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The Parallel Programming Language 1d
and
its Compilation for Parallel Machines
Rishiyur S. Nikhil

Abstract

In this paper, we show a novel compilation method from a familiar class of lan-
guages to a familiar class of architectures. Id js basically a non-strict functional
programming language, but it has a computation rule different from the tradi-
tional lazy evaluation rule, leading to enormous amounts of parallelism. Then,
instead of using graph reduction (the traditional compilation method), we trans-
late Id programs via two intermediate languages: first to dataflow graphs, and
then to code for an abstract machine called P-RISC. We describe how to imple-
ment the P-RISC abstract machine on a message-passing multicomputer, and we
describe optimizations at all levels, Throughout, the underlying theme is efficient
fine-grained, data-driven execution, which we believe is essential for large-scale
MIMD machines. We also remark on the suitability of the approach for other
source languages (including FORTRAN).

1 Introduction

Functional languages have always been attractive for their expressive power and clean se-
mantics. However, they have not achieved widespread acceptance to date, in part because
their implementations have been slow compared to traditional programming languages. Be-
cause traditional languages are so much better matched to sequential computers, there has
been little hope that this performance gap would be closed soon (despite excellent work in
compiling functional languages [27]). However, for parallel machines, the situation may be
reversed, i.e., functional languages may form a better basis for compilation.

Since they do not contain assignments, functional programs do not contain any anti-
dependencies [20]; so, they can be partitioned into very fine-grained parallel threads. The
parallelism in functional languages is two-fold, First, given a function application:

farg ... arg,

it is always safe to evaluate all the arguments in parallel. Second, if the language has
non-strict semantics, £ can be invoked before the arguments are fully evaluated, so that
computations in the function body can be overlapped with computation of the arguments.
In fact, the function can even return a result before the arguments are evaluated.,



Functional programs are also determinate. Despite the parallel, non-deterministic sche-
duling in its implementation {which may depend, for example, on the machine configuration),
the answer is always unique. This is an invaluable tool in debugging.

Traditionally, functional languages have been compiled using (1) continuations and opti-
mization of closures {16, 19, 3], or (2) graph reduction® [27]. Both approaches were originally
developed for sequential machines, but graph reduction compilers have recently been ex-
tended for parallel machines [29, 6, 10]. One problem with these approaches is that they
exploit parallelism only in strict contexts; as we shall see, this can be a serious limitation on
parallelism. Another problem is that the abstract machines do not seem to address the is-
sues of long latencies and frequent synchronization that must be present in massively paralle]
machines.

In contrast, a different approach has been pursued by our group at MIT. From the begin-
ning, it has been motivated by parallelism, and broadly speaking, the framework has always
been to compile the functional language Id to dataflow graphs, which are then compiled
to machine code for a dataflow machine, However, the language, compilation methods and
architectures have evolved significantly over the last ten years.

Originally just a notation for dataflow graphs, Id was redesigned completely in 1985 (when
it was briefly called “Id Nouveau”). Today, Id is a full-fledged functional language, with
higher-order functions, a polymorphic type system, list and array comprehensions, pattern
matching, etc. Id has non-strict semantics; however, unlike most other implementations of
non-strict languages, we do not use lazy evaluation, and this leads to massive parallelism.

Initially, the only target for Id was the MIT Tagged-Token Dataflow Architecture [5].
Recently, our focus has broadened to include various “multi-threaded architectures”, such
as Monsoon, proposed by Papadopoulos and Culler [26], and P-RISC, proposed by us [24],
Our work on P-RISC, together with Traub’s work on compiling Id {32, 33] for sequential
machines, has, for the first time, shown us a clear path towards compiling Id for machines
based on traditional von Neumann architectures (both single and multiprocessors).

Figure 1 shows the relationship between all the above compilation strategies. The Tagged
Token Dataflow Architecture compiler has been running since 1986 [31]. Together with a
highly instrumented software emulator for the TTDA, this experimental platform has been
the main vehicle of our research. Today, the compilation effort in our group is mainly directed
towards compiling for Monsoon (we are in the advanced stages of actually producing Monsoon
prototype hardware, in partnership with Motorola, Inc.) In the last year or so, we have also
increased our effort in the P-RISC direction,

A significant difference between all the compilers in Figure 1 and traditional compilers
is our approach to synchronization—ail ezeculion is completely data-driven. Traditional
compilers are built on the assumption that asynchronous events are the exception rather than
the rule, if they even occur at all. This situation is reversed in massively parallel, scalable
architectures [4]; even something as ubiquitous as a memory reference may have to be treated
as an asynchronous transaction if the machine is to tolerate the long cross-machine latencies
of parallel machines and the synchronization waits due to producer-consumer parallelism.

'Recent progress in graph reduction indicates that the two approaches are, in fact, quite similar [28].
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Figure 1: Compilers for Id

By using data-driven execution uniformly, our implementations ensure that synchronizations
can be performed frequently, and with no busy waiting.

In this paper, we outline a design for the lower path in Figure 1 (the P-RISC back end has
not yet been constructed). The paper divided into three major parts. The second and third
parts are, in fact, independent of functional languages. They start with dataflow graphs,
and it does not matter whether the graphs were produced from Id or from FORTRAN.

The first part deals with the language and sources of parallelism. In Section 2 we briefly
describe Id, and in Section 3 we demonstrate the unusual amounts of parallelism in Id
programs, comparing it with the parallelism available if we limited it to strict contexts.

The second part deals with compilation to dataflow graphs and the P-RISC abstract
machine. In Section 4 we describe dataflow graphs, an intermedjate language in which fine-
grained parallelism is manifest but in which synchronization is implicit; and, we outline
how Id programs are translated into dataflow graphs. In Section 5 we describe the P-RISC
abstract machine, in which threads and synchronization are explicit. In Section 6, we describe
the translation from dataflow graphs into P-RISC, including various optimizations to reduce
overhead.

The third part (Section 7) deals with implementation of the P-RISC abstract machine
on stock MIMD machines. Finally, we conclude with some comparisons to related work.

2 The programming language Id

Id is a higher-order, typed, functional programming language {25, 23]. In this regard it
is similar to ML [22], Miranda (34] and Haskell [17]. Like the Iatter two languages, Id is
non-strict.

Functions

Id programs are organized around user-defined functions. Here is a simple example:

doiinc:ry=1+y;



which can be read as: “define the increment of ¥ to be y plus 1”. Thus, the expression
“iner 6” evaluates to 6, and the expression “incr 20” evaluates to 21.

Now, suppose we are given a graph, represented as a list of y-coordinates, and suppose
we wish to shift this graph up by one unit, i.e., we wish to increment each y-coordinate by
1. We could use the following function, which takes a list of numbers I and returns a new
list whose j’th element is l; + 1.

Nil
(iner y):(incr_list 17) ;

def incr list Nil
| inerlist (y:1?)

The two clauses of the function take care of the two possibilities for the list argument;: either
it is empty (¥il), or it is not. If empty, the result is also empty. If not, let y name the head
and 1' name the tail of the list. Then, we compute the increment of y; we apply incr_ 1ist
recursively to 1 to produce an incremented version of 1, and we put them together into
a new list using the infix list-construction operator “:”. Thus, given a graph g (a list of y-
coordinates), we can compute the graph that is the one-unit vertical shift of g by evaluating
the expression:

iner_list g

Higher-order functions

Functions themselves may be treated as values, just like numbers and strings. For example,
map-list is a function that, given a list /, produces a new list whose j’th component is f(1;),
where f is itself a parameter of map_list.

Nil

(£ v):(map_list £ 1?)

def map list f §il
| maplist £ (y:1°)

The structure is very similar to incr1ist, except that instead of applying incr to each
element, we apply f. Now, our previous function that incremented all numbers in a list ¢
can be written:

def incr list g = map list incr £ ;

Map_list is an example of a higher-order function because one of its arguments is itself a
function. Such functions have wide applicability, facilitating the reuse of code, For example,
suppose we had a function that scaled a number by a factor of two:

def scale2 y = 2 = ¥;:
Then, we can define a function to scale an entire graph g (a list of y-coordinates) by a factor
of two by saying:

def scale2 list g = map list scale2 g ;

Thus, map_1ist has captured the common, recursive structure of incr_list and scale2 list by
abstracting out the main difference between them, which happens to be a function (scalez
vs. incr). The resulting code is thus more modular,



Currying

Another notational convenience is called currying. Suppose we wrote:
def scale c y = ¢ * y ;
The function scale can be applied to a single argument ¢ to produce another function f,
where f is the function of one argument that scales by ¢. For example, the expression:
scale 2
represents a function of one argument that multiplies its argument by 2. For example:

def scale2.list g = map_list (scale 2) g ;

Discussion

These features—support for higher-order programming and currying notation—are major
factors in giving functional programming its reputation for great expressive power; compared
to other languages, programs can be very succinct. Higher-order functions can be regarded as
the “power tools” of programming—they amplify effort. As a demonstration of this ability,
suppose we are given a list of graphs Ig (a list of lists of y-coordinates), and we wish to scale
them all by a factor of 3. This is easily expressed by the following expression:

maplist (map.list (scale 3)) lg

Here, (scale 3) is a function that scales a number by 3. Thus, (map.list (scale 3)) is a
function that scales a graph by 3, i.e., it scales all y-coordinates in a graph by 3. And,
therefore, the entire expression scales all graphs in lg by 3. Thus, map.1ist allows us to raise
our level of thinking, from a function that scales numbers to a function that scales entire
graphs to a function that scales collections of graphs, and so on.

3 Parallelism in Id

Parallelism due to non-strictness

Id has non-strict semantics (like Haskell and Miranda, but unlike ML and Scheme). This is
a significant source of parallelism. Consider map.list, whose definition is repeated here:
def map list f Nil = Nil
| maplist £ (y:1') = (2 ¥):(map_list £ 17)
Suppose we apply map_1ist to some function f and non-empty list I. As soon as it is verified
that / is non-empty, the two subexpressions (¢ y) and (map_list £ 1°) may be evaluated in
parallel. Let us call the results z and m/'.

In a strict implementation, we would return a cons cell containing z and m' after the
computations for z and m’ have been completed. In an implementation supporting non-strict
semantics, we do not have to wait for z and m’ to be produced—we can produce and return
the result cons cell immediately. The implementation must ensure:
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* That z and m’ are ultimately stored in the head and tail of the cons cell that was
returned, and

¢ Any other computation that attempts to read the head or the tail must block (i.e.,
wait) until the corresponding value appears there.

In other words, the producers and the consumers of the head and tail of the cons cell may
run in parallel, provided they can synchronize at those slots. The producers, of course, are
the computations (¢ y) and (maplist £ 17), and the consumers are some computations that
use the result of this call to map_1ist.

In Id, all computations are initiated in parallel, except that the unfolding is controlled by
conditionals. In a conditional expression, neither arm is initiated until the predicate value
has been computed, after which the selected arm is initiated. Ken Traub has coined the
term “lenient evaluation” to describe this evaluation strategy [32).

Note that a language with strict semantics can have both strict and non-strict implemen-
tations. In the latter case, we will achieve as much parallelism as Id does. The only possible
“wrong” behavior is rather pleasant—it might actually terminate where the semantics specify
non-termination.

Parallelism under composition

The parallelism due to non-strictness and lenient evaluation works very well under compo-
sition. Suppose we had the following expression:

scale2.list (incr list 1)

and, suppose incr list and scale2 1iss individually take time ¢ on lists of length . Then, in
a strict implementation (even if it is parallel), the composition would take time 2t, because
the result of incr_1ist would not be available until time ¢, after which scale2_list would take
a further time ¢.

However, in an implementation supporting non-strictness, the computations of incr_1list
and scale21ist can be overlapped. The first cons cell from inecr_tist (call it ') can be
returned immediately, and scale2_ 1ist can begin work on it i.e., test I’ for emptiness; allocate
result cons cell I and return it; intitiate computation to scale head of /'; initiate recursive call
to scale tail of ', efc. As soon as incr_1ist has produced the first head (a number), it can be
read and scaled by scale2_1ist. Thus, the list-traversals of incr_1ist and scale2.list, instead
of being conducted one after the other, can be overlapped, with the scale2.list traversal
following slightly behind the iner 1ist traversal. In other words, incr_1ist and scale2.1ist
can operate in a “pipelined” manner. The total time for the computation, therefore, can be
of the order of ¢ instead of 2t.

Figures 2 and 3 show the “parallelism profiles” of the composite expression, when run
on Id World, our Id pProgramming environment. In Id World, the program is compiled to
a parallel machine language called dataflow graphs, which are described in more detail in
the next section. These graphs are executed on a simulator that executes all instructions
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in parallel that are ready for execution (i.e., their input data are available). In parallelism
profiles, we plot, for each time step (z-axis), the number of operations that are executed in
that time step (y-axis).

In both experiments, the expression was evaluated on a list of length 100. Figure 2 shows
the normal execution, whereas Figure 3 shows the execution when the interface between
scale2 list and iner list was artificially constrained to be be strict, i.e., to produce the
entire list before any of it can be consumed. In the first case, the program was able to
complete in 1343 time steps, with parallelism of the order of 17 (total operations: 11619). In
the second case, the program took 2060 time steps, with parallelism of the order of 7 (total
operations: 11621). In other words, the non-strict, lenient version was able to complete in
roughly half the time, with roughly twice the parallelism.

How much parallelism from non-strict, lenient evaluation?

The parallelism arising out of non-strict, lenient evaluation can be substantial, Consider the
following program to compute a list containing the leaves of a binary tree.

type tree = Leaf number | Node tree tree ;
def leaves t = aux + Nil H

def aur (Leaf j) 1lvs = j:lvs
| aux (Node L R) 1vs = aux L (aux R 1lvs) ;

The type declaration for trees specifies that a tree is either a Jeaf containing a number or a
node with two sub-trees. The 1eaves function simply calls an auxiliary function, passing it
the tree and an empty list of numbers, The aux function, given a tree and a ljst of numbers,
concatenates a list of the tree’s leaves to the given list. Given a tree that is a leaf with
number j, it just attaches J to the given list of leaves. Otherwise, it is given a tree that is
an internal node with two subtrees I and R. It concatenates the leaves of R onto the given
list, and concatenates the leaves of I, onto that list, which gives us the result list.

In a strict implementation, in the second clause of aux, the recursive call of aux on K must
complete before the recursive call of aux on L can begin. Thus, the computation becomes a

This is clearly borne out in Figures 4 and 5, which show parallelism profiles for two
versions of this program, when run on full binary trees of depth 10. Again, the first profile is
the normal one, and the second profile is for a version that was made artificially strict (but
still parallel). The non-strict version could be completed in 250 time steps, with a maximum
parallelism of 1776 (total instructions: 66,533), while the strict version took 26650 time
steps, with a maximum parallelism of 4 (total instructions: 58,349).
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A note about our parallelism profiles

The profiles shown in this section should be read with care. Since they are computed on a
software simulator under idealized conditions, they show only the “maximum?” parallelism
possible for the particular object code produced by our compiler. Like MIPS ratings, any
actual implementation is unlikely to reach this theoretical maximum., Further, the shapes
depend somewhat on the compilation strategy. However, the parallelism profiles are useful to
gain a first-order estimate about the available parallelism in a program. The profiles shown
are for programs that are slightly different from the programs shown in the paper. This is
because some extra code had to be introduced to induce the articifial strictness for the strict
versions and, therefore, similar dummy code had to be introduced in the non-strict versions
in order to balance the total instruction counts. However, the effect of these modifications
is not significant.

Relation to lazy evaluation

We can use a common framework for comparing Id’s lenient evaluation strategy with the
more traditional lazy evaluation strategy for non-strict languages. We regard these strategies
as different choices for scheduling and synchronization:

o When are processing resources scheduled for producers and consumers?
¢ How do producers and consumers synchronize?

We use the terms “producer” and “consumer” broadly. A producer may be a computation
that writes into a data structure, or one that computes an actual parameter to a function. A
consumer may be a computation that reads from a data structure, or one that uses a formal
parameter of a function.

In a lazy evaluator, the scheduling of processing resources is as follows. First, devote
all processor resources to consumers, suspending all producers. When a consumer really
needs a particular value, transfer all processor resources to the corresponding producer until
it produces a value in weak head normal form, after which all processor resources revert
to the consumer. Synchronization manifests itself as a “test for weak head normal form”
or, in the terminology of graph reduction, testing to see if the graph already been reduced
to a value. Taken literally, this lazy-evaluation scheduling policy results in a completely
sequential evaluation strategy (which is perhaps why the “test for WHNF” is not often
recognized as a synchronization event). This is clearly a fine choice when there is only a
single processor, but what should be done for parallel machines?

Many researchers who are extending graph reduction to parallel machines plan to use
strictness information to relax the sequential order of lazy evaluation. Thus, if a function
is known to be strict in a particular argument z, then the computation for z is initiated
earlier, and in parallel with other computations, rather than waiting for the function to
demand it. However, it remains to be seen how effective this approach will be in exposing
parallelism, since strictness analysis is known to be very hard in the presence of higher-order
functions and data structures. We have not yet seen any experimental results analogous to
our parallelism profiles for approaches based on lazy evaluation.
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Finally, it is important to realize that the choice between lenient evaluation and lazy
evaluation-plus-striciness analysis is manifest only in the translation from the non-sirict
source language into our intermediate language of dataflow graphs. Dataflow graphs and the
underlying architectures themselves are neutral to this choice of evaluation strategy.

4 The front end: Id programs to dataflow graphs

In traditional compilers, the source program is first translated into a control flow graph,
which is a graph whose nodes are either 3-address instructions or basic blocks and whose
arcs represent the flow of control due to unconditional and conditional jumps [2]. Through
data flow analysis, the compiler may superimpose new edges that depict the data dependences
from one node to another. The control flow graph may be further reorganized into a control
dependence graph which, roughly speaking, ties each node to a conditional node that controls
its execution. Recently, Ferrante ef. al. proposed the program dependence graph, or PDG
[13] as a unified intermediate form for paralle]l compilers. A PDG contains the control
dependence graph with data dependence edges superimposed on it, and compilers for parallel
machines can use PDGs to reorganize the statements into parallel threads. The statements
are partitioned into threads that respect the data dependencies, either by explicit sequencing
or by the introduction of synchronization primitives such as semaphores.

Our approach to compiling Id is quite different. The source program is first translated
into a dataflow graph, which depicts only data dependences. In other words, the dataflow
edges are the control flow edges—they describe the minimum constraints on the order in
which operators must be executed. A node in a dataflow graph is not a conventional three.
address instruction—it specifies only an opcode, and does not specify sources or a destination,
Its sources are considered, implicitly, to be the values produced by its predecessors in the
dataflow graph, and its output value is considered, implicitly, to be a source for operators
that are its successors in the dataflow graph. The actual allocation of locations for these
sources and destinations is postponed to later phases of the compiler.

Simple expressions

For simple expressions, the dataflow graph looks very similar to the parse tree (by tradition,
dataflow graphs are drawn so that data usually flows downward). Figure 6 shows the parse
tree and dataflow graph for the expression (a+b)*(a-b). Note that multiple uses of a variable
are made explicit.

A dataflow graph specifies the minimum order in which operations must be performed.
Once a and b are available, either the addition or the subtraction, or both, may be performed.
Once the sum and difference are available, the multiplication can be performed. Note that it
is only a partial order on operations, giving us the flexibility of executing various operations
in parallel. Also, note that the arcs entering a dataflow graph are labelled by the free variables
of the expression, and the arc leaving the graph represents the value of the expression.
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Synchronization and state in dataflow graphs

There are two kinds of synchronization in dataflow graphs, and both are implicit. The first
is called a join synchronization, and is present for all operators with more than one input
arc, such as the three operators of Figure 6. Each such operator involves synchronization
because the operation should not be scheduled until all its predecessors have been executed,
i.e., we need some way to detect that all its predecessors have completed.

The second kind of implicit synchronization is tied with state; in particular, with accesses
to data structures. In our model, a dataflow graph is always executed with respect to a heap
memory. An arc representing a data structure in fact represenis a pointer into the heap,
where all data structures reside. We have s repertoire of operators to store and retrieve
components of heap data structures. For example, the “store ;” operation takes a pointer 4
and a value v and stores » in heap location 4+ j (here, j is assumed to be a small constant
offset, which is why we include it in the operator). Similarly, the “fotcn ;” operation takes
a pointer A and returns the contents of heap location 4 + j.

Two of the heap operations are synchronized. The “I-store ;” and “I-fetcn 7" operations
are similar to store j and fetch j s respectively. However, the heap location is assumed to be
initially marked empty. When an I-ssore is performed on it, it is marked full. If an I-fetch
is attempted against an empty location, it automatically blocks until it becomes full, after
which the value is returned. No more than one I-store may be performed on a location
(it is a runtime error, otherwise), but any number of I-fetcn’es may be performed. This
synchronization on heap accesses is very useful in compiling functional languages, where &
heap location may be written to at most once. It gives us the flexibility to safely schedule
the producer (with an I-store) and consumers (with 1-fetch’es) in parallel. In fact, this is
also useful in compiling other languages in the situations where we can detect this producer-
consumer behavior,

Triggers and signals

Because of non-strictness, it is often possible for some computation in an expression to be
initiated even before any of its “normal” inputs are available. Consider the list-construction
expression (a:b)., Here, we can allocate the cons cell even before a or b is available. To
accomodate this, we often augment a graph with an arc that is called the trigger input.

12



This input can be interpreted as a dummy value that is produced early, whose only role is
to enable computations that do not require any other input.

Similarly, because of non-strictness, it is often possible that a result is produced from
a dataflow graph before all computations in the graph have terminated. Again, in the
expression (a:b), we can return a reference to the newly allocated cons cell before we have
stored a and b into the head and tail slots. This becomes an issue if we want to reclaim
certain resources allocated for the graph. For example, suppose we wish to deallocate an
activation record (frame) for a procedure. When is it safe to do so? Only when all its
computations have terminated, which may occur later than the time that it returns a result.
For this reason, we augment the basic dataflow graph for an expression with a new output
called a signal. This output can be interpreted as a dummy value such that when both the
signal and the normal output have been produced, we are guaranteed that all computation
in the graph has terminated.

___*fffg_fcr a b
! heap
Lallec 21
trigger a b
'_}__i___t_' cons cell ‘
Vi Cconm) ! —- I-stors O I-stere 1
e ——— -
result ¥ ¥ signat signal P
join
resuli {r v #ignal
Figure 7: Dataflow graph for (a:b), including triggers and signals

Figure 7 shows the complete graph for the expression a:b. By convention, we will
use dashed lines for non-primitive operators, i.e., abbreviations for more detailed dataflow
graphs. As soon as the (hesp alloc 2) is triggered, it allocates a cons cell (chunk of heap
memory of size 2}, and produces a pointer to this cell on its output arc. This pointer is
immediately returned as the result of the graph, as well as sent to the left inputs of the two
I-store operators. When the inputs a and b arrive, the I-store operator can execute, storing
them in heap memory at offsets 0 and 1, respectively, relative to the pointer to the cons cell.
Each I-store operator produces a signal, indicating that it has executed. The join operator
produces a signal when it receives all jts inputs, i.e., the two I-store signals. It can easily be
verified that when the final result and signal are produced, all operators in the graph have
executed.

Conditionals

Consider again our map.list procedure;

def map_list £ ¥Nil Nil
| maplist £ (y:1°) = (¢ y):(map_list f 1’)

The dataflow graph for the body of the procedure is shown in Figure 8. The graph has three
inputs: a trigger, £ and 1. The list 1 is tested to see if it is equal to ¥il, producing a boolean
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value that goes to each of the three switch operators. The switches direct the three inputs
(trigger, £ and 1) either to the left or to the right, depending on whether the boolean value
is true or false, respectively.

trigger 1 1]
= Nil
|
v y ¥ r ¥
switch switch switch
F F T _F
¥ ¥
I-fatch 0 I-fetch 1
trigger trigger

Conat 1
Nil !

Figure 8: Dataflow graph for body of map_list

If true (1 = mi1), the trigger produces a constant ¥il, and the other two inputs (£ and
1) are gathered through a join. Note that the join is necessary because otherwise there
is no guarantee that the second and third switches have executed, even after ¥il has been
produced as the result.

If false (1 # ni1), then the two I-fetch operators are used to fetch the head y and the tail
1» of the list from heap locations at offsets 0 and 1, respectively, from the pointer 1. The
function £ is applied to y using the higher-order application operator HO_apply, and £ and
1’ are passed to a recursive invocation of map.list. The two results are cons’ed together to
produce the final result of the else side. The results and signals from the then and else sides
are merged together at the bottom of the graph.

Note the use of triggers. When 1 is empty, the trigger allows us to return the constant
il even if £ is not yet available. When 1 is non-empty, the trigger allows us, even before £
and y and 1 are available, to:

(a) allocate and return the result cons-cell; and
(c) initiate the recursive call to map_list.

We have already seen how (a) is achieved, and we shall shortly see how (c) is achieved.
Note also the production of signals, especially those coming out of the bottom right-hand
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sides of the cons, HO_apply and map_1ist subgraphs. The reader should convince himself that,
assuming that these subgraphs produce proper signals, then the entire graph produces a
proper signal.

Procedures and procedure calls

Figure 9 shows the packaging of the dataflow graph of an expression that converts it into a
procedure. The three id ( “identity”) operators at the top receive return information and the
two arguments, respectively. Receipt of the return information is used as a trigger which,
along with the arguments, is fed into the procedure body. The dashed box for the procedure
body represents the graph of Figure 8. Finally, the result and signal of the procedure are
returned to the caller using the return informatjon. Note that the packaging accomodates
non-strict procedures. In particular, it is possible for the procedure to return a result at any
time after the return information has arrived, even if none of the arguments have arrived.
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return ]
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Figure 9: Packaging the dataflow graph of an expression to make it a procedure.

To support procedure calls, we need to name certain nodes in a graph. We do this by
writing a label “L:” just outside the node. For example, in Figure 9, we have labelled the
first node with “map_1ist:”. Of course, node labels should be unique. In the figures, we will
label nodes that are entry points of procedures, and nodes that are return points, where
results of procedure calls are received.

Since we support higher-order procedures, the identity of the procedure being called may
not be known statically at a call site. As we shall soon see, at run time we will know the label
of the first entry point of the procedure. Thus, we also need a way to determine the labels
of all the remaining entry points of a procedure from this one. If Figure 9, we juxtapose the
three id operators at the top of the graph to suggest that the labels of all three entry points
are derivable from the label of the first one. Later, when we look at P-RISC code, we shall
see that these will correspond to adjacent instructions in a linearly-addressed memory.
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First-order procedure applications

For procedure calls, we distinguish between first-order and higher-order applications. An
application is first-order if (a) if we statically know the procedure being called, and (b) it is
not curried, i.e., it is applied to as many actual parameters as there are formal parameters.
Otherwise, an application is higher-order. An example of a first-order application is the
recursive call to map_1ist inside the body of map_1ist. On the other hand, the application
(£ y) inside map_2ist is a higher-order application. A first-order application is translated as
shown in Figure 10. The “const map.1ist” operator produces the label for the entry-point of
the map_ 1ist procedure.

+ﬁﬁmer E 4 1

conat

mnp_list
f}.;.*ﬂ-'t'} —- ‘j__ .

L [

21 ' apply 2 |
b - ——— -
Veewskt ¥ signal

Figure 10: First-order function linkage.

The expansion of the “appiy n” graph is shown in Figure 11, for n = 2, It takes an
entry label of a procedure and 2 arguments; invokes that procedure on those arguments,
and returns the result and the signal from the procedure. From the label, we determine the
size of the frame required for the procedure. This can be done using some convention; for
example, the compiler can store the frame size for a procedure at some known offset from
the entry label for the procedure. Then, we allocate a frame of the required size, producing
a reference to this new frame, Fp’. Using this, we send the return information and the two
arguments to the procedure. The return information will include, among other things, a
reference to the current frame and the label L to return to. Again, we juxtapose the two
identities that receive the result and the signal to suggest that the callee knows both of them
from the label L. In P-RISC code, they will be adjacent instructions in a linearly addressed
code memory.

We have been deliberately vague by mentioning “frames”, “frame sizes” and “frame
pointers” without specifying exactly what frames are. In this section, we are only trying
to appeal to the reader’s intuition from sequential machines to convey the high-level idea
that we, too, will distinguish multiple invocations of the same piece of code by giving each
invocation a different frame, or activation record. We will complete the picture by describing
frames in detail when we describe P-RISC code and its implementation.

Higher-order procedure applications

Higher-order procedure applications are compiled using a simple transformation that converts
them into first-order applications. Consider the scale function from Section 2:

do!scalocy=c*y;
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Figure 11: Application of a procedure with two arguments.

Counsider any occurrence of the identifier scale jn the program where it appears in a higher-
order context, i.e., where it is not being applied to two arguments. We replace that occur-

rence of the identifier scale by:
(const scaled , ¥il)

whose dataflow graph is shown in Figure 12. In essence, we are creating a closure, which is
a pair—a procedure label and an environment, In this case, the label is the entry point of
procedure scaleo (to be described momentarily), and the environment is empty (¥il). Note:
the notation “const scaled”, which designates a procedure label, is not a part of the source

P

language.

const const
scalel) Fil
r ]' - -E 1
1 (cons) :
[ - -;-— -

Figure 12: Initial creation of a closure

Each higher-order application involves the application of a closure £ — (L,env) to an
argument y. We convert it into a first-order application that invokes I on eny and y, as
shown in Figure 13. Now, we compile two more functions that are derived from the original
scale function (the dataflow graphs are quite trivial, so they are not shown):

def scaled env ¢ = (const scalel, (c:env)) ;
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Figure 13: Higher-order application

def scalel env y = { (c:Nil) = env
In
scale ¢ vy } ;

Thus, initially, we create a closiure containing the label scale0 and an empty environment.
When this is applied to an argument c, it simply creates a new closure containing the label
scalei and an environment which extends the previous environment with this argument,
When this closure, in turn, is applied to an argument y, it simply extracts ¢ from the
environment and performs an ordinary first-order apply of scale. Note that, because of the
non-strictness of tuples and the cons operator, higher-order procedure applications retain all
the non-strictness of first-order applications.

Other translations, optimizations

The Id compiler also includes translation schemes for loops and case expressions. It performs
a variety of conventional optimizations, such as common subexpression elimination, removal
of redundant 1-fetcn’es, signals and triggers, removal of dead code, inline substitution, special
representations for closures and applications, optimizations of array index computations,
code hoisting efc. These are described in more detail in [31].

By recognizing how higher-order functions are actually used in a particular program,
there is much room for improvement over the general methods described above, For example,
suppose we have a function of 5 arguments:

def f abocde = e}

and let us further suppose that there is only one higher-order occurrence of £ in the program:
T 2 23 2g 24

Then, that occurrence can be replaced by:
(const f4' : (2q,25,25,24))

and we can define the derived function:

def £4' env o = { (a,b,c,d) = env
In
fabcdel} ;

18



We have only one derived function (instead of a chain of derived functions), and we represent
the environment as a flat 4-tuple instead of a list of four values. Thus, the higher-order calling
convention can be tailored to suit each use in a program.

One major class of optimizations in the Id compiler concerns loops. In conventional tail
recursion optimization, a single frame is reused from one iteration to the next. However,
this is too sequential, since one iteration must complete before the next one begins. In the
Id compiler, we generalize this to allow k iterations to run in parallel, for some integer k
(unrelated to the loop bounds). We pre-allocate k frames and initiate the first & iterations.
When the 1’st iteration completes, it passes its frame to the &+ 1%st iteration; when the 2'nd
iteration completes, it passes its frame to the k +2’nd iteration, and so on. Thus, during the
entire loop, there is no interaction with the frame allocator at all. The parameter k can be
determined dynamically. Further, through analysis, the aim is to completely eliminate all
“consing” from a loop, with no loss of parallelism. These optimizations make use of lifetime
analysis of data structures, loop unrolling and loop peeling, loop bounding, efc., and will be
described in detail by James Hicks in his forthcoming Ph.D. thesis [15].

Dataflow graphs constitute a complete, executable, fine-grained parallel machine code.
Optimizations at this level are cleaner because dataflow graphs avoid a certain degree of
clutter present in other intermediate representations, such as variable names in 3-address
code. Further, they make def-use information apparent and explicit.

5 The P-RISC abstract machine

Dataflow graphs still hide certain machine-level details:

® Where should the values produced by each operator reside, (i.e., how do values “fow”
down arcs?

* How should the “join” synchronization of dyadic operators be implemented?

¢ How should the I-fetcn operators block on empty heap locations?

In this section we describe an abstract machine called P-RISC (for “parallel RISC”) where
these details are explicit. The picture will be completed in the next section, when we describe
the translation from dataflow graphs to P-RISC code. P-RISC was first proposed in (24] as
a concrete architecture; here we simplify it into an abstract machine, as shown in Figure 14.

Each token in Token Memory consists of an instruction pointer IP and a frame pointer FP.,
IP identifies an instruction in Code Memory, which is a conventional array of instructions.
FP identifies a frame (or activation record) in Frame Memory. Each invocation of a procedure
is associated with a new frame., Finally, all data structures are allocated in Heap Memory.
Heap locations have extra state bits so that each location can be marked empty or full. We
will use the notation Frames [71 and Heap[k] to refer to frame and heap locations, respectively.

The machine is operated by repeatedly removing a token from Token Memory and exe-
cuting the instruction that it points to. This results in a state transition on Frame and the
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Figure 14: The P-RISC abstract machine model.

Heap Memory, followed by the insertion of zero or more new tokens into Token Memory.
The abstract machine does not specify any order in which tokens from token memory are
executed. In particular, there is no restriction on how many tokens are executed in parallel.

To relate it to conventional runtime organizations: Code, Frame and Heap memories
correspond to traditional code, stack and data segments. Unlike a traditional stack, we
have a tree of frames because of parallel invocations. Each token can be regarded as a
process/task/thread descriptor. Its IP specifies the next instruction to be executed in that
thread, and its FP specifies the context for that thread. Most conventional thread models
associate a thread with its own stack, so that there is only one thread per frame, indeed only
one thread per stack of frames. We place no such restriction, i.e., there may be an arbitrary
number of tokens referring to the same frame. This gives us a much finer-grain notion of a
thread. Some threads will be barely a few instructions long.

P-RISC Instruction set

In the discussion below, we describe the state transitions when executing a token. Let IP
and FP be its instruction and frame pointers, respectively. We will use “r” to refer to a
frame-relative address, i.e., to frame location Frames{FP+r]. Each instruction may involve

multiple reads and writes from various memory locations. Unless explicitly specified, there
are no atomicity constraints on these sets of accesses.,

Arithmetic-Logic

Arithmetic and logical instructions are conventional 3-address instructions.
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Notation:  r1 <- r2 binop r3
Semantics: Frames [FP+ri] := Frames[FP+r2] binop Frames[FP+r3]
Insert token (¥p,IP+1) in token memory

Notation: x1 <- unop r2
Semantics: Frames[FP+r1] := unop Frames [FP+r2]
Insert token (FP,IP+1) in token memory

Notation: rl <- ¢

Semantics: Frames[FP+ri] := ¢
Insert token (FP,1P+1) in token memory

for various op’s such as U4, €L, “negate”, ey “and”, ..., “not”, ... efe. There is no
atomicity constraint between the reads and writes,

Control

An unconditional jump:

Notation:  jump L
Semantics: Insert token (FP,L) in token memory

A simple variant is an indirect jump, ijump r, which picks up the destination label from
frame location Fp+r.

A conditional jump:

Notation:  jcond r L
Semantics: If the condition holds for Frames [FP+x]
Insert token (FP,L) in token memory

Else
Insert token (PP,IP+1) in token memory

for various conditions cond such as zero, not-zero, even, odd, ....

A fork:

Notation:  forx L
Semantics: Insert two tokens (FP,L) and (PP,IP+1) in token memory

Note that a fork does not involve any new frame allocation, t.e., it is of no more complexity
than a jump instruction, and there can be multiple threads within a single invocation of a
procedure.

A join:

Notation:  join r
Semantics: Frames [FP+r] := Frames[FP+r] - 1
If Prames [FP+r] is zero
Insert token (Fp,IP+1) in token memory
Else

Insert no token in token memory

The decrement of the frame location must be performed atomically, i.e., two join’s on the
same location must not see the same valye.
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Procedure linkage

When one procedure calls another, the following actions must occur:

1. A new frame must be allocated for the callee.
2. Argument values must be moved from the caller’s frame to the callee’s frame.

3. The caller must initiate one or more threads of computation in the callee.
Similarly, for a procedure return,

4. The callee must move the result value to the caller’s frame.
5. The callee must initiate one or more threads in the caller’s frame.

6. The callee’s frame must be deallocated.

In general, the caller’s and callee’s frames may be on different processors in a parallel machine,
Thus, we use special instructions for this linkage. The 2-3 sequence and the 4-5 sequence are
each carried out by fstore instructions followed by fjump instructions.? Here js the description
of these instructions.

Inter-frame transfer of data:

Notation: fatore ri r2
Semantics: Let FP' — Frames [FP+r1]
Let v = Frames [FP+r2)
Frames[FP’] := v
Insert token (FP,IP+1) in token memory

Inter-frame transfer of control:

Notation:  fijump r1 r2
Semantics: Let 1P’ — Frames [FP+r1]
Let FP? = Frames[Fp+r2]
Insert token (FP’,1P’) in token memory

One of the arguments sent to the callee is usually the caller’s frame pointer (so that the
callee knows where to send the result back to). Thus, the caller needs access to its own
frame pointer; the following instruction achieves this:

Notation: r <- current.Fp
Semantics: Frames [FP+x] := Fp
Insert token (Fp,IP+1) in token memory

?The instructions fstore and £ Jump were combined into a single start instruction in [24].
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Heap access

Ordinary loads and stores move data between the heap and frames (frame location FP+r2
contains a heap address):

Notation: rl <- load r2
Semantics: Frames[FP+r1] <- Heap [Frames [FP+r2]]
Insert token (FP,IP+1) in token memory

Notation:  store zi r2
Semantics: Heap [Frames [FP+r2]] <- Frames[FP+ri]
Insert token (¥P,IP+1) in token memory

Synchronized loads and stores have behaviors that depend on the full/empty state of the
heap location. When a heap location is empty, it contains a list of triples, where each triple
consists of a frame pointer, an instruction pointer and a frame offset. All freshly allocated
heap locations are marked empty, and contain an empty list of triples.

Notation: r1 <- i-load r2
Semantics: Let & = Frames[FP+r2]
Case Heap[A] of
(Empty,1) = Heap[A] := (Empty, (FP,IP+1,rt):1)
(Full,v) = Frames[FP+ri] := v ;
Insert token (FP,IP+1) in token memory

Notation:  i-store r1 r2
Semantics: Let v = Frames[FP+z1]
Let 4 = Frames[FP+r2]
Case Heap[A] of
(Empty,1} = Hoap[4l := (Full,v)
For each (Fp?,1P’,2) in 1
Frames{FP*+r] := v
Insert token (FP’,IP') in token memory
(Full,w) = error

Note that in each case, the heap location is both read and written. This must be performed
atomically.

Memory management

Frame allocation and deallocation:
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Notation: r1 <- falloc r2
Semantics: Allocate a new frame of size Frames [FP+r2]

Let ¥p' be the address of this new frame

Frames [FP+r1] := Fp?

Insert token (FP,IP+1) in token memory
Notation: fdealloc r ) ) T
Semantics: Let FP? = Frames [FP+z]

Deallocate the frame at Fp?

Insert token (FP,IP+1) into token memory

Heap allocation:

Notation: rl <~ halloc r2

Semantics: Allocate a new heap object of size Frames [FP+rz]
Let 2 be the address of this new ob ject
Frames [FP+r1] := 4
Insert token (FP,IP+1) in token memory

It is assumed that when a heap object is allocated, all its locations are in the empty state.
There is no instruction for deallocating heap objects in the abstract machine. Any implemen-
tation of the abstract machine needs to have an underlying storage reclamation mechanism,
such as a garbage collector.

The list of instructions above is not complete, Clearly, we will need additional instructions
to describe frame and heap allocation in more detail, for resetting newly allocated heap
locations to the empty state, for garbage collection, efc. However, since our focus in this
paper is on the main compiler and not on resource management, we stop at the fallec,
fdealloc and hallec abstractions.

P-RISC as a model of MIMD machines

We expect that in order to run general-purpose programs on large-scale MIMD machines,
it is essential to compile them into a large number of threads (many more threads than the
number of physical processors available). The reason is that at any point in time, many
threads will be suspended, either because they are waiting for a synchronization event or
because they are waiting for some data from some remote part of the machine (as argued by
Arvind and Iannucci in [4], these two reasons for suspension are closely related). In order
to avoid idling, therefore, each processor should have an adequate pool of threads so that
it is likely that at least one is always ready to execute. Further, more threads give more
flexibility in balancing the load across processors. The P-RISC abstract machine supports
this requirement for numerous, fine-grained threads. One can view a token (FP,IP) in token
memory as a descriptor for a thread beginning with the instruction at zp. The thread includes
the successors of that instruction, and terminates when it reaches an instruction such as a
join or an i-load, each of which may require switching to another thread.

A second useful requirement for a parallel machine is that synchronization should be
performed without busy-waiting. In the P-RISC abstract machine, synchronization occurs
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at a join or an i-load. In each case, there is no busy-waiting—the join thread simply dies,
and the i-load continuation is immediately queued in heap memory, to be awakened exactly
once when the location becomes full.

Of course, there are other important requirements for parallel machines, such as fast
thread switching, load balancing, etc. We will discuss these after describing the mapping of
the P-RISC abstract machine to a concrete architecture.

6 The back end: dataflow graphs to P-RISC code

The translation of dataflow graphs to P-RISC code is performed on a procedure-by-procedure
basis. For each procedure, we annotate its dataflow graph with P-RISC frame slots and P-
RISC code labels; then, generating P-RISC code is straightforward. Simultaneously, we
compute the size of the frame required for the procedure, and this is stored along with the
P-RISC code at some fixed offset from its entry point. Whereas, in dataflow graphs one
thinks of data “flowing” along the arcs, after the annotation we regard the arcs as pure
control information, i.e., specifying the order of operations.

We begin by showing a simple, if naive, translation, in order to establish the basic ideas.
Here, we pay no attention to the size of the code generated, nor to the locality behavior
of the code, nor to limiting the size of the frame. Towards the end of the section, we will
discuss more sophisticated translations and optimizations.

Annotation of the DFG

Figure 15 shows an example of a dataflow graph annotated with operator labels, value slots,
value arc labels, and join slots.
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Figure 15: Dataflow graph fragment with PRISC annotations
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Operator labelling

We introduce a new label L0, L1, ... , for each operator in the dataflow graph. Later, when
we generate P-RISC code, each operator expands into one or more P-RISC instructions.
The label for a dataflow graph node represents the instruction address of the first P-RISC
instruction of the node’s translation.

Value slot allocation and arc Iabelling

For every value-producing operator in the DFG, we reserve a frame slot rl, r2, ..., for the
output value of the operator. Thus, we reserve frame slots for the outputs of arithmetic and
logic operators, I-tetch’es, const’s, heap alloc’s, frame alloc’s, the id operators at procedure
entries and returns, efc. We do not reserve any frame slots for control operators such as
switch’es, join’s, I-store’s elc., because these do not produce any new output values.

Every “value-carrying” arc (an arc that is not a signal or trigger) can now be labelled
with the frame slot where that value resides, as follows. All output arcs of a value-producing
operator are labelled with the frame slot for that operator’s output. For switch’es, both
outputs are labelled with the label of its left input arc, which represents the value being
switched. The result arcs of the then and else sides of a conditional must have the same
frame slot label, i.e., both sides should leave the result in the same frame slot (it is easy to
ensure this, if necessary by introducing an extra identity instruction on one side).

Join slot allocation

For every operator with more than one input arc, we reserve a frame slot Jj1, 32, ..., where
we will conduct the “join”-synchronization for that operator. Note that the neg operator
has no join slot, since it is unary and and therefore does not have to synchronize on the
completion of multiple threads. A small optimization that we can perform immediately is
this: for value-producing operators, it is perfectly all right for the Jjoin slot to be the same
as the output value slot. For example, in Figure 15 we can have J0 = r4. This is because
the join slot is always used before the output value slot is needed.

P-RISC code generation from labelled dfgs

Once the dataflow graph is annotated, translating it to P-RISC code is straightforward.
Consider the “«” operator in the middle of Figure 15. The P-RISC code for that node
is:
L2: join j3

r6 <- r4 * yp

fork L4

jump L3
Similar code can be generated for each arithmetic/logic operation. We assume that the frame
location 73 has been initialized to 2, since two threads join there, Thus, we are assured that
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the neg at node L3 and the switch at node L4 will not execute until the product has been
stored in 76. By induction, we are also assured that the multiplication cannot occur until
both the preceding additions (in nodes L0 and L1) have completed.

In general, the join slot has to be initialized to n when the dataflow operator has n
inputs (n > 2). Similarly, if the operator has m successors, the P-RISC code has m — 1
fork’s followed by a jump. In subsequent examples, we will not explicitly mention the join
location j, and we will abbreviate the trailing forks and jump with ellipses.

A switch operator whose true and false outputs go to nodes labelled M and N, respec-
tively, is translated into:

L: join .., % wait for both inputs to be ready
jtrue r M % assume boolean value in r
jump W

An I-fetch j operator becomes:

L: x2 <- 11 + j % assume heap address in r1
r3d <- i-load r2

A heap alloc operator, whose input is a number (the size of the heap object to be allocated)
is translated into:

L: r1 <- hallec r2 % assume allocation size in r2
continue

Procedure linkage

Suppose we have an Id procedure with two arguments. The P-RISC annotations on the
dataflow graphs for procedure call/return and entry/exit are shown on the left and right,
respectively, of Figure 16. Recall that F P and FP' are references to the frames of the caller
and callee, respectively. As suggested earlier, if N is the entry label of the procedure, then
its entry points are labelled N, N + 1 and N + 2 (and so on, for procedures with more than
two arguments). Similarly, if the return label js L, then the entry points for the result and
the signal are at L and L + 1, respectively.

The return information sent to the callee consists of three items: the return label L in the
caller, the frame pointer F P of the caller, and the address of the frame slot +.X in the caller’s
frame where it expects to see the result. We assume that these three items are deposited in
the callee’s frame at offsets 0, 1 and 2, respectively, which we refer to symbolically as rI,
TFP and rrX, respectively. The P-RISC code for the operator at M is:

M: join .., % wait for rFP’ and rN
rl <- rFP?
T2 <~ L
fatore rl r2 % transmit return label

rl <- rFP?’ + 1

r2 <- current_FP

fstore r1 r2 % transmit caller’s FP
rl <~ rFP* + 2

r2 <- #rX
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Figure 16: PRISC annotations for procedure call/return (left) and entry/exit (right)

fatore Tl r2 % transmit result frame slot address
fjump rFP* N % initiate callee’s trigger thread

The notation “#rx” indicates the value “rx” itself (the offset in the frame), rather than the
contents of the frame slot named by rx. The P-RISC code for the operator at M is;

M*: joim ... % wait for rFP’, tN and rActuall
r3 <- xFP’ + 3
fstore r3 rictuali % transmit first actual parameter
r3 <- N + 1
fjump rFP’ r3 % initiate thread that handles it

The argument is deposited in the callee’s frame at offset 3, which we refer to symbolically as
rFormall. The code at M" is similar, and the generalization for more arguments is obvious.
Similarly, the P-RISC code for the operators at O and O’ are:

0: join ... % wait for rResult and return-info
rl <- rFP + rrX
fstore ri rResult % transmit result
fjump rFP xL % initigte result-handling thread
0’: join ... 4 wail for signal and refurn-info
T2 <- rL + 1
fjump rFP r2 4 initiate signal-handling thread

In the case of the signal (0'), there is no value to return, hence no fstore—it is simply an
inter-frame jump to label [ + 1.

The P-RISC code for the operators at N » N+1, ... are simply jumps into the appropriate
points of the body of the procedure, i.e., the header of the procedure is simply a jump vector
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for the various threads of the procedure body.

¥ : jump ... % trigger thread
¥+i: jump ... % thread for first argument
N+2: jump ... % thread for second argument

Similarly, the code at L and L + 1 are simply jumps to the appropriate threads that handle
the result and signal.

Top-level driver

A complete Id program will consist of & top-level expression and a collection of top-level
definitions. The top-level expression is closed, so that its dataflow graph will have a single
input (a trigger) and two outputs (a result and a signal). We drive the top-level graph with
the following P-RISC code:

START:
jump ... % o trigger thread of top-level ezpression

and we arrange for the result and signal threads to jump to rIxtsa:

FINISH:
join ... % wait for result and signal

... print resull, clean up, etc. ...
halt

Optimizations

In order to convey the main intuitions of the translation process, our description so far has
placed no emphasis on the quality of the P-RISC code that we generate. In this section
we outline a variety of code-improvement strategies. Kuszmaul is also investigating several
similar optimizations [21]. ‘

Faster procedure linkage

The procedure linkage mechanism described above is a general mechanism that supports
non-strict, higher-order functions.

The jump table at the top of the procedure allows the caller to derive the labels for all the
entry points, given the label of the first entry point. For first-order procedure calls, however,
we can elide this jump table completely. Each of the “send” nodes can directly initiate the
appropriate threads,

If we have enough strictness information to recognize that certain arguments of a pro-
cedure will always be ready before the procedure call, then we do not need to initiate a
separate thread for each one. Those arguments could all be sent using fstore’s, followed by
a single fjump (which may fork into separate threads inside the procedure body).
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Reducing jumps by better placement of the code

This is an obvious place for improvement. Qur translation was described in terms of looking
at the nodes of the dataflow graph in isolation, so that each node expanded into P-RISC
code that ended in a jump to the P-RISC code for another node. By judicious placement of
the code, of course, many of these jumps can be removed, allowing the code for one node to
“fall through” into the code for its successor.

Removing redundant fork’s and join's

In many cases, a little program analysis reveals that certain arcs of the P-RISC graph are
redundant. Consider the fragment shown on the left side of Figure 17. The arcs entering
the left inputs of the switch operators carry the following information: when P-RISC tokens
arrive on these arcs, it means that a and b have been computed and stored in their frame
slots. However, the right-hand inputs of the switch’es carry the same information—the tokens
for those arcs are produced by the “<” operator, which cannot execute until a and » have
been computed. Thus, the left-hand input arcs to the switches carry redundant information.
Removing them, we get the graph on the right side of the figure. Thus, we eliminate two
fork’s and two join’s in the resulting P-RISC code.

a b a b
L
< <

< ‘ <
¥ 3 i :
switch switch switch switch
a'e a'e
Figure 17: Removal of redundant arcs (and related fork’s and join’s)

In general, the optimization works as shown in Figure 18. We annotate each arc with
the set of all variables (frame slots) in which it is known to be strict. Thus, the left-hand
inputs of the switch’es are annotated with the sets (a) and (b), respectively. The output arc
of the “<” operator is annotated its own output variable (c) as well as the union of its input
annotations, since it is strict in both inputs; thus, it is annotated with the set (a,b,c). Now,
at any jein, if the annotation on one input arc is a subset of the annotation on another,
then the former arc can be eliminated. For example, the input arcs of the left switch are
annotated with (a) and (a,b,¢ ), respectively; therefore, the left input can be removed.,

Clearly, the effectiveness of this technique depends on the quality of the strictness infor-
mation. Instead of the “<” operator, if we had had a call to some unknown binary predicate
procedure, then we would have to annotate jts output arc with (c) only, and we would not
have been able to remove any arcs. Strictness analysis [11, 12] is clearly useful in this context.
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switch switch
T _F T _F

Figure 18: Annotation of arcs with strictness information.

Certain dataflow graph transformations, such as those shown in Figure 19 have the effect
of pushing forks downwards and joins upwards. By moving forks towards joins, it improves
the likelihood of finding redundant arcs.

¥ ¥ | | F*I

switch switch awitch

L _F E - E

d A

[oema ] o] i

Figure 19: Transformations to bring forks and joins closer

Removing fork’s and join’s for performance reasons
The previous optimization removed redundant forks and joins. However, it may be beneficial
to remove some forks and joins even though they are not redundant.

Consider the dataflow graph on the left side of Figure 20, which computes (a+b)+(a-b).
The P-RISC code looks like this:

L: fork ¥
jump O
M: fork O

N: join ... 4 wait for a and b
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Figure 20: Sequentialization to remover overhead of fork’s and join’s

rl <- rd + xB
jump P

0: join ... % wait for a and b
r2 <- rk - rB

P: join ... % wait for 1 aend r2
r3 <- r1 % r2

However, an alternative would be to lump all three operators together, as depicted on the
right side of the figure. The corresponding P-RISC code is:
L:
M: join ... % wait for a and b
rl <- rd + B
x2 <- r4 - B
r3 <- rl * 12

In addition to reducing the total instruction count, this can also improve the behavior of a
processor pipeline, since each join must be treated like a conditional jump,

What we have given up by using this optimization is the flexibility of allowing the addi-
tion and subtraction to be done in any order. In this example, that is clearly worthwhile.
However, if we replaced the addition and subtraction with general function calls, it may not
be advantageous to force such a sequentialization. The boundary line is not clear, and we
need to develop good heuristics.

Another complication is that introducing sequentialization where parallelism is not re-
dundant can introduce deadlock. Suppose we sequentialize two dataflow graphs f and g,
i.e., they are normally invoked in parallel, but we force f to go before g. Suppose f con-
tains an I-fetch from a location for which the corresponding I-store is in g. The sequential
version will deadlock because the I-fetch will block forever. Traub has described dataflow
graph analysis techniques that determine when it is safe to sequentialize two graphs without
introducing deadlock [33]. Tannucci presents a heuristic called the Method of Dependence
Sets to perform deadlock free partitioning of a dataflow graph (18].
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7 Implementation of the P-RISC abstract machine

One can take various approaches to implement the P-RISC abstract machine. We could
design and build a special processor that directly executes the P-RISC instruction set. The
instruction set is close enough to a conventional RISC instruction set that such an enterprise
seems feasible. Madhu Sharma, a member of our group, is investigating this approach [30].
Alternatively, one could map the P-RISC abstract machine onto a stock architecture. In
this paper, we will only describe this approach, since such machines will be familiar to most
readers. To simplify the exposition, we shall do so in two stages. First, we describe the
implementation of the P-RISC abstract machine on a stock uniprocessor. This will establish
the basic ideas; then, we describe the implementation on a stock multiprocessor, which is
our real target.

Mapping P-RISC to a stock uniprocessor

Our approach is to further translate P-RISC code into native code for a stock uniprocessor.
The correspondence between the P-RISC abstract machine to the stock uniprocessor is illus-
trated in Figure 21. Note that the memory is divided into just two areas—code and heap.
All P-RISC data areas (i.e., frames and heap objects) are allocated in a single, common,
garbage-collected heap. P-RISC’s Token Memory will also be represented on the heap, but
not directly, as are frames and heap objects. One of the uniprocessor’s registers is used for
P-RISC’s Fp, i.e., it holds the frame pointer of the “current token” being executed. We will
refer to this register symbolically as Fe.

Processor R1

Registera

-

L ]
PC
i T
r—\‘

Ra(¥P)
Memory /—-

a

Frame Frame LA P-RISC heap obj

« Code > Heap >

Figure 21: Mapping the P-RISC abstract machine to a stock uniprocessor

We will use an extended version of the C programming language to describe the unipro-
cessor code. Thus, we can refer to the J'th slot of the current frame as Fp [71. The only major
departure from C will be that we will treat labels as values—we can store labels in a data
structure, and later extract them and Jump to them. We assume that we have C functions
cons, hd, and t1 and a C constant NIL to construct and manipulate lists.
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Our representation of P-RISC’s token memory is as follows. Imagine that we sort the
token memory according to frame pointers. Imagine that we keep all tokens that have the
same frame pointer FP in a data structure associated with the frame at Fp. Clearly, the
frame-pointer on each token is now redundant, so we can omit it. Thus, we maintain a list
of instruction pointers of tokens for a frame, at some reserved offset ActiveIPs in the frame.
We also maintain a list of all frames that have at least one token in their activeIrs list. We
call this list activeFps. The entire structure is shown in Figure 22.

ActiveFPa
¥
FP1 FP} ¥Pu
y y
frame frame frame

ActiveIPs

IP1 IP2 IPn

Figure 22: Implementation of a P-RISC frame.

A P-RISC program is a linear sequence of instructions, some of which are labelled, i.e.,
we label the targets of conditional and unconditional jumps, forks, targets of heap access
instructions, etc. We will show, for each P-RISC instruction, the corresponding uniprocessor
code in our C-like notation.

Arithmetic-Logic

The P-RISC ALU instruction is shown below on the left, and the corresponding uniprocessor
code on the right.

L: r1 <- r2 + 3 ==> L: FP[r1] = FP[r2)] + FP[r3] :
M: ... M: ...

Note that in P-RISC, after the instruction at L, the token (M,FP) is placed token memory,
In the C code, we simply fall through to u, i.e., we treat (M,FP) as the next token to be
processed.

Control

P-RISC unconditional and conditional Jumps are simple:
L: jump M ==> L: goto X ;

K: jzero ri P ==> N: if (FPIr1l == 0) goto P ;

A P-RISC fork instruction is more interesting. Conceptually, we need to insert a new token
in token memory. However, the new token produced by forx is always for the current frame.
Thus, in our translation, we need to insert Just the instruction pointer, i.e., the destination
label, onto the list of active Ip’s in the current frame:
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L: fork N ==> L: FP[ActiveIPs] = cons(¥,FP[ActiveIPs]) :
M: ... M:

The other token produced by fork in P-RISC is (¢P,¥). In our C code, we simply fall through
to M. A P-RISC join instruction is translated as follows:
L: jein r ==> L:n="FP[x] -1 ;
M: ... FP[x] =n ;
if (n '= 0) goto SWITCHE_THREAD
M: .

The join location in the frame is decremented; if the result is zero, the join succeeds, so we
continue by falling through to u. If the result is non-zero, the join fails, i.e., we must abandon
the current thread, so we jump to SWITCE_THREAD:
SWITCH_THREAD:

R1 = FP[ictiveIPS] ;

if (R1 == NIL) goto SWITCH FRAME ;

L = hd(R1) ;

FPlActiveIPs] = t1(R1) ;

goto L ;

Here, we remove an instruction pointer from the list of active instruction pointers for this
frame, and start executing at that point (again, we remind the reader that this is not legal C
notation, which does not allow labels as data values). If the frame has no active instruction
pointers, i.e., no waiting threads, we transfer control to SWITCH_FRAME:
SWITCH FRAME:

if (ActiveFPa == NIL) goto IDLE_ERROR ;

FP = hd(ActiveFPs) ;

ActiveFPs = t1(ActiveFPs) ;

goto SWITCH_THREAD ;

Here, we change Fp to point at a new frame that does contain at least one waiting instruction
pointer, and we start executing at the first waiting instruction pointer in the list: If ActiveFps
was empty, then the processor is truly out of work. This could happen, for example, in a
program that deadlocks. We jump out to some suitable error handler.

Procedure linkage

An inter-frame store is straightforward:

L: fatore ri r2 == L: FP1 = FP[r1] ;
v = FP[x2] ;
*FP1 = v ;

An inter-frame jump to (Fp1,1IP1) involves placing the label 1p1 in the list of active instruction
pointers for the frame Fp1.
L: fjump r1 r2 ==> L: IP1 = FP[r1] ;
FP1 = FP[z2] ;
enqueue_IP(FP1,IP1) ;
goto SWITCH_THREAD ;
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Note that we continue executing in the current frame (by going to SWITCH_TEREAD). When we
enqueue an instruction pointer in the active-IPs list of a frame FP1, we must take care of
another detail. If the active-IPs list was previously empty and Fp1 is not the current frame,
then the frame must have been inactive, and the addition of this instruction pointer now
makes it active. Thus, we must now place Fp1 on the list of active frames.

enqueue IP(FP1,IP1)
ips = FPi[ActivelPs] ;
FPilActivelPs] = cons (IP1,ips) ;

if (ips == NIL && FP1 != FP)
ActiveFPs = cons(FP1,lictiveFPs) ;

Heap access

We assume the following operations to examine and set the presence bits and contents of a
heap location a:

presence bits(A)

set_presence_bits(i,state)

contents(4)
set_contentsa(4,value)

where the state of the presence bits is one of the two constants FULL and EMPTY. When the
state is EMPTY, we assume that the location contains a ljst of triples, where each triple consists
of a frame pointer, an instruction pointer and a frame offset.

Ordinary loads and stores are straightforward:
L: 71 <~ load r2 == L: & = FP[x2] ;
FP[rt] = contents(i) :

M: store r1 r2 ==> M: 4 = FP[r2] ;
set_contents(A,FP[ri]) ;

A P-RISC i-10ad instruction involves checking if the value is present yet and, if not, queueing
the current continuation there and jumping to a new thread:

L: r1 <- i-load r2 ==> L: & = FP[r2] ;
M: oL, v = contents(4) ;
if (presence bits(4i) != FULL) {
get. contents(i,
cons (zk_triple(FP,M,r1),
v}) ;
goto SWITCH_THREAD ;
}
FPlril := v
M: ...

Similarly, a P-RISC i-store instruction involves servicing any continuations that may be
waiting at that location:
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L: i-store ri r2 ==> L: = FPIx1] ;

v
A = FPlx2] ;
if (presence_bits(Aa)==FULL) goto ERROR ;
triples = contents(i) ;
foreach (FPx,IPx,rx} in triples {
*(FPx+rx) = v ;
enquene _IP{FPx,IPx) ;

}

set_presence bits(A,FULL) ;
set_contents(d,v);

Memory management

Both falloc and hallec are translated into calls to the heap allocator. In addition, hallecc
must initialize all the locations within the object to the empty state, and fal1oc must initialize
all join locations with their initial join-counter values.

Mapping P-RISC to a stock multiprocessor

With the basic ideas behind us, we turn to our real target—MIMD machines. As a generic
model of currently available MIMD machines, we will assume that our target is a multicom-
puter consisting of several nodes connected by some network. Each node is a conventional
computer, i.e., a processor and a memory, and is capable of sending messages to other nodes.?
We refer to a node as a “processor-memory element”, or PME. The PMEs are numbered 0,
1, 2, ..., p. To send a message from PME i o PME J, the former executes the procedure:

send(j,argl,arg2,...) ;

In each case, argi will be a small constant that identifies what kind of message it is: FSTORE,
FJUMP, LOAD, STORE, I.LOAD, or ISTURE (we use upper case to distinguish these constants from
the similarly-ramed P-RISC opcodes).

At each PME, we assume that there is a single process that executes continuously—
this is the “normal” activity of the PME. When a PME receives a message from another
PME, we assume that the normal process is interrupted, and the interrupt handler invokes
a procedure:

receive(args)

}

with args bound to the arguments that came in the message. The arguments can be accessed
by arglo], argl1], etc. On exit from the Teceive procedure, normal processing is resumed untl
interrupted by another message, when receive is invoked again, and so on. The recoive in-
terrupt handler and the normal process share data; we will soon discuss the mutual exclusion
constraints necessary to ensure consistent access.

3Gince the mapping from a distributed-memory multiprocessor to a shared-memory multiprocessor is
simple and well-known, we do not consider the latter here.
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Memory model for P-RISC

The first decision we take is that each P-RISC frame resides entirely within a PME, and that
a P-RISC token (FP,1p) is always executed on the PME where the frame FP resides. Thus,
frame accesses are always local operations (except for the store performed by tstere). The
reason for this decision is that we regard a frame as a kind of register set, so that access to
frame locations should be like accessing registers.

Different frames may of course reside on different PMEs; indeed, frames are the unit of
load balancing. As procedures are invoked, their frames should be allocated on different
PMEs in such a manner as to balance computational load. Similarly, each P-RISC heap
object resides entirely within a PME, but the various heap objects are distributed across
PMEs. Thus, our uniprocessor heap is implemented on a multiprocessor as a distributed
heap.

P-RISC frame pointers and P-RISC heap addresses are therefore “global addresses”, i.e.,
a frame pointer FP or a heap address & must be interpreted as a pair consisting of a PME
number and an address within that PME. We assume a primitive C macro:

pme(4)

that takes a global address and returns the PME number where it is located. We also assume
a constant currentPME which, on each PME, is bound to the PME number of that PME.

Though the uniprocessor heap is distributed, we replicate the code on all PMEs. Thus,
each PME executes a copy of the code using its normal, local instruction fetching mechanism,

P-RISC instruction translation

With this memory model, it should be clear that there is no change in the implementation of
P-RISC’s ALU and control primitives in going from the uniprocessor to the multiprocessor.
The only changes we need to be concerned about are the instructions that may require non-
local access, viz. the procedure linkage instructions fstore and fjump, and the heap access
instructions load, store, i-load and i-store. We show the translations below; in each case,
the translation is a small generalization of the uniprocessor version. A key feature is that
all non-local accesses are implemented as split-phase transactions, i.e., separate request and
response messages.

L: fatore xi 2 == L: FP1 = FP[r1] ;
v = FP[x2] ;
P = pme(FPi) ;
if (p != currentPME)
send(p,FSTORE,FP1,v);
else
#FP1 = v ;

The fjump translation is unchanged, but we redefine the snqueue IP(FP1,IP1) procedure that
it calls. If FP1 is a remote frame, we send an ryunp request to the remote PME. Otherwise, as
usual, we enqueue the 1P on the local frame and activate the frame if it was not previously
active.
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enqueus _IP(FP1i,IP1)

P = pwe{FP1) ;
if (p != currentPME)
send(p,FJUMP,FP1,IP1) ;
elae {
ips = FP1[hctiveIPs] ;
FPi[ActiveIPs] = cons (IP1,ips) ;
if (ips == NIL && FP1 !'= FP)
ActiveFPs = cons(FP1,AdctiveFPs) ;
}
}

In a 1oad, if the address is remote, we always switch to another thread after sending off
the request. Thus, the message is the first phase of a split-phase transaction, and the current
PME is never made to wait for a response from a remote PME.

L: r1 <- load r2 ==> L: A = FP[r2] ;
). R P = pna(d) ;
it (p !'= currentPME) {
send(p,LOAD,A,FP,N,r1) ;
goto SWITCH_THREAD ;

0o

1
FPIri] = contents(i) ;
M: L.
Similarly, a store either stores a value locally, or sends a message for the value to be
stored remotely.

N: store z1 r2 ==> N: 4 = FP[x2] ;
v = FP[ri] ;
P = pme(d) ;
if (p != currentPME)

send(p,STORE,d,v) ;
elze
set_contents(4,FP[r1]) ;

The P-RISC i-1oad instruction and i-store instruction are similarly translated:

L: r1 <- i-load 2 ==> L: 4 = FP[x2] ;
M: ... v = contents{d) ;
P = pme(d) ;

if (p != currentPME) {
send(p,I_LOAD,A,FP,N,11);
goto SWITCH_THREAD ;

}

if (presence bits(i) != FULL) {
set_contents(d,

cons(mk_triple(FP,H,ri),
v)) ;

goto SWITCH_THREAD ;

FP[ri] := v

M: ...
L: i-store xri1 r2 ==> L: v = FP[x1] ;
4 = FP[x2] ;
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P = pme(4) ;
if (p != currentPME)
send(p,I_STORE,4,v) ;
elso {
if (presence_bits(a)==FULL) goto ERROR ;
triples = contents(d) ;
foreach (FPx,IPx,rx) in triples {
*(FPx+rx) = v ;
enqueune_IP(FPx, IPx} ;
}
set_presence bits(i,FULL) ;
set_contents(A,v);

Receiving messages

So far, we have seen how various P-RISC instructions result in sending messages to remote
PMEs. On each PME, we assume that when a message arrives, it creates an interrupt and
that the interrupt handler calls the following procedure. The procedure dispatches to various
message-handlers based on the first argument, which specifies what kind of message it is.

Teceive(args)

switch (args[0]) {

case FSTORE: dofstore(args[1],args[2]) ; break ;
case FJUMP: dofjump(args[1] ,args[2]) ; break ;
case LDAD: do_load(args(1],args[2] »args[3] ,axgs[4]); break H
case STORE: do_store(axgs[1],args[2]) ; break ;
case I_LOAD: do_i_load(args[i],args[2] yargs[3] ,args[4]); break ;
case I.STORR: do_i_store(args[i],argal[2]) ; break ;

}

We describe the various message-handlers below, but first we address the issue of atomicity.
Many of the messsage handlers both read and write locations that are also accessible to the
normal process of the PME (such as heap and frame locations, and PME data structures
such as sctiveFPs). To ensure that these shared locations are read and updated consistently,
message interrupts should only be allowed to occur at certain “safe” points in the normal
process. Examples of such safe points are: between “logical” P-RISC instructions, or at the
SWITCE.THREAD label. Of course, if messages arrive more frequently than this, the interrupt

kandler could merely buffer them in a queue, to be handled later when the normal process
reaches a safe point.

FSTORE messages just store into a frame location.

do_fstore(FP1,v)
{

*FP1 = v ;
}

FIUMP messages enqueue the incoming FP and IP onto the appropriate frame,
do_fjump(FP1,IP1)
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ips = FPil[ictivelIPs] ;

FPi[ActiveIPs] = cons (IP1,ips) ;

i? (ips == NWIL && FP1 != FpP)
dctiveFPs = cons(FP1,ActiveFPs) ;

}
If the frame was not active, and it is not the current frame in this Processor, it is added to
the sctiveFprs list.

LoAD messages read a heap location and send the value back, whereas sToRE messages just
store a value into a heap location:

do_load(4,FP1,IP1,r)
{
P = pme(FP1) ;
v = contents(4) ;

sond(p,FSTORE,FPi+r,v);
send(p,FJUMP, FP1 ,IP1) ;

}
do_store(d,v)
{
set_contents(d,v) ;
}

I.L0AD messages test the presence bits of a heap location. If empty, the return-continuation
information is enqueued; otherwise the value in the location is sent back:

do_i load(4,FP1,IP1,r)
{
v = contents(4) ;
if (presence bits(i) != FULL)
set_contents(A,
cons(mk_triple(FP,M,r1),
v)) ;
else {

P = pme(FP1) ;
send(p,FSTORE,FP1+r,v);
send(p,FJUMP, FP1, 1IP1) ;

}

I_STORE messages store a value in a heap location. If there are any waiting readers, the value
is sent to all of them. Waiting readers may be local or remote.

do_i_store(d,v)
{
if (presence bits(A)==FULL) goto ERROR ;
triples = contents(d) ;
foreach (FPx,IPx,rx) in triples {
P = pme(FPx) ;
if (p != currentPME) {
send(p,FSTORE,FPx+rx,v) ;
send(p,FJUMP, FPx, IPx) :
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olse {
*(FPxtrx) = v ;
engueue_IP(FPx,IPx) ;

}
}
set_presence bits(i,FULL) ;
set_contents(4,v);

Termination

In the uniprocessor version, it was an error for SWITCHFRAME to find no remaining active
frames—it was an indication of deadlock. In the multiprocessor, this is not the case. Even
though at some point there may be no active frames in a PME, it may later receive a message
that activates some frame. Thus, we change SWITCH FRAMR to wait for work:
SWITCH_FRAME:

if (ActiveFPs == NIL) goto SWITCH_FRAME H

FP = hd(ictiveFPa) ;

ActiveFPs = t1(AdctiveFPs) ;

goto SWITCH_THREAD ;

Thus, we busy-wait at SVITCHFRAME, but there is really nothing else that the Processor can
do anyway. When a message finally arrives, the interrupt handler will put a frame onto the
ActiveFPs list, and the main process will fall out of the loop.

The main PME, when it enters the code at FINISH, can send FIJUMP messages to all the
other PME’s containing an arbitrary frame pointer and instruction pointer suB ¥IN1sH. This
simply forces them all out of the busy-wait loop into termination code:

SUB_FINISH:
... clean up, terminate ...

However, this means that if there really is a deadlock, then all PMEs will be spinning
at SWITCH FRAME. Thus, we will need some kind of distributed deadlock detection algorithm
running concurrently with the main program.

Memory management and load balancing

We have deliberately not shown the translation of the P-RISC talloc (frame allocation) and
halloc (heap allocation) instructions because these can be quite complex. First of all, they
are distributed allocators, and some form of heirarchical allocation method is necessary to
avoid bottlenecks. For example, each PME has & local allocator which is consulted first, and
when the local allocator runs out of space, it consults a global allocator for another large
chunk of space, and so on. Each allocator must spread its allocations across PMEs in order
that frames and heap objects are distributed evenly amongst the PMEs. Finally, a garbage
collector is necessary for reclaiming unreachable objects.

P-RISC, as such, provides no special advantages or disadvantages in coding these dis-
tributed storage management algorithms beyond those already cited for the main program,
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For example, calls to the allocator can be implemented as split-phase operations, so that the
allocator code can be run concurrently with normal processing, and PMEs do not have to
block when one thread calls an allocator.

Discussion
The data-driven mechanism

Having laid out the entire framework, it is now worth reemphasizing that in our compil-
ing/runtime/architecture system, we have arranged for all non-local communications to be
non-blocking, split-phase transactions. In other words, when PME A needs information from
PME B, whether via a procedure call or a heap access, PME A never has to wait for PME B’s
response—it can always do some other work in the interim (assuming there is enough paral-
lelism in the program). By going to very fine-grained threads, we increase the likelihood that
there will indeed be adequate parallelism in the program to keep all PME’s busy. All non-
local communications carry enough continuation-information such that the target PME does
not need any special mechanism to associate messages with waiting processes. We firmly be-
lieve that no matter what compilation method one may use, this runtime model—numerous
fine-grained threads, non-blocking split-phase communications, and direct continuation in-
formation in messages—is essential in order to achieve high utilizations in massively parallel
MIMD machines.

Ordering, scheduling, and locality issues

In Section 6, after describing the translation from dataflow graphs to P-RISC code, we
mentioned some optimizations that impose an ordering on the operations of the graph (see
[32] for & much more detailed discussion of how such ordering may be imposed).

In this section, the reader may have noticed that, while the P-RISC abstract machine
did not specify the order in which tokens in the token memory are to be executed, we made
a static ordering decision in the translation to C code, For example, after a P-RISC ALU
instruction at (Fp,1IP), we always execute the P-RISC instruction at (Fp,1IP+1) by just falling
through into the C code for it. Similarly, for a fork instruction, we have statically chosen to
continue executing along one tine of the fork (at IP+1) while enqueuing the other.

Another ordering decision that we have taken is dynamic, i.e., it is a scheduling policy.
In the code at SWITCH.-THREAD, we have chosen to continue executing within the current frame
as long as there are active instruction pointers for that frame, i.e., We go to SWITCH FRAME
only when ActiveIPs becomes empty.

What is the rationale for all these ordering decisions? The answer is that for each target
architecture, there is typically some notion of locality which may be exploited to achieve
better performance.

One such notion of locality concerns threads and registers. In our description so far, all
values are communicated from one instruction to another via frame or heap locations which
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are persistent across SVITCE_THREAD and SWITCHFRAME, and are thus assumed to be in main
memory. However, for an unbroken thread, it is possible for instructions to communicate
values via processor registers, which are typically much faster than main memory. We assume
that processor registers are volatile, i.e., they do not survive across SWITCH_THREAD, because
threads are too short to afford saving and restoring registers on thread switches. Thus, it
is advantageous to lengthen threads as much as possible (without losing useful parallelism)
in order that more values can be communicated down threads via registers. Another reason
to lengthen threads is that it allows the processor’s instruction pre-fetch mechanism to do a
better job.

The decision to continue executing within a single frame as long as it has active instruction
pointers has other advantages. The processor’s cache is likely to exhibit better behavior since
data accesses remain within a single frame, and instruction accesses remain within a single
procedure for a longer period of time. Many recent proposals for multi-threaded architectures
[14, 30, 1] assume similar locality within a frame. Further, some of the frame locations could
be maintained in the processor registers, to be saved only when we jump to SWITCH_FRAME.

In describing the translations, we did not pay any attention to the variations in the size
of frames for different procedures. For very fast allocation and deallocation, on the other
hand, particularly in a parallel machine, it may be preferable to use fixed-size frames for
all procedures. This can be achieved by a combination of inlining of small procedures and
splitting of large procedures.

Our implementation does not use general message passing. It uses a fixed repertoire of
message types, with each type having a fixed size. This fact can be used to optimize the
message passing mechanism to minimize its latency.

8 Conclusion

In [4], Arvind and Iannucci analyzed massively parallel MIMD machines to show that for
general-purpose computation on such machines, programs must be broken into a very large
number of small threads (many more than the number of processors); that all non-local
communications should be non-blocking, split-phase transactions; and, that there should
be a fast thread switching mechanism. We addressed the first requirement by using a non-
strict functional programming language with a lenient evaluation strategy, and the remaining
requirements by compilation vig intermediate forms that retain fine-grained parallelism and
support split-phase transactions.

There are three projects that are closely related to the work described here. In our
group, Bradley Kuszmaul is working on a compiler for Id for sequential uniprocessors [21],
While he starts with a P-RISC-like intermediate form, his subsequent transformations are
not constrained by the requirements of MIMD machines. At Berkeley, David Culler and his
group are implementing a new back end for the Id compiler which we believe is substantially
similar to the approach described here. At IBM Research, Robert Iannucdi is building
a hybrid von Neumann-dataflow machine in the EMPIRE project, and K. Ekanadham is
building an Id compiler for it by retargeting the MIT Id compiler. They are designing an
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intermediate language called “kudos” which, like P-RISC, also has fine-grained threads and
synchronization.

Most of the techniques described here have broader applicability than functional lan-
guages. The translation from dataflow graphs to P-RISC code and to machine code is
independent of the method by which those dataflow graphs were originally produced. In
particular, dataflow graphs are not unique to functional languages. Ballance, Maccabe and
Ottenstein in New Mexico [7], and Beck and Pingali at Cornell [9] have made great progress in
showing how to translate imperative languages, including FORTRAN, into dataflow graphs.
In our own group, Barth and Nikhil 8] have been experimenting with a programming con-
struct called “managers” for fine-grained, parallel access to shared, updateable objects, and
these are also translated into dataflow graphs,

The P-RISC back end described here not yet been constructed. Once it is ready, we
have much work ahead of us in analyzing the code produced, improving the compiler’s
optimizations, and, most importantly, investigating the resource-management issues in frame
and heap management.
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