 | DRsT2

long Tmaw Plrw

The r field is used to compute the effective address of a location in local frame store. There
are two possibilities. In frame relative addressing the frame store location is computed as FP + 7.
In gbsolute addressimg the location is simply » — the first set of locations on this PE. An opcode
can encode either absolute or relative addressing for any format in which r appears. Typically,
7 is a 10 bit {unsigned) displacement into an activation frame. Literal constants and procedure
linkage information are conventionally kept in low memory and referenced by using a 20 bit absolute
address in the long format. The absolute address mode is used in lieu of the 1p +r address mode
specified by the ETS.

Every instruction can have up to two destinations, as given by DEST1 and DEST2. These fields
are encoded as an adjustment to 1P and explicit PORT value (the msb of 1p), as follows:

| DpEsT Field Encoding |

PORT s
1 9

The two’s complement encoding of the displacement s is added to the current Ip to form a
target instruction address. An instruction may implicitly encode a destination as well. When a
DEST does not explicitly appear in the instruction format, s defaults to +1 and PORT is set to zero.
That is, one destination can be the next instruction in instruction memory, 1P | 1.

*The I-structure hardware only decodes the least significant six bits, and the most significant bit, of op.

21 DRAFT June 8, 1990

4.4 Temporary Registers

Monsoon extends the explicit token store model by provided a degree of compiler control over
scheduling as well. Recall, the processing of a token may result in zero, one or two new tokens,
One of the result tokens may be automatically routed to another processing element®, while a local
result token may be directly recirculated back into the processor pipeline. If two local result tokens
are created then one of them is inserted into a token queue while the other is directly recirculated.
In the case of two local result tokens, the Monsoon instruction set allows the compiler to declare
which token will be recirculated, thereby biasing the token scheduling along a sequence or “thread”
of instructions. One should imagine eight such threads being interleaved by the pipeline. A thread
is broken when a token has no local successor, either because it produced no tokens (say, being
the first arriving token to a dyadic operator) or a token produced was routed to the interprocessor
network. A new thread is started when a token is popped from a token queue an inserted into the
pipeline, .

Observe, if a token being processed in instruction fetch on cycle n emits a local token, then,
by virtue of the direct recirculation path and the synchronous pipeline, the result token will be
processed in instruction fetch precisely eight cycles later, cycle n + 8. Similarly, the successor of a
token in the first stage of the ALU will also be in the first stage of the ALU precisely eight cycles
later. It should be possible, therefore, for a token and its successor to share state associated with
the ALU, as long as we are careful to have eight replicates of the state to prevent interference
amongst the eight, possibly unrelated, threads in the pipeline,

The ALU state is introduced as a small set of temporary registers that can be imperatively
read and written under instruction control. The current implementation provides eight sets of
three temporary registers, one set for each pipeline thread. We have provided two new instruction
formats for manipulating the temporary registers,

| New Instruction Formats |

CLASS f1 f2
register | REGS T
register | REGS | DEST!

that the temporaries remain valid only as long as there is a local recirculating token. Thus, registers
are not preserved across synchronization points (dyadic operations) or split phase memory reads.
This restricts the typical run length of a thread to just a few instructions, but can nonetheless
substantially improve the dynamic efficiency of certain instruction mixes.

Figure 9 illustrates the application of temporary registers to the expression (x + y)x(x - y).
In the standard dataflow graph, shown on the left, a total of six tokens are processed to compute
the result of the expression. This is a cycles per instruction (CPI) rate of 2.0. Also note that
three locations in frame memary are required. The threaded code is shown on the right. Now only
one frame slot is used to perform the matching of x and ¥. Once matched, the values are written
into two temporary registers, which are later used by the subtract operation without having to pay
the cost of resynchronizing x and ¥. A total of four tokens are processed, yielding a CPI of 1.5.
However, a small amount of potential parallelism (the add and the subtract being processed by

5This is automatically detecied by the hardware by inspecting the PE field of the result token and comparing it
against the local PE number. In the case of memory request, tokens, the NODE field is compared against the local
PE number.

22 DRAFT June 8, 1990

the pipeline simultaneously) has been sacrificed. The use of temporary registers in Monsoon was
inspired by the main register set Iannucci’s hybrid machine[30], and are similar to the register set
concept independently developed for the EM-4[42].

x y x T

Tl:= VL; T2:= VR
ADD | app 71, T2
ADD SUB
Vs. T3:=V
suB | sum T1,T2
MULT MuLT | MoLT T3,V

| ¢

z z
Figure 9: Example Use of Temporary Registers for the Expression (x + y)*(x - y)

4.5 Exceptions

The thread model used to reason about temporary state applies equally well to processor exceptions.
We extend the eight sets of temporaries with two more registers, called XA and XB, and use them to
always record the actual operands submitted to the ALT. Now, if these operands ultimately elicit
an ALU exception the hardware suppresses the generation of any instruction-specified result tokens
and, instead, recirculates an exception token into the pipeline.

An exception token is simply a token which has a predetermined tag, the 1P pointing to the
exception handler entry point and Fp pointing to a reserved activation frame, and a value that is
the tag of corresponding to the offending instruction. The exception handler can then query the
saved XA and XB operand values®,

As eight exception handlers may be active simultaneously, each interleaved thread is given
a different exception Fp. Furthermore, an exception handler can be vectored by changing the
exception IP as a function of the kind of exception detected. Monsoon supports exceptions based
on ALU conditions, operand type mismatches, and unconditional exceptions. In fact, the exception
mechanism is so efficient that we use it to dynamically link into resource managers. For example, the
compiler emits a ALLOC-FRAME and DEALLOC-FRAME instruction for procedure calls which are trapped

®The first few instructions of a handler can suppress the updating of XA and IB.

23 DRAFT June 8, 1990

and vectored into a short sequence of instructions that perform the activation frame management
operations.

4.6 Detailed Pipeline Operation

Figure 7 is a detailed view of the eight processor pipeline stages. A token can be inserted into the
Pipeline every cycle. After a delay of eight cycles, zero, one or two tokens emerge from the bottom.
A stage-by-stage description of the eight processor cycles follow.

1. Instruction Fetch. The 1P from the incoming token is used as an address into local instruc-
tion memory. A single 32-bit instruction is fetched.

2. Effective Address Generation. The effective address of the location in frame store is
computed by adding the P part of the tag to the r in the instruction (relative addressing),
or by simply passing the r field (absolute addressing).

3. Presence Bits. There are three presence (or status) bits associated with each waord in frame
store. These presence bits associated with the frame store location computed during effective
address generation are read, modified by a table lookup, and then written back to the same
location. The lookup operation dictates a state transition on the presence bits. The transition
function depends on the port bit on the incoming token and the instruction opcode. State
machine outputs are used to control subsequent pipeline stages. One output dictates whether
the operation on the value part of the associated frame store location should be a read, write,
exchange or no-op. Another output suppresses the processing of result tokens. This will be
asserted, for example, when the first token for a two-input operator is processed.

4. Frame Operation. This stage operates on the value part of the frame store location com-
puted during the effective address stage. The presence bits state transition decides whether
the addressed location should be read, written with the value carried on incoming token,
exchanged with the incoming value, or whether no operation should be performed.

9. ALU-1. If the frame store was read or exchanged during stage 4, the ALU has two values on
which to operate: the value read and the incoming value. These are sorted into left and right
values using the port bit of the incoming token. If frame store is written or if no frame store
operation is performed, then only a single new value (the incoming token) is available for the
ALU. During this stage, the incoming value and the frame store value can be written into
temporary registers, and two registers can be read to supply the ALU operands. The actual
ALU operands are recorded into the XA and XB temporaries. It is also possible to introduce
the incoming tag as one of the AL operands.

6. ALU-2. During this stage the left and right operands are Processed by one of the ALUs: a
floating point/integer unit (FALU), a specialized pointer/tag arithmetic unit (P1U), 2 machine
control unit (MCU) or a type extract/set unit (TPU). The PIU can also treat the f1 field
from the instruction as a literal value.

7. ALU-3 Concurrent with the final ALU processing, two new result tags are computed by
the next address generators. These parallel units create new destination tags by passing the
incoming PE and Fp while incrementing the incoming 1P as dictated by DEST1 and DEST2.
Either DEST can implicitly refer to 1p + 1,

24 DRAFT June 8, 1990

8. Form Token/Token Queue The form token stage creates up to two result tokens by con-
catenating the tags computed by the next address generation with the ALU result. During
inter-procedure communication and data structure requests the result tag is actually com-
puted by the ALU. The form token multiplexor therefore allows the ALU result to be the tag
of one of the tokens. An extra result token value, a delayed version of the “right” value, is
also available to the form token multiplexor. This stage detects whether the PE or NODE part
of a result token tag is equal to the present processing element number. If not, the token is
forwarded to the network, where it is automatically routed to the correct processing element
or I-structure module. One of the new tokens may be recirculated directly to the instruction
fetch stage (if the PE matches, of course). If two tokens are created, one of the result tokens
can be placed onto either the system or user token quete. If no tokens are created then a
token can be dequeued from one of the token queues.

Consider the processing of a two-input operator. Either the left or right token may be processed
first. The first token to be processed enters the pipeline and fetches the instruction pointed to by
1P. During the effective address stage the location in frame store where the match will take place
is computed. The associated set of presence bits are examined and found to be in the empty state.
The presence state is thus set to full and the incoming value is written into the frame store
location during the frame store stage. Further processing of the token is suppressed because the
other operand has yet to arrive. This “bubbles” the pipeline for the remaining ALU stages: no
tokens are produced during form-token, permitting a token to be removed from one of the token
queues for processing.

The second token to be processed enters the pipeline and fetches the same instruction. It
therefore computes the same effective address. This time, however, the presence state is found to
be full so the frame store location (which now contains the value of the first token} is read and
both values are processed by the ALU. Finally, one or two result tokens are created during the
form token stage,

5 Ewvaluation

A single processor Monsoon prototype has been operational at the MIT Laboratory for Computer
Science since October 1988. Except for the interprocessor network connection and temporary regis-
ters, the prototype employs the synchronous eight stage pipeline and 72-bit datapaths presented in
Section 4. The memory sizes are fairly modest: 128K Words (72 bits) of frame store and 128K Words
(32 bits) of instruction memory. The prototype cycle time is 250ns., so it processes four million
tokens per second. The processor is hosted via a NuBus adapter in a Texas Instruments Explorer
lisp machine. The compiler and loader are written in Common Lisp and run on the host lisp ma-
chine, whereas the runtime activation and heap memory management kernels are written in Id and
directly execute on Monsoon.

We are working with the Motorola Microcomputer Division and the Motorola Cambridge Re-
search Center to develop several Monsoon multiprocessor research systems. The new processors are
similar to the first prototype but are faster (10 million tokens per second), have somewhat larger
frame storage (256K Words to 1MWord), have dedicated I-structure memory modules (4MWords),
and are connected via a high-speed multistage packet switch (100 Mbytes /sec/port). A photograph
of the processor board is shown in Figure 10. A PE is implemented on a single 9U x400mm surface-
mounted printed circuit card which supports a VME port for diagnostics and input/output, and
two unidirectional network links. The processor core is byte sliced into eight 10,000 gate CMOS

25 DRAFT June 8, 1990

To contain photograph of Monsoon Processor

Figure 10: Monsoon Processor Board

arrays. The floating point unit is fully pipelined, yielding up to 10 million double precision float-
ing point operations per second. Presently, we are implementing a 256K Word (32 bit) instruction
niemory, 256Kword (72 bit} frame store, and a 64K Word (144 bit} token queue. The token queue
memory is divided equally between system and user queues.

The network is based on a 4 X4 packet switching integrated circuit called PaRC (Packet Routing
Chip)[31]. Each fixed-size PaRC packet comprises 16 bits of routing header, 144 bits of data (a
token), and 32 bits of cyclical redundancy check for error detection. The PaR(datapaths are
16 bits wide and cycle at 20ns. This yields a per link bandwidth of 100 Megabytes /second, or a

routing) and input packet buffers on each input link capable of storing four packets each. The
packet buffers are intelligently managed as virtual channels, permitting sustained utilization of the
switching fabric in the vicinity of 90%.

Versions comprising eight Processors, eight memory modules, eight switch modules and four
Unix-based I/0 processors should be operational in the Spring of 1991. Motorola will also be
supporting a Unix-based single processor/single memory module workstation for Id program de-
velopment.

Given the prototype nature of the existing hardware platform, the evaluation of the approach
at this stage is mostly qualitative. Runtime management has been a particular challenge for large
Programs because, lacking specialized I-structure memory, all activation frames and heap data
structures are drawn from the same frame store memory. As mentioned above, the Monsoon

Free activation frames are kept on a shared free-list, so the frame ALLOC-FRAME and DEALLUC-FRAM_E
operators expand to three instructions each that respectively pop from and push onto the free-list.
The compiling discipline ensures that an activation frame being deallocated has all of its presence

26 DRAFT June 8, 1990

bits set to empty. Half of the frame store memory is dedicated to the heap and accessed through
allocate and deallocate library routines. Two experimental memory managers have been developed
for the prototype: a simple first-fit manager with coalescing and a somewhat more sophisticated
buddy system that permits simultaneous allocations and deallocations against the various free-lists.
In spite of the serious memory limitations, some surprisingly large codes have been executed on
the first Monsoon prototype, including GAMTER, a monte carlo histogramming simulation of photon
transport and scattering in carbon cylinders. This code is heavily recursive and relatively difficult to
vectorize. On Monsoon, a 40,000 particle simulation executed a little over one billion instructions.
For comparison purposes, a scalar Fortran version of GAMTEB simulates 40,000 particles in 250
million instructions on a CRAY-XMP. We have found that about 50% of Monsoon instructions were
incurred by the memory management system (the Fortran version uses static memory allocation).
The remaining overhead of about a factor of two when compared with Fortran is consistent with
our experience with other codes on the MIT tagged token dataflow architecture (3]. We are very
. encouraged by these preliminary data and expect marked future improvements in the memory
management system and the overall dynamic efficiency of compiled code,
TSP is a simulated annealing approach to the traveling salesperson problem. The code performs
implicit control over storage through user-defined object managers. The following statistics are
typical of an iteration from a tour of fifty cities.

Fifty City Tsp Tour on Monsoon

Instruction Class Total Cycles | Percentages
Fanouts and Identities 27,607,282 39.25
Arithmetic Operations 6,148,860 8.77
ALU Bubbles 20,148,890 28.75
I-Fetch Operations 3,530,992 5.12
I-Store Operations 285,790 0.41
Other Operations 8,902,202 12.70
Idles 3,503,494 5.00

Fanout and identities are the basic set of operations used for replicating data values and ter-
mination detection. These are roughly equivalent to move instructions in von Neumann machines.
Arithmetic operations include both integer and floating point operations. ALU bubbles occur when

the first-arriving operand of a two-input operator is written into a frame slot and and further pro-
cessing of instruction is suppressed. Idles occur dur

the token queues are empty.

The current Monsoon compiler is a retargeted version of the Id to TTDA graph compiler. This
essentially follows a transliteration of TTDA instructions into the Monsoon instruction
set. It performs the static assignment of nodes to frame slots,

additional power of the ETS model. As such, we view the curre

“first cut”

principle more than as a statement of potential performance.

Preliminary studies of frame slot assignment show the amount of reuse within a function body
or loop iteration to be considerably smaller than expected. Roughly 60% of the instructions take
need not be assigned a frame slot
remaining dyadic instructions, we find that, on average,
"This number is heavily dependent on the current compilation paradigm,
which is unnecessarily general in many cases,
with additional compiler work. There is, howe

a single input token and, therefore,

loops.

27

ing a cycle where no tokens are produced and

but takes little advantage of the
nt application base as a proof of

for matching. For the
there are ronghly 1.3 instructions per slot.
especially the call linkage,
We expect considerable improvement in this area
ver, extensive reuse of entire frames in k-bounded

DRAFT June 8, 1990

The future architectural development of Monsoon will continue to explore fundamental improve-
ments in dynamic instruction efficiency. It is important to note a basic mismatch in the Monsoon
pipeline, characteristic of dataflow architectures. Each two-input instruction Tequires two opera-
tions against frame store, and thus two processor cycles, but only utilizes the ALU with the arrival
of the second token. As suggested by the statistics above, approximately 30% of the ALU cycles are
consumed by this mismatch (ALU bubbles). The introduction eight sets of temporary registers —
one associated with each recirculating token in the pipeline — appears to offer significant efficiency
improvement for short instruction sequences, possibly eliminating a large fraction of ALU bubbles
and identities. These should also reduce the overall frame size by eliminating many of the match
operations.

6 Related Work and Conclusions

the roots of this development, noting key similarities and differences. In addition, comparisons are
drawn with contemporary dataflow machines.

The use of a directly addressed token store with presence bits is represented by the earliest
static datafiow architectures|18, 22, 21, 40]. In the static approach, each instruction is a template
containing the opcode, a list of destination addresses and slots to hold operands, While the work
established the fundamentals of the dataflow execution paradigm, the static mode] has several
shortcomings. The entire graph must be expanded at compile-time, thus general recursion is
disallowed, and at most one token can exist on each arc at any time. To meet the latter requirement,

cannot share operand storage. .

Key differences in the E'TS include collecting the operand storage associated with a code-block
into an activation frame, which is allocated dynamically, and providing a means of token indirection,
SEND and EXTRACT-TAG. This provides full generality, while simplifying the machine and improving
storage utilization. Having the instruction specify the frame slot allows slot reuse, but also supports
traditional imperative execution. There is no machine-level concept of acknowledgement; proper
reuse of operand storage is assured at a higher-level in compiling graphs. This compilation discipline
evolved directly out of work on tagged-token dataflow architectures. _

Tagged-token architectures sought to overcome the shortcomings of static architectures by nam-
ing tokens and accessing them by name, rather than by address. The name (or tag) includes a statjc
part, identifying the instruction that is to use the value, and a dynamic part, identifying a par-
ticular instance of that instruction. Code is separated from data, so the Program is re-entrant.
The dynamic component of the tag supports recursion and iteration, with arbitrary overlap of
iterations. The single token per arc restriction is removed, allowing greater parallelism and avoid-
ing acknowledgement processing. Instructions are scheduled by matching tags. Result tags are
generated from input tags by a set of simple rules. Perhaps the most important contribution of
the tagged-token work is the development of a set of simple graph schemas representing the basic
constructs in a high-level langnage that allow consistent generation of tags. This includes a clear

28 DRAFT June 8, 1990

notion of code-block and code-block invocation. In theory, the model could be realized by simply
treating the tag as an operand address, but the tag space is much too large for this to be practical.
Instead, tagged-token architectures use an associative matching store to detect enabled operations;
this need only be large enough to hold the tokens in existence, including their tags.

In developing the MIT Tagged-Token Dataflow Architecture (TTDA), several factors motivated
further refinement of the compilation paradigm, in order to reduce the size of the tag and allow tags
and resources to be more closely related[4]. One was the obvious reduction in storage overhead and
data path width. A second factor was the importance of loop constants; circulating constant values
produced considerable overhead that was easily avoided by associating a small amount of state
with each loop invocation. A third was the use of mapping parameters describing how a code-block
invocation was distributed over a collection of processors. The TTDA provided code-block registers
containing the base addresses for the code-block and the loop-constant area, along with mapping
information. Sigma-1[28, 29] provides similar features. In associating state with each invocation, it
became necessary to embellish the graph schema to detect when an invocation was complete and the
resources associated with the invocation could be released. Extending this to detect the completion
of iterations allowed small iteration identifiers to be used and, more importantly, provided a means
of avoiding excessive use of matching-store resources. In compiling programs to dataflow graphs in
this manner, the associative matching store was no longer required, since the tag space was used
more densely. It was natural to determine frame-slot assignments at compile-time, as well. ETS
carries this line of development slightly further in placing the frame offset in the instruction, rather
than on the token, so that execution of imperative threads is easily represented. '

The EM-4[42], a successor of Sigma-1, developed at the Electrotechnical Laboratory in Japan, is
contemporary with Monsoon. It is a smaller scale, but more highly integrated, design and represents
a similar path of architectural evolution. It eliminates the hash-based matching store of the Sigma-
1 in favor of direct access into an activation frame. The current EM-4 implementation consists of
80 processors with on-chip routers in fifteen groups of five, Each group includes a conventional
maintainance processor for system support. The processor is a 38-bit tagged architecture, with
20-bit local addresses. Floating-point operations and integer multiply are performed in software.
Instructions, activation frames, data structures, and buffered network packets are held in a common
local memory with no caches, thus the match and initiation of an operation may require several
DRAM accesses, whereas Monsoon can attempt a match every cycle.

In EM-4, each match initiates the execution of a sequence of instructions — the nodes in the
dataflow graph whose inputs are completely determined by the two matched values. These are
processed by a fairly conventional execution unit. Instructions within a sequence may reference
either of the two input values or local registers, holding temporaries within the sequence. Although
it employs direct matching, EM-4 is incomplete as an ETS architecture, because instructions cannot
explicitly refer to slots within the activation frame. There is no provision for reusing frame slots.
However, the macro operations with local registers are expected to reduce the overall frame size.
The Monsoon temporaries and direct recireulation provide a similar function, but several Monsoon
sequences are interleaved in the pipeline.

Epsilon2{25), currently under development at Sandia National Laboratory, is an extention of
the Epsilon static dataflow machine[24] and early ETS work at MIT. An instruction can refer to
two distinct operand frame slots and a third synchronization slot. A “repeat on input” mechanism
allows a sequence of instructions to be initiated and ALU registers may hold temporaries within
a sequence. There is no conditional branching within a sequence. Instructions cannot explicitly
write to the activation frame, a separate token must be generated to deposit a value. The processor
supports 64-bit operations with tag and pointer formats similar to Monsoon. .

A separate line of research generalized the static dataflow model by dynamically splicing the

29 DRAFT June 8, 1990

graph to support recursionf48]. VIM advances these ideas by separating the program and data
portions of the instruction template, so that splicing is implemented by allocating an operand
frame. Representing iteration by cyclic graphs presents difficulties under this approach and is
generally eliminated in favor of tail-recursion.

Graph reduction models closely resemble graph splicing; in invoking a function, a copy of the
graph representing the function is produced with arguments values substituted in place of formal
parameters(17, 33]. The copy of the function. body, represented as a linearized graph, may be
viewed as an activation frame. Each slot contains an instruction that will eventually be reduced to
a value and state bits that record the disposition of the slot. Instructions do not explicitly update
the frame.

Several researchers have suggested that dataflow and von Neumann machines lie at two ends
of an architectural spectrum(13, 30, 38]. In reflecting upon the development of Monsoon, our
view is slightly different. Dataflow architectures and modern RISC machines represent orthogonal
generalizations of the single accumulator “von Neumann” machine. The mainstream architectural
trend enhances the power of a single execution thread with multiple addresses per operation. As
we have shown here, dataflow execution essentially represents multiple 1-address execution threads,
with a very simple synchronization paradigm. Having made the transition from propagating values
through graphs to “virtual” processors, we can begin to address the question of what is the best
processor organization to “virtualize.” Certainly there are gains to be made by incorporating more
powerful operand specification, but this must be weighed against additional cost and complexity in
the synchronization paradigm. Recently, attention has been paid to multithreaded variants of a full
3-address load/store architecture to tolerate latency on a cache miss[47]. Considerable complexity
is contemplated to address only the latency aspect of parallel computing and it is not obvious that
a simple, inexpensive synchronization mechanism can be provided in this context.

It is likely that the optimal building block for scalable, general purpose parallel computers will

question of how virtual processors are scheduled onto physical processors. Monsoon represents
a viewpoint in which scheduling is directly supported by hardware, in the form of token queues.
Perhaps another dimension of architectural variation is the manner in which the communication is
integrated with the Processor instruction set. For example, in many shared-memory architectures
communication is invishle, with the cache lying between the processor and the network. Under ETS,
operations that may potentially involve communication with remote processor or memory modules
are represented by explicit sends to appropriate logical entities, however, the physical transport is
transparent. Although various architectural alternatives can be weighed on engineering grounds,
the final judgement can only be made with considerable experience on large scale parallel programs
and the management and programming challenges they represent,

Acknowledgements

This work reflects considerable contributions of many members and past members of the Compu-
tation Structures Group, led by Prof, Arvind, including R. §. Nikhil, Andy Boughton, Ken Traub,
Jonathan Young, Paul Barth, Stephen Brobst, Steve Heller, Jamey Hicks, Bob lannucci, Andy
Shaw, Richard Soley, Ken Steele, Jack Costanza, and Ralph Tiberio. Special thanks to our grow-
ing user community, including Olaf Lubeck of LANL, and to Motorola Inc, for their continuing
support. We are grateful to the reviewers for many helpful comments,

The research was performed primarily at the MIT Laboratory for Computer Science and partly

30 DRAFT June 8, 1990

at the University of California, Berkeley. Funding for the Monsoon project is provided in part
by the Advanced Projects Agency of the Department of Defense under the Office of Naval Re-

search contract N00014-84-K-0099. D. Culler was supported in part by an NSF Presidential Young
Investigator award and Motorola Inc.

31 DRAFT June 8, 1990

References

(1] Arvind and D. E. Culler. Managing Resources in a Parallel Machine. In Proceedings of IFIP

TC-10 Working Conference on Fi Generation Computer Architecture, Manchester, England.
North-Holland Publishing Company, July 1985.

[2] Arvind and D. E. Culler. Dataflow Architectures. In Annual Reviews in Computer Science,
volume 1, pages 225-253. Annual Reviews Inc., Palo Alto, CA, 1986. Reprinted in Dataflow
and Reduction Architectures, S. §. Thakkar, editor, IEEE Computer Society Press, 1987.

(3] Arvind, D. E. Culler, and K. Ekanadham. The Price of Asynchronous Parallelism: an Analysis
of Dataflow Architectures. In FProceedings of CONPAR 88, Univ. of Manchester, September
1988. British Computer Society — Parallel Processing Specialists. (also CSG Memeo No. 278,

MIT Laboratory for Computer Science).

(4] Arvind, D. E. Culler, R. A. Tannucci, V. Kathail, K. Pingali, and R. E. Thomas. The Tagged
Token Dataflow Architectyre. Technical Report FLA memo, MIT Laboratory for Computer
Science, 545 Technology Square, Cambridge, MA, August 1983. Revised October, 1984.

[5] Arvind, M. L. Dertouzos, R. §. Nikhil, and G. M. Papadopoulos. PROJECT DATAFLOW,
"a Parallel Computing System Based on the Monsoon Architecture and the Id Programming
Language. Technical Report CSG Memo 285, MIT Laboratory for Computer Science, 545
Technology Square, Cambridge MA, 1988.

[6] Arvind and K. Ekanadham. Future Scientific Programming on Parallel Machines. The Journal
of Parallel and Distributed Computing, 5(5):460-493, October 1988.

[7] Arvind and K. P. Gostelow. The U-interpreter. IEEE Computer, 15(2), February 1982.

[8] Arvind, S. K. Heller, and R. S. Nikhil. Programming Generality and Paralle] Computers, In
Proceedings of the Fourth International Symposium on Biological and Artificial Intelligence
Systems, pages 255-286, Trento, Italy, September 1988, ESCOM (Leider).

(9] Arvind and R. A. Iannucci. Two Fundamental Issues in Multiprocessing. n Proceedings
of DFVLR - Conference 1987 on Parallel Processing in Science and Engineering, Bonn-Bad
Godesberg, W, Germany, June 1987.

[10] Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token Datafiow Architec.
ture. In Proceedings of the PARLE Conference, Eindhoven, The Netherlands. (LNCS Volume
259). Springer-Verla,g, June 1987. To appear in IEEE Transactions on Computers, revised

June, 1988,

(11] Arvind, R. §. Nikhil, and K. K. Pingali. I-Structures: Dats Structures for Paralle] Computing.
Science, 545 Technology Square, Cambridge, MA, February 1987. (Also appears in Proceedings
of the Graph Reduction Workshop, Santa Fe, NM. October 1986.).

[12] R. G. Babb II, editor. Programming Parallel Processors. Addison-Wesley Pub. Co., Reading,
Mass., 1988.

[13] L. Bic. A Process-Oriented Model for Efficient Execution of Dataflow Programs. In Proceed-
ings of the 7th International Conference on Distributed Computing, Berlin; West Germany,
September 1987,

32 DRAFT June 8, 1990

[14] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein. Register
Allocation via Coloring. Computer Languages, 6:47-57, 1981.

[15] D. E. Culler. Resource Management for the Tagged-Token Dataflow Architecture. Technical
Report TR-332, MIT Laboratory for Computer Science, January 1985. (MS Thesis, Dept. of
EECS, MIT).

[16] D. E. Culler. Managing Parallelism and Resources in Scientific Dataflow Programs. PhD
thesis, MIT Dept. of Electrical Engineering and Computer Science, Cambridge, MA, June
1989. To appear as MIT Laboratory for Computer Science technical report, TRA446.

[17] J. Darlington and M. Reeve. ALICE - A Multi-Processor Reduction Machine for Parallel Eval-
uation of Applicative Languages. In Proc. of the 1981 Conference on Functional Programming
and Computer Architecture, pages 65-76, 1981.

(18] A. L. Davis. The Architecture and System Methodology of DDML1 : A Recursively Structured
Data Driven Machine. In Proceedings of the 5th Annual International Symposium on Computer
Architecture, pages 210-215, April 1978.

[19] J. Deminet. Experience in Multiprocessor Algorithms. IEEE Transactions on Computers,
C-31, April 1982.

[20] J. B. Dennis. First Version of a Data Flow Procedure Language. In G. Goos and J. Hartmanis,
editors, Proc. Programming Symposium, Paris 1 974 (Lecture Notes in Computer Science 19),
New York, 1974. Spinger-Verlag. (Revised: MAC TM61, May 1975, Laboratory for Computer
Science, 545 Technology Square, Cambridge, MA 02139).

[21] J. B. Dennis. Data Flow Supercomputers. IEEE Computer, pages 48-56, November 1980.

{22] J. B. Dennis and D. P. Misunas. A Preliminary Architecture for a Basic Dataflow Processor.

In Proceedings of the 2nd Annual Symposium on Computer Architecture, page 126. IEEE,
January 1975.

(23] J. Gaudiot and Y.H. Wei. Token Relabeling in a Tagged Dataflow Architecture. In Proceedings
of the 1986 International Conference on Parallel Processing, 1986.

[24] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes. The Epsilon Dataflow Processor.
In Proceedings of the 16th Annual International Symposium on Computer Architecture, 1989.

(25] V. G. Grafe and J. E. Hoch. The Epsilon-2 Hybrid Dataflow Architecture. In Proceedings of
Compcon90, pages 88-93, March 1990.

(26] J. Gurd, C.C. Kirkham, and I. Watson. The Manchester Prototype Dataflow Computer.
Communications of the Association for Computing Machinery, 28(1):34-52, January 1985.

[27] J. L. Gustafson, G. R. Montry, and R. E. Benner. Development of Parallel Methods for a
1024-Processor Hypercube. SIAM Journal on Scientific and Statistical Computing, 9(4), July
1988.

[28] K. Hiraki, K. Nishida, . Sekiguchi, and T. Shimada. Maintainence Architecture and its LSI
].mplemgntation of a Dataflow Computer with a Large Number of Processors. In Proceedings
of the 1986 International Conference on Parallel Processing, pages 584-591, 1986.

33 DRAFT June 8, 1990

[29] K. Hiraki, S. Sekiguchi, and T. Shimada. Systemn Architecture of a Dataflow Supercomputer.
Technical report, Computer Systems Division, Electrotechnical Laboratory, 1-1-4 Umezono,
Sakura-mura, Niihari-gun, Tharaki, 305, Japan, 1987.

[30] R. A. lannucci. A Dataflow /von Neumann Hybrid Architecture. Technical Report TR-418,
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA, May 1988,
(PhD Thesis, Dept. of EECS, MIT).

[31] C. F.Joerg Design and Implementation of a Packet Switched Routing Chip. MS Thesis,
MIT Department of Electrical Engineering and Computer Science, 77 Massachusetts Avenue,

Cambridge, MA, May 1990.
(32] A. H. Karp. Programming for Parallelism. IEEE Computer, 20(5):43-56, May 1987.

(33] R. M. Keller, G. Lindstrom, and S. Patil. A Loosely-Coupled Applicative Multi-Processing
System. In Proceedings of the National Computer Conference, volume 48, pages 613622, New
York, NY, June 1979,

[34] O. M. Lubeck. A User’s View of Dataflow Architectures. In Proceedings of COMPCONY0,
pages 84-87, April 1990.

(35] D. A. Mandell and H. E. Trease. Parallel Processing a Real Code — A Case History, Technical
Report LA-UR 88-1836, Los Alamos National Laboratory, 1988, In Proceedings of the LANL
Workshop on Instrumentation for Future Parallel Systems.

(36] D. Nicol and J. Saltz. Dynamic Remapping of Parallel Computations with Varying Resource
Demands. IEEE Transactions on Computers, 37(9):1073-1087, September 1988.

[37] R. S. Nikhil. Id (Version 88.0) Reference Manual. Technical Report CSG Memo 284, MIT
Laboratory for Computer Science, 545 Technology Square, Cambridge, MA, March 1988,

[38] R. S. Nikhil and Arvind. Can Dataflow Subsume von Neumann Computing? In Proceedings of
the 16th Annual International Symposium on Computer Architecture, Jerusalem, Israel, May

1989. To appear.

[39] G. M. Papadopoulos. Implementation of a General Purpose Dataflow Multiprocessor. Technical
Report TR432, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge,
MA, September 1988. (PhD Thesis, Dept. of EECS, MIT).

[40] J. Rumbaugh. A Data Flow Multiprocessor. IEEE Transactions on Computers, C-26(2):138~
146, February 1977.

[41] Michel M. Sadoune. Terminal Area Flight Path Generation Using Parallel Constraint Prop-
agation. PhD thesis, Massachusetts Institute of Technology, Department of Areonautics and
Astronautics, 1989.

[42] S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba. An Architecture of a Dataflow
Single Chip Processor. In Proceedings of the 16th Annual International Symposium on Com-
puter Architecture, pages 46--53, Jerusalem, Israel, June 1989.

[43] T. Shimada, K. Hiraki, and K. Nishida. An Architecture of a Data Flow Machine and its
Evaluation. In Proceedings of CompCon 84, pages 486—490. IEEE, 1984,

34 DRAFT June 8, 1990

[44] K. M. Steele Implementation of an I-Structure Memory Controller. Technical Report TR4T1,

MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA, March 1990.
(MS Thesis, Dept. of EECS, MIT).

[45] K. R. Traub. A Compiler for the MIT Tagged-Token Dataflow Architecture. Technical Report
TR-370, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA
August 1986. (MS Thesis, Dept. of EECS, MIT).

]

[46] K. R. Traub. Sequential Implementation of Lenient Programming Languages. Technical Report

TR-417, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA,
September 1988. (PhD Thesis, Dept. of EECS, MIT).

' [47) W. Weber and A. Gupta. Exploring the Benefits of Multiple Hardware Contexts in a Multipro-
cessor Architecture: Preliminary Results. In Proceedings of the 1989 International Symposium
on Computer Architecture, pages 273-280, Jerusalem, Israel, May 1989.

[48] K. Weng. An Abstract Implementation for a Generalized Data Flow Language. Technical
Report MIT/LCS/TR-228, MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA, 1979. (PhD Thesis, Dept. of EECS, MIT).

3h DRAFT June 8, 1990

