MASSACHUSETTS

LABORATORY FOR I

INSTITUTE OF
COMPUTER SCIENCE S TECHNOLOGY

Y

Two-Phase Transactions

Computation Structures Group Memo 318
September 21, 1990

Jonathan Young

This report describes research done at the Laboratory of Computer Science of the
Massachusetts Institute of Technology. Funding for the Laboratory is provided in
part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract N00014-84-K-0099,

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Two-Phase Transactions

Jonathan Young

September 21, 1990

Abstract

The Computational Structures Group at MIT is currently building Monsoon, an implemen-
tation of the Explicit Token Store architecture. Gur research has indicated the need for memory
transactions of arbitrary latency in order to provide scalability of computer architectures. On
Monsoon, memory transactions are referred to as two-phase transactions, and include impera-
tive Fetch and Store requests, E-structure (I-Fetch, I-Store, and L-Store) requests, Lock (Take
and Put} requests, and two local requests for use in system (storage management) code. Full
documentation is given on each memory request, including a token-level description, constraints
on user code using each request, and RTL suitable for the implementation of each request on a
Monsoon processing element.

1 Introduction

Research at MIT has indicated the need for memory transactions of arbitrary latency in order
to provide scalability of computer architecturesl]. This document explains how these two-phase
transactions take place on the Monsoon implementation of the ETS architecture(5] which the
Computational Structures Group is currently building,

A memory transaction consists of a series of messages (tokens), initiated by a single memory
request. A memory request consists of the operation to be performed, a node and location at which
to perform the operation, and a possible parameter. Operations are either feich-like or store-like.
The parameter for a storelike operation is the value to be stored at the location. The parameter
for a fetch-like operation is a continuation. This continuation encodes not only the address of the
instruction to which the value fetched is returned, but also any other handlers for other messages
(e.g. defer messages} necessary for the semantics of the particular transaction.

Only a Monsoon processing element (PE) may issue a memory request. However, both I-
Structure (IS} boards and PEs may process memory requests, and thus both architectures con-
strain the structure of memory transactions. In particular, the PE can qdd to various fields of a
continuation, while the IS ¢an only ezclusive-or fields,

Each memory location on Monsoon contains both a value and some presence bits. Each op-
eration specifies a different operation on the presence bits, but in general, when presence bits are
empty, the value is not meaningful, while a true data value is stored in the location if the Presence
bits are not empty. A memory operation is clear-like if it is store-like and the value is ignared, for
example, when the operation sets the Presence bits to empty.

Related sets of memory operations form memory paradigms. In particular, the paradigms sup-
ported by Monsoon include write-once I-Structures[3, 2, 9], locks(8], and several forms of imperative
read and write. In general, accessing the same location using operations from different paradigms
is not well defined, However, if it is known that the location is empty, then any paradigm may be
used. This restriction is documented further in (7].

IP | Port Left Port Right | Paradigm

4 | I-Fetch I-Store I-Structures
8 | Fetch Store Imperative
12 | Take Put Lock

16 | Examine-Lock | (unassigned) | Lock
20 | PB-dispatch (unassigned)
24 | (unassigned) | Clear

28 | PLTake PLPut Processor-local Take/Put
32 | (unassigned) | L-Store I-Structures

36 | Code-Fetch Code-Store | Instruction memory

40 | Frame-Fetch Frame-Store | Frame memory

Table 1: Assigned Request IPs

Memory operations are transmitted across the Monsoon network, which guarantees that suc.
cessive messages between any two nodes will be delivered in a FIFO manner(4]. In addition,
certain messages can be designated as circuit-switched, in which case a delivery acknowledgement
is generated before any other token leaves the same originating node. Most store-like Iessages are
circuit-switched in order to certify that the write has been performed. In addition, certain messages
must be circuit-switched to ensure that messages arrive in the correct order.

Note that while processing an instruction, a Monsoon PE may do several operations before
issuing a memory request. This is irrelevant for the purposes of this paper, and we avoid the
issue by writing the pseudo-MONASM syntax “(IFCH args)” to dencte “any Monsoon instruction
which issues an I-Fetch memory request”,

This is a working document. Currently, only the Imperative (Fetch and Store requests), I-
Structure (I-Fetch, I-Store and L-Store), Lock (Take and Put), and PLMem (PLTake and PLPut)
memory paradigms are documented. Additional features of the above paradigms, including the
Examine-Lock transaction, are not yet specified.

2 Request Numbers

Because Monsoon processing elements may process requests, there is a well-defined mapping be-
tween a request numbers and an (IP,Port) pair. A memory request is encoded as a 24-bit number;
the port is obtained as the high (24th) bit of this number, while the IP is the low 23 bits, Conversely,
appending one bit of port and 23 bits of IP results in a request number.

Table 1 lists all requests which have been assigned IPs and ports. Note that in general, port
left is used for read (fetch-like) operation, while port right is a write (store-like) operation.

Note that the IP is always a multiple of four, because some operations require more than one
instruction on a Monsoon PE. The PIU on the PE provides special support for converting a pointer
into a request; part of this operation consists of moving a displacement, shifted left by two bits,

more expensive means to execute the same operations
The Bulk-Clear and RW-Set-PB-n operations have not yet been assigned numbers,

3 Imperative Operations

Imperative operations allow, with proper synchronization in user code, the reading and writ-
ing of any Monsoon memory location. Examples of such operations include Frame-Fetch and
Frame-Store, which read and write the values stored in a frame, Code-Fetch and Code-Store,
which read and write the values stored in instruction memory, and Fetch and Store, which read
and write an arbitrary memory locations. In addition, the presence bits may be read at a location
using PB-dispatch, and written using Clear or any of the the RW-Set-PB-n family of operations.
Only the imperative Fetch, Store and Clear operations are documented here.

3.1 User-level descriptions of Fetch, Store and Clear

The Fetch memory request is extremely simple. The pseudo-MONASM syntax is:

F: (FCH args),RA.L

R&: (dest)

This sequence of instructions obeys the following contract: if the Fetch instruction at F executes,
and the location is present, then a token will eventually arrive at the left port of RA (RA.Left).

Imperative Store operations exhibit the simplicity of all store-like operations. If a destination
is supplied, the signal token (with V undefined) arrives when the network certifies that the store
request was received.

Case 1 (no signal):

S1: (STR args)
[> or Il stop]

LY

Case 2 (with signal):

S2: (STR args),SD
[> or || stop]

SDh: dest

Contract: If the Store (or store-like) instruction at $2 executes, then eventually a token arrives
at SD,
The Clear operation is store-like, but no value is stored. User code js similar to Store.

3.2 Token-level description

Each token in the imperative fetch /store paradigm can be assigned one of three types, with different
properties, as summarized in Table 2.

Circuit
Name | Switched? | Destination Value
Fetch | no FCH(LOC) [RA
Store | YES STR{LOC) | Value
Clear | YES CLR(LOC) | (Unspecified)
Value | no RAL Value

Table 2: Tokens in the Imperative Paradigm

#/RWMEM fl=ignored f2=r (r is expected to be 0)
case port of
left :
(Fetch)
case DMPlea) of -
read-only :
temp « DM|ea)
C'V
V'« temp
newCD(C', V') net or enqueve (Value token)
stop
esac
right :
(Store)
case DMPlea] of
empty :
DMPlea] + read-only
DMlea] — V
stop
esac
esac

Figure 1: RTL for %%RWMEN

WICLEAR fl=ignored f2=r (r is expected to be 0)
case port of
right :
(Clear)
DMPlea] — empty
stop
esac

Figure 2: RTL for %%CLEAR

Circuit
Name Switched? | Destination | Value
Fetch no IFCH(LOC) | RA
Store YES ISTR(LOC) | Value
Defer YES RAR RA?
Deferred-value [YES RA.L Value
Value no FD.L Value

Table 3: I-Structure Tokens

3.3 System-level description

On the PE, the %%RWMEN instruction handles imperative memory requests. The RTL for the % RWMEN
instruction appears in Figure 1, in a format similar to that in (6]. The %%CLEAR instruction (Figure
2) handles Clear requests.

4 The I-Structure Paradigm

I-Structures are write-once locations which defer when read before the value has been written. The
I-Structure family of operations includes I-Fetch, I-Store, and L-Store. L-Store (lazy store)
stores a continuation in the location with presence bits delayed. When the location is subsequently

-Fetched from, the continuation is ejected into the network, allowing the delayed code to compute
and store a value in this location.

4.1 TUser-level descriptions of I-Fetch, I-Store, and L-Store

To provide for multiple deferred readers on a single I-Structure location, every I-Fetch operation
in user code must include three instructions: an I-Petch or equivalent instruction, an %I-defer
instruction, and the actual destination. Note that the destination instruction must expect the
fetched value to arrive on the left port.

F: (IFCE args),Ri.L
Ri: JI-DEFER [fp+r]
FD: (dest)

The %I-defer instruction must immediately precede the destination instruction, so that that
RA+1 = FD. Because this arithmetic must be performed on both the PE (using the PIU) and the
IS board (using XOR), the IP of RA must be even,

This sequence of instructions obeys the following contract: if the I-Fetch instruction at F
executes, and the location is eventually I-Stored to, then a token will eventually arrive at the
destination FD.Left, at which point the frame slot at r will be empty.

The I-Store operation strongly resembles the Store operation.

4.2 Token-level description

Possible messages sent under the I-Structure paradigm are presented in Table 3. An I-fetch from
a location which has already been stored to will produce only a token at FD.IL. When an I-fetch

IP:

IP+dest (RA}:

)

IP+dest+]1:

I-Fetch
dest 1

cC

N~

fetch

deferred-value

rkr—_ defer (RA’)

$I-Defer
r

dest

deferred-value

Figure 3: User Code for I-Fetch

arrives at an empty location, however, FD.L is stored with presence bits “deferred”. A store at this
point will result in the same value token at FD.L. However, another fetch (destination RA’) will
store RA’ (deferred) at the location and send a defer message to RA’.R. Eventually, the value will
be stored, and a bunch of deferred-value messages will be sent, terminating with a value message
to the last deferred reader.

Note that the PE is not able to store FD.L; RA.L is stored instead, and the last element in a
deferred list receives a deferred-value message instead of a value message. This is tolerated because
the JI-DEFER instruction always fires on a deferred-value message, even if no tag arrived via a defer
message.! Thus, I-Structure deferred lists cost one extra instruction/token when emulated by the
PE.

4.3 System-level description

On the PE, the %%ISTR instruction handles I-Structure (I-Fetch and I-Store) requests, and the
AYLSTR instruction handles L-Store requests. RTL for the %{ISTR and %%LSTR instructions appears
in Figures 4 and 5. Note that satisfying a deferred fetch list takes one more instruction on a PE
than it does on an I-Structure board because the PE cannot add one to the RA when the first
reader defers. Because of this, the %I-defer instruction (Figure 6) must also take care to tolerate
deferred-value tokens which are not preceded by a defer(RA’) token.

Network tokens from the PE fall into two categories. Certain tokens (notated “circuit-switched
or critical”) must precede other tokens for correct I-Structure behavior. If such a token is sent over
the network, it is circuit-switched as described in the introduction. On the other hand, if the token
is local to the processor, then it is critically recirculated. Other tokens, notated “net or enqueue”,
are sent over the network without circuit-switching if remote, and are enqueued (or recirculated)
in the normal fashion if local.

4.4 Example

Figure 7 and Table 4 together show an example of the messages sent when three separate I-Structure
readers defer on a location before it is stored to. Note that token number 5 must arrive before
token 7 and token 3 must arrive before token 8. Both conditions are ensured by the fact that defer
tokens are circuit switched.

5 Lock Operations

The lock paradigm allows exclusive access to a resource which occupies one memory location. Access
is obtained by the Take operation, which is fetch-like, and released by the Put operation, which is
store-like. In addition, the Examine-Lock operation [TBD)], which is fetch-like, is equivalent to a
take and put sequence, and may be used to reduce memory traffic in special cases.

5.1 User-level description: Take and Put

Slightly more machinery is required in user code to obtain exclusive access to a lock using the Take
and Put two-phase transactions. In particular, any user code doing a Take must retain enough state
to enable another Take operation to be performed, in case the operation needs to be retried. (Note

'This is the source of the triangle inequality problem, forcing the deferred-value messages to be circuit-switched,
Ken Steele has shown that this problem may be avoided at the expense of more complicated microcode and an
additional presence state { “mu]tiply-deferred”).

AAISTR fl=ignored f2=r (r is expected to be 0)

case port of
left :
(I-Fetch)
case DMPlea] of

emptly :
DMPlea] — deferred
DM{ea) -~V
stop

present :
temp «— DM]eaq]
'V
Clp — Ch +1
V' « temp
newCD(C', V') net or enqueue
stop

delayed :
DMPlea] — deferred
temp — D M|ea]
DMlea] — V
C' — temp
V' — (Unspecified)
newCD(C', V') net or enqueue
siop

deferred ;
temp «— DM]ed]
DMiea) « V
C'e—V
Chory +— right
V' — temp

newCD(C', V') circuit switched or critical

stop
esac
right :
(I-Store)
case DMPlea] of
emplty :
DMPlea) — present
DM|lea) — V
stop
deferred :
DMPlea] « present
temp «— DM]ea]
DMlea] — V
C' — temp
ViV
newCD(C', V')
stop
esac
esac

circuit switched or critical

(Value token)

(Force token)

(Defer token)

(Deferred-value token}

A%LSTR fl=ignored f2=r (r is expected to be 0)

case port of
left :
(L-Store)
case DMP[ea] of
emply :
DMPlea] delayed
DMiea] « V
stop
esac
esac

Figure 5: RTL for %%LSTR

AI-DEFER fl=ignored f2—r
case port of
left :
(Deferred-value)
case DMP[ea] of
right-present :
DMPlea] — empty
temp — D.M|ea]
C' — temp
VeV
newCD(C', V') net or enqueue (Deferred-value token)
Cip —Crp +1
Crort « left
(Value token)
emply :
Cp~Cpp+1
Crort + left
(Value token)
esac
right :
(Defer token - RA)
case DMP|ea] of
emply :
DMPlea] — right-present
DMlea] «— V
stop
esac
esac

Figure 6: RTL for %I-DEFER

Number | Message From | To | Contents
1 I-Fetch A Loc [RA(A)

2 I-Fetch B Loc | RA(B)

3 Defer Loc | B RA(A)
4 I-Fetch C Loc [RA(C)

5 Defer Loc | C RA(B)

6 I-Store D Loc | value

7 Deferred-value | Loc C value

8 Deferred-value | C B value

9 Deferred-value | B A value

Table 4: Multiply-deferring I-Structure Example

I-Fetch I-Fetch I-Fetch

$3ISTR

P

I-5tore

Figure 7: Multiply-deferring I-Structure Example

10

Name Limit Destination Value

Take 1 TAKE(LOC) [RA

Put 1 PUT(LOC) Value
Defer (see text) { RA.R RA?
Value 1 RA.L Value
Value’ 1 dest value
Send-retake | 0 or 1 RA+1.R RA®
Retake (see text) | RA+2.L (ignored)

Table 5: Tokens in the Lock Paradigm

that this results in dataflow graphs which are not well-behaved.) There are three entry points and
two auxiliary instructions needed for the correct functioning of multiply-deferred takers, organized
as follows:

T: TAKE v, RA.L

Rd: ATAKE-AUX [FP+r], dest
RA+1: JTAKE-AUX1
RA+2: (code for retake)

dest: (destination of take)

The rationale behind this design is actually rather subtle. The I-Structure board can only
generate one output token, which must contain the valye taken. After a take is satisfied, however,
the rest of the takers on the deferred list must continue to defer on the location. Thus, Take
operations which defer must retain a pointer to the location read.

Although the retake message could be sent directly from the satisfied taker to the location, we
actually pass the baton to the first taker on the deferred list. This avoids dealing with the triangle
inequality problem on the network.

User code for the Put operation is similar to Store.

5.2 Token-level description

Table 5 presents the possible messages in the lock paradigm. Due to the possibility of merging
deferred take lists, it is difficult to characterize the number of tokens which are needed to process
Take and Put operations. Each Take operation takes four tokens if the value is present or it is
the only deferred reader on the location. Two more tokens are needed if another Take has already
deferred on this location. Note, however, that a Retake operation may result in two deferred lsts
being merged, and this operation will take time proportional to the length of one of the lists.

5.3 System-level description: Take and Put

On the PE, the %%LOCK instruction handles Take and Put memory requests. The RTL for the
7%LOCK, %Take-Aux and %Take-Aux1 instructions appear in Figures 9, 10 and 11.

11

IP:

dest

Take

N~

take

value

f/”‘——;:—ﬁi defer (RA?)

IP+dest (RA):
Take-Aux
dest’ r
IP+dest +/ :
Take-Auxl
value
ret.ake

IP+dest+2:

IPtdest+dest’

dest

send-retake

\ retake

take

Figure 8: User code for Take

12

AILOCK fl=ignored f2=r (expects 1=0)
case port of
left :
(Take)
case DMPled] of
emply :
DMPlea] « lock-deferred
DMlea) — V
stop
present ;
DMPlea] «— empty
temp «— DM]ed]
C'—V
V' «— temp
newCD(C', V') net or enqueue (Value token)
stop
lock-deferred :
temp «— DM|ea]
DMlea] « V
C'—V
Chort — right
V! — temp
newCD(C', V') net or engqueue (Defer token)
stop
esac
right ;
(Put)
case DMPlea] of
emply :
DMPlea] — present
DMlea] — V
stop
lock-deferred :
DMPlea] — empty
temp — DM|ea]
C' — temp
VieV
newCD(C’, V') net or engueue (Value token)
stop
esac
esac

Figure 9: RTL for {%LoCK

13

%Take-Aux dest r
case port of
left :
(Value)
case DMPlea] of
empty :
Crp +— Cre + destg
Crorr + destpogrr
(Value’ token)
right-present :
DMPlea] — empty
temp — DM]ed]
C'—C
Cip —Chp+1
Chory + left
V! «— temp
newCD(C', V') net or enqueue
Crp — Crp + destg
Cport + destpopt
(Value’ token)
esac
right ;
(Defer RA?)
case DMPlea] of
emply :
DMPlea) — right-present
DMilea) — V
stop
right-present ;
temp «— DM|eq]
C' — temp
CpoRT — right
ViV
newCD(C', V') net or enqueue
stop
esac
esac

(Send-retake token)

(Defer token)

Figure 10: RTL for {Take-4ux

14

/Take-Aux1 fl=ignored f2=ignored
case port of
left :
(Send-retake - RA?)
C'e—V
Cp —Chp +2
Chort + left
V' « (Unspecified)
newCD(C', V') net or enqueue (Retake token)
stop
esac

Figure 11: RTL for %Take~Aux1

5.4 Example

Figure 12 and Table 6 together show an example of the messages sent when three separate lock
readers defer on a location before it is available, and two additional readers arrive before the two
other deferred readers have a chance to reestablish their deferred status. This exhibits the merging
of deferred Take lists, by propagating the defer message down an already established deferred list
until it reaches the end. Note that the only possibility of messages arriving out of order (e.g. a
value message arriving before the second defer message) is precluded by the FIFO semantics of
point-to-point messages in the network.2 Thus, none of these messages need to be circuit-switched
in order to enforce the semantics of the Lock memory paradigm.

6 System-Level Operations

One other variation on two-phase transactions still remains, The system code responsible for
storage management on a Monsoon processing element may need to imperatively read or write
local memory. System code, however, is constrained not to relinquish the pipeline heat (or thread)
— even during a two-phase memory transaction. Thus, we have recently introduced the processor-
local paradigm, with operations PLTake and PLPut which are guaranteed to preserve the current
thread when the location resides on the current PE.

These operations correspond most closely to Take and Put on locks, except that no deferring is
allowed. That is, the value must be present when the PLTake occurs. Equivalently, the paradigm
sapports alternating imperative writes and reads.

6.1 “User-level” descriptions of PLT and PLP

Because no deferring can possibly occur, no special machinery is necessary for the PLT and PLP
operations. It is not expected that users will ever use these operations; they are specifically intended
for use within the exception handlers and in the ID Run-Time System.

PLT v,tdest >

*This is by intentional design, not by accident. This property would not heold, for example, if instead of a
Send-retake message, we sent a Defer message back to the location.

15

Take

Take

Take Take

Take

w

14 9

'

$%LOCK

T

Put

Figure 12: Multiply-deferring Lock Example

16

Number | Message From | To | Contents

1 Take A Loc | RA(A)

2 Take B Loc | RA(B)

3 Defer Loc |B RA(A)

4 Take C Loc | RA(C)

5 Defer Loc [C | RA(B)

6 Put F Loc | valuel

7 Value Loec | C valuel

8 Send-retake | C B {Unspecified)
9 Take D Loc | RA(D)

10 Take E Loc | RA(E)

11 Defer Loc |E RA(D)

12 (Re)Take B Loc [RA(B)

13 Defer Loc |B | RA(E)

14 Defer B A | RA(E)

15 Put F Loc | value2

16 Value Loc | B value2

17 Send-retake | B A | (Unspecified)
18 Take A Loc | RA(A)

Table 6: Multiply-deferring Lock Example

Name Destination Value
PLTake PLTAKE(LOC } [RA
PLTValue | PLT-dest Value
PLPut PLPUT(LOC) | RAin V, Value in XB
PLPut1 PLPUTI{ LOC) | Value
PLPValue | PLP-dest Value

Table 7: Processor-Local Tokens

PLP v, [FP+r],pdest >

6.2 Token-level description

Table 7 presents the possible messages in the processor-
PLPut request passes three logical arguments: the location,
This exceptional request is both store-like and fetch-
(register XB) in the Monsoon Processing element to p
to the request handler.

17

local memory paradigm. Note that the
the value to store, and a return address.
like because it makes use of some extra state
ass both a value to store and a return address

pltake

pltake

$%plmem

g

dest

plput

pltvalue

plput

Y

$3%plmem

plputl
y

%%plmem]l

7

dest

prlpvalue

Figure 13: Processor Local Takes and Puts

18

#4PLMEN fl=ignored f2=r {expects r=0)
case port of
left :
(PLTake)
case DMP[ea] of
pl-present :
DMPlea] — empty
temp — DM]ea]
C'—V
V' « temp
newCD(C', V') eritical (Value token)
stop
esac
right :
(PLPut)
case DMP|ea] of
emply :
DMPlea] — pl-present (May change for safety)
DMlea] — V
Crr —Cpp +1
CroRrT « left
V «— XB
esac
esac

Figure 14: RTL for %Y%PLMEM

6.3 System-level description: PLTake and PLPut

On the PE, the %%PLMEN instruction handies PLT

and PLP memory requests.® RTL for the %% PLMEM
instruction, including the %%PLMEM1 auxiliary ins

truction, appears in Figures 14 and 15.

*The plpresent state is not defined in

[7]; the current implementation of AUPLMEM uses present instead. This
should be considered & bug.

19

4YPLMEM1 fl=ignored f2=r (expects r=0)
case port of
left :

(PLPut1)
case DMPlea) of
pl-present (see PLPut, above) :
DMPlea] — pl-present (Redundant, but see above)
temp — DM|eq]

C' « temp

VeV

newCD(C", V') critical (Put-Value token)

stop

esac
esac
Figure 15: RTL for %%PLMEM1

References
[1] Arvind and R. A. Iannucci. Two Fundamental Issues in Multiprocessing. Computation Struc-

[2]

tures Group Memo 226-6, Massachusetts Institute of Technology Laboratory for Computer Sci-
ence, May 1987. In Proceedings of DFVLR - Conference 1987, “Paralle] Processing in Science
and Engineering,” June 25-26, 1987, Bonn-Bad Godesberg (supersedes MITLCS-TM-241).

Arvind and R. S. Nikhil. Executing a program on the Massachusetts Institute of Technology
tagged-token dataflow architecture. In PARLE: Parallel Architectures and Languages Europe
Volume II, volume 259 of Lecture Notes in Computer Science, pages 1-29. Springer-Verlag, June
1987.

Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for parallel computing, In
Graph Reduction, volume 279 of Lecture Notes in Computer Science, pages 336-369. Springer-
Verlag, October 1986.

C. F. Joerg. Design and Implementation of a Packet Switched Routing Chip - 5.M. Thesis.
Technical Report 482, Massachusetts Institute of Technology Laboratory for Computer Science,
May 1990.

G. M. Papadopoulos. Implementation of a General Purpose Dataflow Multiprocessor - Ph.D.
Thesis. Technical Report 432, Massachusetts Institute of Technology Laboratory for Computer
Science, August 1988.

G. M. Papadopoulos and K. R. Traub. Monsoon Assembly Language Reference. Computa-
tion structures group memo, Massachusetts Institute of Technology Laboratory for Computer
Science. (In preparation).

G. M. Papadopoulos and K. R. Traub. Monsoon macroarchitecture reference manual. MCRC
Technical Memo 77?7 (in preparation), Motorola Cambridge Research Center, Cambridge, MA,
1990.

20

[8] R. M. Soley. On the Efficient Exploitation of §
of Control - Ph.D. Thesis. Technical Re
ratory for Computer Science, June 1989

[9] K. M. Steele. Implementation of an I-

Report 471, Massachusetts Institute o
1890.

peculation Under Dataflow Paradigms
port 443, Massachusetts Institute of Technology Labo-

Structure Memory Controller - §.M. Thesis. Technical

f Technology Laboratory for Computer Science, March

21

