MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

, N\

Notes on Automatic Parallelization

Computation Structures Group Memo 314
July 17, 1990

Rishiyur S. Nikhil

This report describes research done at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N 00014-89-J-1988.

\- _/

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139






Notes on Automatic Parallelization
Rishiyur S. Nikhil
MIT Laboratory for Computer Science
545 Technology Square, Cambridge, MA 02139, USA

nikhil@lcs.mit.edu (617)-253-0237

1 Introduction

In these notes, we give an overview of an important approach to generating code for parallel
computers: automatic parallelization. Here, the programmer writes an ordinary, sequential
program, say in FORTRAN. The compiler then performs sophisticated analysis of an in-
termediate form of the program (a) to discover what can be done in parallel, and (b) to
transform it so that more things can be done in parallel. Finally, using various cost met-
rics, it partitions the program into parallel tasks and generates code for them, inserting
synchronization as necessary.

The analysis techiques are useful for a variety of parallel architectures: pipelined uniproces-
sors; vector, VLIW, systolic, and superscalar processors; and MIMD machines. In all these
cases, the essential issue is the discovery of how instructions can be re-ordered.

This implicit parallelism approach is attractive for several reasons:

¢ “Dusty decks”: thereis a tremendous, existing investment in sequential codes; it would
be enormously expensive to rewrite them for parallel machines. However, many people
doubt that much parallelism can be extracted from dusty decks (see Section 5.1 for an
illustration of the difficulties involved).

¢ Complexity: Writing a parallel program manually can be hard because we do not yet
have adequate mental and formal tools to reason about parallel programs. It can be
very difficult to avoid races in parallel programs. Such programs can be extremely
difficult to debug, because their non-deterministic behavior is often impossible to re-
produce.

¢ Portability: There are many different parallel architectures, and a single parallel form
of the program is unlikely to be suitable for all of them. The compiler may have a
better chance of picking “good” parallel forms for each architecture.

o Finally, even if the programmer uses explicit parallel constructs, these analysis tech-
niques may be able to draw the programmer’s attention to possible races or to possible
improvements in parallelization.

To date, most work on automatic parallelization has been for “scientific codes”, most pro-
grams for which are still written in FORTRAN. The execution time of such programs is
dominated by loops that manipulate arrays, and so it is not surprising that the emphasis
has been on parallelizing these control and data structures.



2 Structure of a Parallelizing Compiler

Just as the top-level structure of a compiler involves analysis (parsing, static semantics) fol-
lowed by synthesis (code generation), a parallelizing code generator itself consists of analysis
and synthesis stages. The analysis phase examines the sequential intermediate-language code
and attempts to determine all possible things that could be done in parallel. The synthesis
phase decides which of these things will be done in parallel (usually based on some sort
of cost criterion), and inserts appropriate code to form parallel threads and to synchronize
them.

There are two kinds of analyses performed. In Control Dependence Analysis, the compiler
tries to determine what are the control conditions for each statement. Intuitively, whether
a statement is executed or not depends on how it is nested within conditionals and loops.
Potentially, execution of this statement could be initiated as soon as its control conditions
(predicates of surrounding conditionals and loops) have been evaluated. In fact, potentially,
execution of all statements with identical control conditions could be initiated in parallel.

In Data Dependence Analysis, the compiler determines how values flow from one statement
to another, how storage is re-used for new values, ete. This information serves to constrain
what might otherwise be done in parallel.

For example, if we have the statement:

if p then
S1;
52
endif
then control dependence analysis may suggest that s1 and $2 can be done in parallel (they
have the same control conditions). However, if data dependence analysis determines that st
defines a value that is used by s2, we may have to retain their sequential structure.

Both control and data dependence analyses begin with the intermediate-language control
flow graph[l]. Data dependence analysis annotates this graph with defuse and use-def in-
formation, and control dependence analysis restructures the graph into a control dependence
graph,

Finally, the synthesis stage produces parallel code from the control dependence graph, in-
serting appropriate synchronizations or sequentializations to satisfy the data dependence
constraints. In addition to just satisfying ordering constraints, it may also take into account
the costs of parallelism on a particular architecture in order to decide whether it is worth
doing something in parallel or not.

In Section 3 we examine the kinds of data dependence possible between statements in a
program, and the methods used to discover this information. In Section 4 we examine
control dependence and the methods used to discover it. Finally, in Section 5 we examine
how the compiler exploits dependence information to produce parallel programs.



3 Data dependence

3.1 Types of data dependence and data dependence graphs

As described in [1], Chapter 10, the control flow analysis phase of the compiler produces
a control flow graph, which describes the sequencing of statements, i.e., the nodes corre-
spond to statements and the (control flow) edges specify sequencing. The compiler then
performs data dependence analysis to annotate the flow graph with additional edges called
data dependence edges.

Suppose statement Sy normally executes before S;. We say that there is a data dependence
from S to S, if reversing this order could lead to incorrect results. In compiling parallel
code for the program, therefore, we must ensure that S; does not execute before S1.

A statement may depend on another in one of three ways (the terminology is due to Kuck

[8]):

e Flow dependence:
I ::=.,.. (Sl)

L T T (53)

Statement Sy defines (writes) a value that is subsequently used (read) by S,. If state-
ment S; were executed earlier, it would read the wrong value. We depict flow depen-
dence as §; — S,.

o Antidependence:
ve 1= L0 X L. (Sl)

X := ... (Sz)

If statement S; were executed earlier, it would overwrite the value of ¥ before 51 used
the old value. We depict antidependence as S, A S;.
A key observation: antidependences always come about because we try to reuse storage.

If we can avoid such reuse, we avoid antidependences which, in turn, increases the
potential for parallelism.

o Output dependence:
I :=... - (81)

I := ... e (Sg)

If statement S, were executed earlier, then subsequent statements would would use
the wrong value. We depict output dependence as §; —5 ,. At first sight, this
may appear to be a silly program— why should there be two definitions without an
intervening use? However, this situation is not unusual when 53 is inside a conditional.



Flow dependence is often called “true” dependence, because it represents the genuine com-
munication of data from one statement to another. Anti- and output-dependences arise
because we are trying to reuse storage: S is not communicating data to S;, rather, §,
wants to reuse the storage location used by S, for some other, new value. The latter de-
pendences can often be eliminated, therefore, by introducing new storage (new variables) to
avoid storage reuse.

In basic blocks, with scalar variables, these dependences are normally easy to compute,! and
is essentially the computation of definition-use and use-definition chains, as described in the
text [1].

3.2 Data dependence in loops with subscripted variables

Things get more complex when we introduce loops and array subscripts. A statement from
one iteration of a loop can depend on a statement (even on itself) from another iteration.
When array subscripts are complicated expressions, it may not even be possible to tell
whether there is a dependence or not and, if there is, what kind it is.

Example 1:
for i = 1 to N do
cee 1= L., afd] ... (S1)
Ali] := {52)
= ... A1 ... (S3)

There is an antidependence from $; to S,, and a flow dependence from S, to S, all within
an iteration.

O
Example 2:
for i = 2 to XN do
R £ Y Y T ) (31)
alil := (Sz)

There is a flow dependence from S; in one iteration to S, in the next iteration.

0

Example 3:

for i = 1 to N-1 do
... aAli+1] ... (%)
(S2)

There is an antidependence from S, in one iteration to Sz in the next iteration.

a

i

ALi]

!But see discussion on aliasing in Section 3.6.



The dependence in example 1 is called loop independent, i.e., it is within each iteration and
not really caused by the loop. The dependences in examples 2 and 3 are called loop carried,
i.e., the dependences are from one iteration to another. A statement may have a loop carried
dependence to itself (e.g., if S; is the same statement as S, in examples 2 or 3).

3.3 Nested loops and direction vectors

Each dependence arc between statements in loops can also be labelled with a direction vector,
which is a tuple of =, < and > symbols. The width of the tuple is equal to the number
of common, nested loops within which both statements appear, i.e., there is one direction
symbol for each nested loop index. The leftmost symbol in a direction vector corresponds
to iterations of the outermost loop, the next symbol corresponds to iterations of the next
nested loop, and so on.

A = symbol indicates that a dependence holds within the same iteration of the corresponding
loop. A < symbol indicates that a dependence holds from a lower to a higher index of the
corresponding loop. A > symbol indicates that a dependence holds from a higher to a lower
index of the corresponding loop.

Example (from [6], with modifications):

for i = 1 to N do
for j = 1 to ¥ do

A[i,j]1 := Bli,j-1] (1)
B[i,jl1 := a[i+1,j] (82)
ALi, 32 := ali-1,j+1] (Ss)

The dependence edges are:

¢ 83 > 53 labelled (=, =), because both define 4[i,3j1 within the same ¢ and j iterations.

® 5; — S labelled (=, <) because S, defines B[i,j] which is used by 51 in the subsequent
j iteration.

o 5 A, Sy labelled (<, =) because S5 uses a[i+1,j] that is redefined by S} in the subse-
quent i iteration.

o« 5, A, S3 labelled (<,=) because S; uses ali+1,j] which is redefined by S; in the
subsequent i iteration.

® S3 — 83 labelled (<, >) because S5 defines 4[1,3] which is used by Sz in the (i + 1,5 —
1)’th iteration.

0

The types of data dependence we have described can be viewed as a refinement of the def-use
and use-def relationships given in Chapter 10 of [1], which are just flow and anti-dependences,
respectively. In addition, instead of establishing relationships only amongst entire program
variables, we have refined it to establish relationships amongst subscripted components of
array variables.



3.4 Data dependence analysis

In general, the index expressions can be quite complicated, so that the relationship between
statements may not be as obvious as in our examples. In this section, we consider data
dependence analysis, i.e., the methods by which the compiler can systematically establish
the nature of data dependence, if any, between two statements.

Suppose we have a loop:

for i = 1 to N do
X[F@)] = ... (51)
= ... X[g()] ... (52)

For example, f() may be i+t and g(i) may be i~2, in which case there is a flow dependence
from S1 to S2. In general, there will be a dependence between S1 and $2 if, for some two
values z and y of the loop index i, we have f(2) = g(y). Thus, we want to solve the equation:

f(z)—g(y)=0

We are only interested in integer solutions in the range 1 < z,y < N. The kind of dependence
that we are looking for imposes additional constraints:

 For a loop-independent dependence, z = Y;
¢ for a loop-carried flow dependence, z < y, and
e for a loop-carried antidependence, z > Y-

If f and g are arbitrary functions, then finding such a solution is not tractable, and the
compiler must assume the worst case, i.e., that the two statements do depend on each other.
In practice, however, f and g are usually simple linear functions of the index (such as i, i-2,
2+i+1, ...). In this case, various tests can be applied to obtain an approximate solution. The
tests are approximate in that they either return “independence” or “possible dependence”.
In the latter case the compiler again must assume the worst— that the two statements do
depend on each other (for this reason, this analysis is also termed “conservative”).

One test is the GCD test, which is based on a well-known theorem on Diophantine equations.
Being linear terms, we can write f(z) as ag + a;2 and g(z) as by + byz. There can be a
dependence only if ged(aq, b)) divides by — aq. Thus, if it does not divide, we can certify
independence and, otherwise, there is a possible dependence.

A second test is the so-called geometric test [6], which is based on the intermediate value
theorem. The constraints on = and y specify three regions in the zy plane that are of interest
(see Figure 1). For z = y, zeroes of the term f(z) — g(y) must lie on the line from (1,1) to
(N,N). For z < y, zeroes must be in the triangle bounded by (1,2),(1,N)} and (N-1,N). For
€ > y, zeroes must be in the triangle bounded by (2,1),(N,1) and (N,N-1). Further, because
the functions are linear, if f(z)— 9(y) has a zero in the region of interest, it cannot have the
same sign at all corners of the region, i.e., it must cross from positive to negative. Thus, we



{1,N, {N-i,N} (NN)
(NN-1)
(1,2)
(L1) (%) (N.2)

Figure 1: Regions in geometric test for data dependence

evaluate f(z) — g(y) at all the corners of the region. If it has the same sign at all corners, it
cannot have a zero in the region, thus guaranteeing independence.

The third test is the Banerjee- Wolfe test, which we state here without elaboration:

—b; — (a7 + bl)+(N"' 2)<bp+b—ap—a; < -b +(0&" - b1)+(N—2)

where the superscripts have the following meaning:

tt = ¢, if t>0
=0, if t<0
it = —t, if t<0
=0, if t>0

This magic formula is taken from [3), which also includes a brief discussion of the mathematics
behind it. It is basically a refirement of the geometric test, expressed as a formula.

These tests can be suitably generalized to handle nested loops. The variables z and y become
vectors of variables. For example, z, ..., z (and 31, ..., yx) represent values of the index
variables in k nested loops. Again, we consider only linear combinations of these variables:

(s o) - (4 500 <

=1 1=1

and we look for integer solutions constrained by the loop bounds (1 < z; < N;) and by the
kind of dependence (z; = y;, or z; < y;, or z; > y;) that we are checking. All the tests
generalize from tests about intersection with a planar region to tests about intersection with
a higher-dimensional volume. For more details, please see [3, 5].



3.5 Loop normalization for data dependence analysis

It is often the case that loop indices and subscripts are not in a convenient form to allow
immediate application of the above tests. To bring them into the appropriate form, the
compiler first performs a transformation called loop normalization, so that all loops have
indices with a lower bound of 1 and a step of 1, and all subscript expressions are functions
of the induction variables.

Example:
for k = 2 to N by 3 do
.. ALKl ...
is transformed into:

NN := 1 + floox((N-2)/3)
for kk = 1 to NN do
. af2+3»(kk-1)] ...

O
Example:
j =1
for k = 1 to N do
... A[3Y ...
ji=3j+5
is transformed into:
j =1
for k = 1 to N do
. A[1+(k-1)*B] .
ji=j+65
a

Note that these transformations often go counter to the “reduction in strength” optimization.
We accept this here because of the potential for much larger payoff in parallelizing the loop.

3.6 When does dependence analysis fail?

Dependence analysis does not really “fail”, since it always errs on the conservative side to
produce a correct analysis. However, its result may be so conservative that it does not reveal
any useful parallelism.

Dependence analysis is usually abandoned when the index expressions are “too complicated”.
Examples include index expressions that contain arbitrary function calls; index expressions
that are themselves array references (i.e., indirection through another array), etc. By and
large, dependence analysis is attempted only when the array-index expressions are linear
functions of the loop index.

Aliasing is another major problem. For example:

8



P: proc(ref A,B: array ...)
for i = 1 to ¥ do
ALi] := £(BLi-11) (8)
There is no dependence from S to itself if 4 and B are different arrays. However, being
reference parameters, it is possible that they refer to the same array, in which case the
dependence does exist. There are various options available to the compiler:

e Assume the worst, i.e., that a dependence exists, and produce sequential code for the
loop.

¢ Perform global flow analysis to ensure that no call to the procedure is of the form P(X,X),
and compile the body as a parallel loop.

¢ Perform global flow analysis and, if some calls are of the form p(x,x) and some are not,
compile two versions of the procedure, one parallel and one sequential, and insert the
appropriate reference at each call site.

Pointer variables and heap-allocated objects also thwart dependence analysis, because it
provides an extreme case of aliasing. After an application of car or ear, the compiler may
have no idea where the result is pointing to. Again, it must make the worst-case assumption
that it could aliased with anything else. A language with a static type-system is useful here.
For example, in a Pascal or CLU program, it is clear that two pointers to ob jects of different
types cannot point at the same storage. In languages like C or Lisp, on the other hand, such
analysis is very difficult. The study of dependence analysis for languages with pointers is
still in its infancy.

The sharper the dependence analysis, the more scope there is for parallelization. Some
languages/compilers allow the user to assist the compiler by inserting pragmas (advice) that
assert that two variables are not aliased. The compiler may or may not generate code to
check these assertions at run time (if it doesn’t, such assertions are unsafe).

4 Control Dependence

4.1 What is control dependence?

In general, the total time to execute a program is minimized if each subcomputation can be
initiated as early as possible (so that it completes as early as possible). Of course, this may
mean that two subcomputations must run in parallel.

If we temporarily ignore data dependencies, what is the earliest that a subcomputation can
be initiated? Answer: as soon as we know whether or not this subcomputation should be
executed at all. More specifically,

¢ We know whether a subcomputation inside an arm of a conditional statement needs
to be executed as soon as the predicate of the conditional determines that the arm is
to be evaluated.

¢ We know whether a statement in the body of a loop needs to be executed as soon as
the loop predicate determines that an iteration is necessary.

9



These intuitions are the essence of the notion of control dependence.

Formally: A statement or predicate Y is control dependent on a predicate X if and only if
one outcome of the predicate X causes Y definitely to be executed, while the other outcome
of the predicate X causes Y definitely not to be executed.

Example:

while pi do
51
if p2 then
52;
53;
else
S4;
if p3 then S5;
58

Here, s1, the outer if and sé are control dependent on p1; s2, S3, $4 and the inner if are
control dependent on p2; and, s6 is control dependent on pa3.

a

4.2 Control Dependence Analysis and Control Dependence Graphs

The control dependence information can be computed by analyzing the control flow graph
of a program. The outcome of this analysis is a control dependence graph, which describes,
for each predicate, all the predicates and statements that are control dependent on it.

This first step is to compute immediate post-dominators for every node in the control flow
graph. Intuitively, the immediate post-dominator Y for a node X is the earliest node (in the
direction of control flow) for which we can say that if X is executed, then Y must be executed
sometime later. If we leave out the “earliest” qualification, then Y is just a post-dominator
of X (i.e., not necessarily the immediate post-dominator).

In our example program above, p1 is the immediate post-dominator of s8, because if s is
ever executed, then p1 is the earliest node after sé that we know must be executed.,

Similarly, the immediate post-dominator of p2 is se. If p2 is executed, we cannot say for sure
whether s2, s3, s4, p3 or s5 will be executed (depends on outcome of p2), but we do know
that se will be executed.

In general, if a node X in the control-flow graph has just one successor Y, then Y is the
immediate post-dominator for X. A predicate X will have more than one successor; its
immediate post-dominator Y is the earliest node where all paths from X come together
again. Note that this works even for loops; in our example above, the immediate post-
dominator for p1 is sToP, the end of the program, because ultimately the path out of the
true-branch of p1 loops around through p1 itself and joins the path out of the false-branch
at the next “instruction”, which is stop,

10



Once we know the post-dominator relationships in a control flow graph, we can identify
control dependence information. Let p be a predicate node, and let T} be its immediate
true-successor node. Then, the nodes that are control dependent on p on its true side are:

Y4
T, the immediate post-dominator of 7Y,
T3, the immediate post-dominator of T;,

and so on, upto but not including Y, the immediate post-dominator of p.

Intuitively: we know that T; is control dependent on p, trivially— it is the first thing executed
if we take the true-branch out of p. If T} is executed, T} is the earliest node after it that we
know must be executed, i.e., it is also identically control dependent on p. Similarly for T3,
and so on, until we reach the immediate post-dominator of p, which is the earliest node we
know that is not control-dependent on p.

Similarly, we can also identify the nodes that are control-dependent on p on its false side.

These definitions work for all flow graphs. However, for structured flow graphs, i.e., flow
graphs in which all control structures correspond to while and for loops and if-then-else
statements, the control dependence relationship is especially simple (trivial).

For a conditional statement:
if p then S1 else 52

then all statements in s1 and s2 that are not themselves nested inside conditionals or loops
are control dependent on p. For a loop:

while p do S

all statements in S that are not themselves nested inside conditionals or loops are control
dependent on p.

5 Parallelization based on dependence graphs

After computing the control and data dependence graphs, the compiler can produce parallel
code. If we ignore data dependencies for a moment, the method is very simple— we convert
every loop into a parallel loop and, for all statements that are identically control dependent
in a conditional, we invoke them all in parallel. In our previous example, we would have:

while pi do
FORK S1
FORK if p2 then
FORK S2;
FORK 53;
elze
FORK S4;
FORK if p3 then S55;
FORK S8

11



i.e., if p1 is true, we fork s1, p2 and s6 in parallel. If p2 is true, we fork 52 and s3 in parallel,
whereas if p2 is false, we fork s4 and the p3 in parallel.

Obviously, unless the program is quite trivial, this will not be possible because we must also
take care of the data dependencies between the various statements. For example if there is
a flow dependence between s1 and sé, we must ensure that the def in s1 is executed before
the use in s6. In other words, what we have described above is the mazimal parallelism due
to control dependence only, and this must be watered down so that the data depencies are
respected.

Suppose there is a data dependence (flow or anti-) from statement S; to statement S;. We
can deal with it in several ways:

* Execute them sequentially, i.e., execute S; before S;. This is called implicit synchro-
nization.

o Insert ezplicit synchronization code, i.e., intiate S; and S, in parallel, but insert code
(e.g., semaphores) in each statement so that the relevant part of S; will wait for the
relevant part of 5.

» Remove the dependence, e.g., by introducing new variables, so that the statements can
run in parallel without constraint.

In subsequent sections, we will see examples of all these approaches. We will describe them
as source-to-source transforms, i.e., the compiler will restructure the source code and also
annotate loops as being PARALLEL or VECTOR loops.

But first, in the next section, we show an example of how “clever hacks” for sequential
programs can be detrimental to good parallelization.

5.1 An example illustrating the difficulties of parallelization

It is interesting to note that many tricks that programmers play to make their sequential
programs more efficient are, in fact, counter-productive for parallelization. Consider the
“l-dimensional relaxation” problem?. Here, we are given an initial array Xo. We wish to
repeatedly “relax” this array, i.e., construct arrays Xj, X3, ... where the X, , depends on
X, in the following manner:

Xs+1[z‘] - f(XJ["‘ - 1],Xs[i]9X-[i + 1])

i.e., the contents of a location is a function of the contents of itself and of its neighbors in
the previous version of the array. For example, each array may represent the temperature
profile in a thin, long metal bar, and the sequence of arrays approximates the evolution of
this temperature profile over time— the change in temperature at a point is a function of
the flow of heat towards or away from the point, which, in turn, depends on the current
temperature of the point and its neighbors.

Here is a first attempt:

*I am grateful to Arvind for showing me this example.

12



for s = 1 to ateps do
for i = 2 to K-1 do
temp[il := £(X[i-11,x[il,x[i+1])

for i = 2 to N-1 do --— copy back into X
X[il := temp[i]

Of course, the second i-loop is not doing any “useful” work, so a more efficient version would
be to alternate the roles of x and temp on alternate s-iterations.?

However, a clever programmer may still be bothered by the use of two arrays and may use
the following trick so that only one is used:

for 8 = 1 to steps do

t1 := X[1]

t2 := X[2]

for i = 2 to N-1 do
X[il := £(+1,t2,X[i+1])
t1 = t2
t2 := X[i+1]

Apart from making the program much more difficult to read, there is a serious problem. The
original version is trivial to parallelize— there are no loop carried dependencies in the i loops,
so both loops can immediately be parallelized. The “clever” version is much more difficult
to parallelize. The reuse of t1 and t2 from one i-iteration to the next has introduced loop
carried flow dependencies and antidependencies.

In general, it is almost axiomatic that it is much more difficult to parallelize programs that
have been highly hand-optimized for serial execution! Reuse of storage almost invariably
means sequentialization. The compiler has a much better chance of parallelizing code that
has been written in a simple and clean, high-level manner.

5.2 Introducing explicit synchronization

A data dependence from statement $; to statement §3 implies that they must be performed
in that order. If the statements are in separate parallel threads, we can force the right
sequence by introducing a new semaphore associated with the storage location causing the
dependence. After the Sy, we signal the semaphore, and before S,, we wait for it.

Suppose we began with:

for i = 1 to N do
loop body prelude
X[i]l := ... X[i+1] ... ()

loop body postlude

¥ we wanted to impress a funding agency, we would call this the Polyphase Oscillating Boustrophedonic
Mono-Dimensional Relaxation Technique.

13



Here, there is an antidependence from the S of one iteration to the S of the next iteration.
We can force the right sequencing by introducing an array of semaphores:

gem: array [1:N] of semaphore;

signal(sem[1])

for i = 1 to N do PARALLEL
.I;;)p body prelude

v.r;.::.t(sem [i])
x[il := ... X[i+1] ... (5)
signal(sem[i+1])

loop body postlude

The iterations can execute in parallel, except that the i+1’st iteration is held up at S until the
i’th iteration has completed its S. Note that only the S statements are sequentialized— the
loop body preludes and postludes can still execute in parallel. In fact, since the S statements
execute sequentially, we will gain some paralle] behavior only if the preludes and postludes
involve some substantial computations.

5.3 Renaming

An antidependence arises when we reuse a storage location, i.e., we define, then use, then
redefine the location. The antidependence specifies that the first use must precede the second
definition,

In the last section we introduced explicit synchronization to force the program to respect an
antidependence. An alternative method is to remove the antidependence entirely by using
fresh storage. This transformation is called renaming, because the fresh storage location is
named by a new identifier.

In our example, the right-hand side of S used the old values of X, i.e., the values that were
in X prior to the loop. The left-hand side of x defines new values of X, i.e., values in X after
the loop. We can use a new array xx to hold the new values:

XX: array [1:K] of real;

for i = 1 to N do
loop body prelude

XXl := ... x[i+1] ... (5
loop body postlude
endfor

use XX inslead of X in loop sequel ...
Now, there is no dependence between loop iterations, so they can all be executed in parallel.

14



5.4 Expansion and Privatization

A generalization of the renaming technique above is ezpansion. Suppose we had the following
loop:
for i = 1 to N do
y := £(X[i]) (51)
Z[i] =y = ¥y (S:)
Here, the programmer has used the temporary variable y because he wants to use the value
of £(..) twice, but he does not want to compute £(..) twice. In principle, the computation
in any iteration of the loop is independent of the computations in all other iterations. Thus,
we may be tempted to annotate the loop as a parallel one:
for i = 1 to N do PARALLEL
y = £(x[i]) (51)
Z[i] 1=y » y {S:)
Unfortunately, this will not do; the iterations will step all over each other because they all
share the same location y. More formally, there is a loop carried antidependence from S, in
one iteration to ) in the next, i.e., the use of y in 3, in one iteration should occur before its
redefinition by $; in the next iteration. Introducing semaphores to force it to respect this
antidependence will not do— the loop will simply be sequentialized.

To solve this problem, since the uses of y are all independent, we would like to do some sort
of renaming, i.e., to use separate storage locations for each use. Since the number of such
locations is NV, the number of iterations, it is most convenient to used an indexed name, i.e.,
we expand y into an array:

y: array [1:N] of real

for i = 1 to N do parallel
y[il := £(Xx[il) (51)
Z[i} := y[i] * y[i] (S2)
In general, the expansion technique replaces an n-dimensional variable by an n+1-dimensional
variable. Our example is a special case called scalar ezxpansion, where y went from a 0-
dimensional variable (a scalar) to a 1-dimensional variable (an array).

An alternative to expansion is privatization, where we extend the language to permit decla-
ration of local variables private to each iteration:

¥: real --— declare private y
y := £(X[i])
2[i] :=y » y

The effect is similar: a separate location y is allocated for each iteration of the loop, so that
the antidependence is removed and the loop can execute in parallel. In effect, the previous
N-array of y’s is now distributed as N individual locations in the N stack frames of the
parallel loop iterations.

Privatization has many advantages over expansion. Aside from making the program easier
to read, it may have better cache behavior. When vy is expanded into an array, y[i] and
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y[i+1] are likely to be in adjacent memory locations. Unfortunately, the unit of transfer
to a processor cache is often not an individual location but a line, which is a collection of
adjacent locations. Thus, the cache in the processor for iteration i may compete for location
y[i+1] even though it is not really going to use it. In the case of privatization, on the other
hand, there is no such issue of adjacency.

Second, privatization does not involve any index computation. Third, since y is a single,
local variable in each iteration, and each iteration may run on & separate processor, it makes
it easier for the register allocator to keep it in a register,

Finally, privatization may be much more storage efficient. For example, suppose there are
only 16 processors but the loop has 1000 iterations. Using scalar expansion, we allocate an
array with a 1000 locations. However, using privatization, we may allocate only 16 frames
and reuse them many times, so that the private variable costs only 16 locations.

5.5 Loop distribution

Loop distribution is the fundamental technique used to vectorize code. The basic idea is to
take an inner loop that has several statements in it:

for i = 1 to n do

51
Sn
and copy it into several loops, one per statement:

for i = 1 tom do
5

for i = 1 to mn do

for i = 1 tom do
Sa

The objective is to produce several small inner loops, each of which contains just one state-
ment where the right-hand side contains just one operator that is supported by vector hard-
ware. Such a loop can then be implemented with vector instructions.

Of course, the original dependences must be respected during this transformation. This can
be tricky, because loop distribution changes the order in which statements are executed.
Before distribution, the order of statements was:

5115521;---a Sﬂn 513’52;5---55113) Slma 82.,,3---, Snm
After loop distribution, the order is:
51,8155, 51,5 82,,52,, ., 52, SnisSngs ey Sn

™m

Example:
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for i = 1 to ¥ do
B[il := A[i] + 1 (51)
alil := C[i] * D[i] (S2)

There is a loop independent antidependence from S to S3. After loop distribution, we get:
for i = 1 to ¥ do

B[i] := A[i] + 1 (51)
for i = 1 to ¥ do
A[i] := C[il * D(i] (52)
The antidependence is respected. The loop can then be expressed in vector form:
B[1:N] := a[1:8] + 1 (S1)
A[i:K] := C[i:N] = D[i:N] (52)
O
Example:
for i = 2 to N do
B[] := Ali-1] + 1 (51)
4[i] := ¢[i] * D[i] (S2)

There is a loop carried flow dependence from S, in one iteration to 51 in the next. Directly
distributing the loop, we get:

for i = 2 to N do
B[i] := ali-1] + 1 (51)

for i = 2 %o ¥ do
4[il := c[il * D[i] (52)
but this is incorrect because the flow dependence goes from S, to S;, opposite to the control
flow. We must therefore reverse the two statements, and we can also then express them in
vector form:

Af2:N] :
Bi2:X¥] :

C[2:N] » p{2:N] (S2)
AL1:N-17 + 1 (S1)

5.5.1 Loop distribution method

In loop distribution, we work from inside to out, i.e., we attempt to distribute the innermost
loop over the statements in the loop. We assume that all loops except the innermost one run
sequentially. Then, we compute the dependence graph relating the statements in the loop.
In general, the dependence graph may contain cycles (statements depend on themselves),
For example (from [6]):

for i = 1 to N de
for j = 1 to N do

Ali,j1 := B[i,3) (51)
D[i,3] := B[i,j-3] + a[i-1,5] (52)
B[i,j+1] := afi,j-1] (53)
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Assuming the i loop runs sequentially, the dependence graph contains:

¢ 51— S3 (j-loop carried, because of 1)
® 53 — 52 (j-loop carried, because of B)
* 53 — 51 (j-loop carried, because of B)

The dependences between S1 and 53 form a cycle.

The nodes in the graph can be partitioned into strongly-connected components, or 7-blocks.
A n-block consists of nodes such that there is a cycle between any pair of them. Further,
they are maximal, i.e., there is no cycle between any pair of nodes in different 7-blocks. In
our example, 51 and $3 form a 7-block and S2 forms a (trivial) r-block.

Treating each 7-block as an atomic unit, we can topologically sort the w-blocks so that
dependences from one w-block to another are always in the direction of the statements of
the loop. In our example, we can achieve this as follows:

for i = 1 to N do
for j = 1 to N do

Ali,j] := BIi,j] (1)
Bli,j+1] := al[i,j-1] (53)
D[i,j]1 := B[i,j-3]1 + A[i-1,j] (52)

Finally, we distribute the j loop around each #-block:

for i = 1 to ¥ do

for j =1 %0 N do : (T1)
Ali,j1 = BIi,j? (51)
B[i,j+1] := 4[i,j-1] (53)

for j = 1 %o N do (T2)
D[i,j] := B[i,j-3] + &li-1,j] (52)

The second j loop can now be vectorized easily.

Loop distribution does not have to stop at the innermost loop. Suppose we now consider the
two j loops as atomic statements 71 and T2, and compute the dependence graph for them.
There are two dependences T1 — T'2; one is loop independent (due to B) and the other is
loop carried (due to 1). Either way, T1 and T2 are trivial m-blocks, and they are in the right
order, so the i loop can also be distributed:
for i = 1 to ¥ do
for j = 1 to N do (T1)
4[i,j1 := B[i, 3]
B[i,j+11 := a[i,j-1]
for i = 1 to N de
for j =1 to ¥ do (T2)
Dli,j1 := B[i,j-3] + Afli-1,j]

Both i-loops can be done in parallel.
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5.6 Loop fusion

Earlier, in improving sequential code, we studied loop fusion (also called loop jamming),
where we tried to collapse two loops into one to reduce the overhead of loops (predicate
tests, pipeline bubbles) and to enable optimizations across two loop bodies.

Loop fusion is, in a sense, the inverse of loop distribution. While parallelization for vector
machines prefers loop distribution, parallelization for MIMD machines may prefer loop fusion
because, as in sequential code, it can reduce overhead, except that in this case the overhead
is that of forking parallel tasks.* Thus,

for i = 1 to N do parallel
loop body 1

for i = 1 o N do parallel
loop body 2

may involve much more overhead than

for i = 1 to N do parallel
loop body 1
loop body 2

because the former program incurs the overhead of 2N forks and two barrier synchronizations
whereas the latter incurs the overhead of only N forks and one barrier synchronization.

5.7 Loop interchange

Consider the following program:

for i = 1 to ¥ do
for j =1 to N do
10i,j1 := £0X[4,5+1]) (S)
The statement S in the loop body has an antidependence to itself, from its instance in one
j iteration to its instance in the next. Thus, the j loop must run sequentially. However, it
is perfectly all right for the i loop to run in parallel,

If we were running on a vector machine, this is unfortunate, because only inner loops can be
converted into vector form. So, we perform a loop interchange transformation:
for j =1 to N do

for i = 1 to ¥ do
X[i,j] := £(X[i,j+1]1)

This brings the parallel loop inside, so that it can be vectorized.

Conversely, if the inner loop had been parallel and we were running on a multiprocessor,
we could interchange the loops to bring the parallel loop outside in order to minimize the
overhead of forking parallel tasks.

*This is an example where the choice of parallelization may best be left to the compiler.
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Under what conditions is it safe to perform a loop interchange? In general, n nested loops
specify an n-dimensional “iteration space”, and the loop headers specify a particular linear
(“control”) traversal through this space. Reversing a loop, or interchanging two loops basi-
cally changes the linear traversal through the iteration space. For example, given the loop
headers:

for i =1 to 3 do
for j = 1 to 3 do

the 2-dimensional iteration space is the following:

(1,1) (1,2) (1,3)

2,1 (2,2) (2,3

(3,1) (3,2) (3,3)
and the loop headers specify a left-to-right, top-to-bottom traversal. Interchanging the loops
changes it to a top-to-bottom, left-to-right traversal. Reversing the j loop specifies a right-
to-left, top-to-bottom traversal.

Interchanging two loops is safe whenever the (control) traversal respects the dependence
arrows. In our example, the dependence arrows are antidependence arrows going from left
to right, from an (4, 7) point to an (¢, j + 1) point in the iteration space. When the loops are
interchanged, these antidependences are obviously respected.

As we have already seen, dependence arrows are labelled with a direction vector, a tuple of
<, = and > symbols. Reversing a loop inverts the “sign” of the appropriate component of
the dependence arrow’s label, (..., <, ...) to (..., >, ...) and vice versa. Interchanging two loops
exchanges the corresponding label components, (..., 54,1, ...) to (vs 8,4, ...). In general, we
can reverse loops and interchange loops if the leftmost symbol that is < or > symbol does
not change sign. In our example, the label of the dependence edge is (=, <); interchanging
loops makes the label (<,=)); in both cases, the leftmost symbol is <, so the interchange is
allowed.

Example:

for i = 1 to ¥ do
for j =1 to N do
Afi,3] - e (Sl)
e . ali-1i,51 ... (52)

Here, we have flow dependence arrows going top-to-bottom in the iteration space: 51 — S§2
labelled (<, =). Clearly, it is safe to interchange the loops.

(W]

Example:

for i = 1 to N do
for j =1 %o N do
ali,jl “ee (Sl)
oo ALi-i,j-11 ... (52)

Here, we have flow dependence arrows going diagonally from top-left to bottom-right: §1 —
52 labelled (<, <). Again, it is safe to interchange the loops.
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Example:

for £ = 1 to N do
for j =1 to N do
Ali,3] := T (51)
cee = oo Al-d,j41] Lo (52)
Here, we have flow dependence arrows going diagonally from top-right to bottom-left: S1 —
52 labelled (<,>). Thus, it is not safe to interchange the loops, i.e., giving (>, <). However,
it is safe first to reverse the j loop, i.e., giving (<, <):
for i = 1 to ¥ do

for j = N downto 1 do
Ali,j]

now

. ‘[::-"iaj+1] RPN
and then to interchange them, i.e., still (<, <).
0

5.8 Conditionals in loops: loop unswitching and IF-conversion

Loop unswitching is a general transformation that is useful even in sequential programs.
Suppose there is a conditional statement inside a loop. Some or all of the predicate expression
may be a loop invariant. For example:

for i = 1 to X do
it (A or B[il) them c[i] := 0
D[i] := o

Here, the boolean 4 is a loop invariant, but it is repeatedly tested on each iteration. Loop
unswitching performs the following transformation:

if A then
for 1 = 1 to N do
clil := o
D[i] := 0
else
for i = 1 to N do
it B[i] them ¢[i] := 0
D[i] := o

The transformed program tests a only once instead of N times. Further, the two loops can
be vectorized, treating B[il as a vector mask.

If-conversion is another vectorizing transformation. For example:

for i = 1 to ¥ do
if (A[i] <= 10) then
ali] := A[i] + 10
it (B[i] <= 10 ) then
B[i] := B[i] + 10
Ali} := Bli] + ALi]
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This can be converted into:

for i = 1 to N do
cond1{i] := (A[i] <= 10)
A[i]l := A[i]l + 10 where condi[i]
cond2[i] := (B[i] <= 10) where condi([i]
B[il] B[i]l + 10 where cond2[il
Ali] B[i] + a[i]

i

which can now be vectorized easily, treating the new arrays cond1 and cond2 as vector masks.

6 Concluding remarks

The material presented in this section of the notes originates almost exclusively from the
work of three research groups: the PARAFRASE project at the University of Illinois at
Urbana-Champaign, led by Prof. David Kuck, the “father of dependence analysis” [8]; the
PFC project at Rice University, led by Prof. Ken Kennedy, another pioneer in this field (3],
and the PTRAN project at IBM Research, Yorktown Heights [9].

Most of the work, to date, has been in trying to parallelize FORTRAN codes which are
dominated by loops and arrays, because these are the characteristics of most large, scientific
and engineering codes to date, which are the biggest consumers of supercomputer time.

Researchers have just recently begun looking at dependence analysis for languages like C
and Lisp, where the use of pointers and heap objects is much more common. This field is
still in its infancy, and not much success has been reported to date (leading some to question
whether it will ever be viable to try to parallelize sequential programs in these languages).

Another research topic that is still in its infancy and which we have not touched upon at all
is the question of choosing, from all the things that can be done in parallel, which things
actually will be done in parallel. If the overhead of forking a thread and synchronizing
its data accesses is comparable to the actual work that it does, then it may not be worth
it to do it in parallel at all. Of course, this depends on having an accurate cost model for
parallelism. We still do not know how to do this well, because it depends on so many aspects
of the architecture, system parameters, runtime system, etec.
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