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CHAUTER 1

INTRODUCTION

What will the next generatien of computers be like?7 Will there
be more sophisticated serial devices or will there be an ecmphasis
towards more parallelism? IBMl in describing its Systems 360/91
provides one answer. They state that order-of-magnitude improvements
in computer performance due to system organization alone is unlikaely.,
This assumes the constraint that the machine exccutes one iastruction
at a time. They then suggest that if substantial improvemeat is to
be made through system organization the emphasis will have te be on
parallel processing.

Parallel processing has been done on computers to a limited
extent for sometime. The IBM 709 which was released in 1958 allowed
input-output processing while the central processor was executing
instructions. The CDC 66002 which was first delivered in 1964 has
one central processor and ten peripheral processors. The poripheral
processors can do a smaller amount of arithmetic, they contain the
monitor system and do all the input-output. These peripheral processors
operate in parallel with the central processor.

There has also been a trend towards operating two or more central
processors in parallel such as will be possible in the Multics3 system.

Here each central processor executes a segment of a program but

comnunications between the central processors must be minimized to




reduce supervisory overhead time. What has not heen done except on
certain special computers such as the Solomonﬁ is to execnte individuat
instructions in parallel.

There is a class o¢ special purposc computers called pipeline
systems which can process two or more independent jobs simultaneouvsiv.
The most important characteristic of these systems is tlow rate. Flow
rate is defined as the number of jobs which flow from the input to the
output of the system per unit time. A pipeline system will tend to
minimize the idle time of the processors.

A serious limitation in the above hardware systems is their ability
to sequence control when simultaneously processing subsections of the
same job or different jobs. This thesis will concentrate o1 the problems

A

\
N of control in parallel, asynchronous processing. It will davelop a

gipeline control system which controls the simultaneous prccessing_of
N‘independent jobs. It will investigate the problems involved in
diskfibuting jobs between identical processing units. Finally problems
in the modular design of control systems will be investigated.

Some theoretical work has been done along these lines. J.E. Rodriqucz6

developed a control system called a program graph. The graph consists of

\
\

three types of control nodes--operators, selectors, and junctions and two
types of links--control and data. These elements along with a set of rules
for describing %he connection of nodes and links allow one to build a
control system tﬁ control parallel, asynchronous processing. The program

graph has limitations. Only one job can enter a loop at a time. Null




signals are gencrated which limit the amount of parallel processing that
can take place and the program graph cannot distinguish beiween different
jobs.
F. Luconi7 has developed a schema which allows one to connect g
control structure such as the program graph to a processing structure.
He also developed a set >f tests to determinme if a system is output
functional. Output functional means that for identical input values
to a system the system will produce identical output values. This
thesis will not consider the problem of connecting a control structire
to a processing structure but will use the output functional tests developed

. . . 7
in F. Luconi's thesis .



CHAPTER 11

A PROCESSING SYSTEM

A digital hardware processing system can be viewed as consisting
of two logically distinet, interacting parts called a processing
structure and a control structure. The processing structure consists
of processing units such as the central processors of computers,
adders and multipliers. The processing units are interconnected by
means of links. A link is a memory unit which can store the output
of a processing unit or act as the input to a processing unit. The
flow of data, the processing of data and the storage of dat.a all
takes place in the processing structure.

The control structure determines the sequence in which the processing
units will process the diata in their input links. The control structure
consists of control operators which can sendcontrol to other control
operators and can activate the processing units. The control operators
are interconnected by means of links and each processing unit is
connected to a control operator by means of a control link. The control
link has two parts, an initiation line and a completion line. The
control operator sendsa signal through the initiation line Lo the
processing unit. This causes the processing unit to process the values
in its input links. After completing the processing, the unit sends
a completion signal through the completion line to the control operator.

This thesis will concentrate on the control structure. It will
not consider the processing structure or the interconnection of the

control and processing structures by means of control links.



-9-

REQUIREMENTS FOR A CON_ROL STRUCTURE

A control structure should be able to process mere than one jot
simultaneously. Assum2 that there is a control system with control
operators conneclted to i (N »> 1) processing units.  The control is
such that only one processing unit is activated at a time. This
system is not efficient because N-1 processing units woold always bo
idle. The system can be made more efficient by processing more Lhan
one job simultaneously thereby increasing the number ol processing
units that will be simultancously processing.

The control structure should be able to distinguish between jobs.
Assume that there are two jobs which require processing. 99% of the
processing required by the two jobs is identical. The jobs should
be able to share the 99¢ of the processing system they have in common.

Current control systems treat a loop as though it were a feedback
path which has one entrance and one exit and which can control the
processing of one job at a time. These restrictions should be removed.
Their removal would increase the number of processing unitswhich can
simultaneously process jobs.

Null signals are signals which do not cause a control vperater
to activate the processing unit which is connected to it. Null
signals are undesirable because they increase the idle time of the

processing units.
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CONTROL OPERATORS

It is the purpose of this section to define a set of control
operators (C-operators). These operators will be used to form a control
structure called a pipeline graph (definition 2.2) which will be capable
of regulating the sequence of control of N independent job: simultancously.
The pipeline graph will meet the requirements for a control structure as
defined in the previous section.

Before defining the operators some terminology must be explained.
An operator has connected to it a finite set of links L. These links
are its input links, its output links and special control links. Each
link Li has a value V associated with it (v(gi) = V). Each link is
restricted to a finite set of values. Each control operator Ci has a
domain D(Ci) and a range R(Ci)' D(Ci) defines the set of values in
the links of the set L which cause Ci to transform. When C.L transforms,

the value of each link in the set L is changed to the value defined for

that link in the set R(C;) (Ci:D(Ci) > R(Ci)'

1. Function Operator: 'The function operator is illustrated in figure 2.1.

It is defined as an ordered 4-tuple F =« L, I, P, J > where:
1) L = {51' Bo» oo gz]l is its finite set of links
2) I = [11, 12, ceey id} is its finite set of input links
3) P = (Pys Pys «oes Pr] is its finite set of output links
4) J = {i;» 35> »++» 3} 1is the finite set of values (job

e numbers) that can appear in the
links of the set L.

5 L=1UP

1See Appendix A for an explanation of the notation.
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D ’
Figure 2.5

TRANSFORMATION

1Py 1 Py
X 0+ 0 X for any p (p_€ P)

8 8
Restriction: No two output links Py P, can ever: have

the identical value at the same instant.

DISTRIBUTOR
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The transformation associated with the function opcrator is of

the form:

F:D(F) » R(F)

D(F) = [D,(F), D,(¥), ***, D_(F)]

R(F) = (R (F), Ry(F), ***, R ()]

There is one domain Di(F) and one range Ri(F) associated with cach

i; Gy e D
2
D, (F) = {< v(I) =j;, v(B) =0> /GG, €
R, (F) = (< v(I) =0, v(®) = jp> /(j; € )

The job number ji in Di(F) is identical to the ji in RL(F). Every
Dk(F) and Rk(F) is of the above form.The only difference is that jk is

used instead of ji' The actual transformations are as follows

F:DI(F) Y Rl(F)

F:DZ(F) - RZ(F)

F:D_(F) + R (F)
If the value of every input link ii (ii € I) is equal to i (ji e J)
and the value of every output link pi(pi ¢ P) is equal to zero then the

operator transforms setting the value of every input link equal to zero

and the value of every output link equal to ji-

2V(I) = ji means that the value of every link in I is equal to ji'
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2. Data Selector: The data selector (figure 2.2) is uscd to make a

conditional branch based on the value in bl' It is defined as an
ordered 6-tuple DS =« L, I, P, A, B, J s where:

1) L

{zl, Lo ove qz} is its finite set of links

2) 1

{il] is its single input link
3) P = {pl, pz} i« its set of two output links

4) A = {al, a ., ak] is its finite set of centrol ltinks

2 b
5) B = {bl] is a single control link with a value V, which is

k
associated with the job number jk in link i (il € 1)

1
6) J = {jl’ j2, ve ey jn} is the finite set of values (job numbers)

that can appear in the link in the set I

7)

|l
1]

IyPyUA B
8) a, = {Vi’ ji} is a double link (ai € A) which contains a value
Vi and a job number ji

The function associated with each data selector is of the form:

DS: D(DS) 4 R(DS)

2
n

D(DS) = (D (DS), DI(DS), D,(DS), D;(DS), -+, DL(DS), 1’(DS))

_ 1 2 1 2 ... ) R 2

2
There are two domains D;(DS) and D;(DS) and two ranges Ri(DS) and RE(DS)
associated with each j..
* 3
1 _ . } ,
D, (DS) = {< v(I) =j,, v(P) =05 | (v(bIRV,) & vV, €2) % (3, € 3) &

(a; € ))& (3; € IN
4
Df(DS) f< v(I) =5, v(®) =0 | <v(b1$n\vi) & (eI e (V. fa)e

(3; € a)) & (a2, € A

{v(tir) fjl \Y; j2 Veeo jn}

3v(bl)RVi means that the value of b, is in the range of Vi'

L
av(bl)x\vi means that the value of b1 is not in the range Vi.
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1
wmﬁomv = {< v(D) = 0. <Ar~v = u». <AvmV =0, ! At~ P& (p, M
& Gy e )
2 .
R{(DS) = (< v(I) = 0. v(p) =0, v(p) =j> 1 (o, " 1) x (, o
& (j; < 3}
1 2 1 2 . . . 1 2 1
D., D., R,, aud R, refer to the identical j,. Every D, D, E . und
i i i i i k k k
2
ww is of the above form. The only difference is that ux is used instead
of uw. The actual transforms are as follows:

cm"cWAcmv - wwAcmv

86% (DS) wmee

1
2

2
cm"cmhcmv + R, (DS)

DS:D,(DS) o wwAcwv

—
.
[

DS:D_(DS) » R _(DS)

(A )
3 N3

DS:D_(DS) «+ R_(DS)

n
If the value in vw is in the range of <W then control is sent to link

Py otherwise control is sent to link Py-

3. Control Selector: The control selector (figure 2.3) is used to make a

conditional branch based on the job number in link mw. It is defined

as an ordered 5-tuple CS =« L, I, P, A, J s where:

1) L= mbw. Bys e th is its finite set of links

2) I = mmwu is its single input link

3) P = mvH. vww is its set of two output links

4) A = mmwu Ay eees mxw is its finite set of control links
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5) J

(jl, Jgs cees ] } is the finite set of values (job numbers)
- that can appear in the livk in the set I

6) L=1Ty P A
The function associated with cach contrel selector iz of the form:

CS:D(CS) + R(CS)

fDl(cs), D3(CS). D,(Cs), D2(CS), +--, D (CS), b2 (ceN

2
D(CS)
1
2 L el al h]
1 (cs), R (LS);

R(CS) R

3 =3 —
19

1 1 2
{Rl(CS), R;(CS), RZ(CS), R2(CS). ooy R

Z 2
There are two domains Di(CS), Di(CS) and two ranges Ri(CS). Ri(CS)

associated with each ji.

DL(eS) = fe V(D) = 3, v(®) = 0> | @ 2, (v(D) = v(a) & 3y ¢ A)
& (3; € 3N

p2(c5) = f< v(D) = §;, viB) = 0> | & ap) ((v(a) £ v(1) 2 (a; € A))
& (3, € )

RLES) = f< v(D =0, v(p) =3, V) 20> | Gye & (peD

& (p, € P)}

RE(cS) = (< v(D =0, vp) =0, v(p) =3 > | Gy € D& b €D
& (p, € P))

1
D?, D?, R}, and R? refer to the identical j,. Every D , D2, R1
i i i i i k k k

2
and Rk is of the above form. The only difference is the jk is used
instead of ji' The actual transformations are as follows:
1 1
CS:Dl(CS) N Rl(CS)
cs:D2(CS) 4 R (CS)
€5:D,(CS) + R (CS)

cs: D2 (CS) - R2(CS)

3= N

CS:D_(CS) » R_(CS)

CS:D

JNg = N
a0 N

(Cs) 4 R_(Cs)
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Tf the value in il is equal to the value of any link in the sct A

then control is sent to link p, otherwise control is sent te link p,.

1

4. Merger: The merger (figure 2.4) is used for controliing the iow
of jobs into a loop and for merging the output links of k =scctions
of a graph into one link (path). It is defined as an srdered 4-tuple

=<« L, I, Py, J > vihere:

1) L {ﬂl, 22, N zz] is its finite set of links

2) 1= {11, iz, ey ik} is its finite set of input links

3) P {pl] is its single output link

4) J = {jl’ APRERER jn] is its finite set of values (job numbers)
that can appear in the links in the set I.

5) L

IypP
The function associated with each merger is of the foru:

M:D(M) + R(M)

D(M) = (D, (), D, (M), ..., D_(M)]

R(M) = (R (1), Ry(M), ..., R ()]
There is one domain Di(M) and one range Ri(M) associated with each ji'

DO = f< v(i) = i, V() =0 | gL () =) e (i e 1) & Gy ¢ I

R, M) = (< v(i) =0, v(P) =], > | G e D& (G eD)

Di and Ri refer to the identical iy and Ek' Every Dk and Rk is of the
above form. The only difference is the jk is used instead of ji' The actual
transformations are as follows:

: M

M:D, (M) + R, ()

M:DZ(M) > RZ(M)

3

M:DH(M) - Rn(M)
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The merger arbitrarily picks one of its input links ik and transorms

it to its output link p There is one restrjction en the use of the

E
merger. It must be conrnected in a graph such that no twe of its inpuw

links i, , 1 can every have the identical value (job number) at che
i

k
time.
5. Distributor: The distributor (figure 2.5) is the inverse of o merger.

It is defined as an ordered 4-tuple D =« 1, 1, P, J « whore:
1) L = {zl, Los ++es Lz} is its finite set of links

2) 1

{il] is its single input link
3) P = {pl, Py> ,..,pk} is its finite set of output links

4) J = {jl, j2, +++, J } is its finite set of values (jcb numbers)
that can appear in the link in the set I

5) L

1]

IyepP
The function associated with each distributor is of the form:

D:D(D) =+ R(D)

b(D) {Dl(D), DZ(D)’ e Dn(D)}

R(D) = {R{(D), Ry(D), ..., R (D))

There is one domain Di(D) and one range Ri(D) associated with cach ji.

D; (D) = fe v(I) =j;» v(p) =0> | gp, ((vlp) =0) & ip, <P
& (i; € 1)}
R; (D) = {< v(I) =0, v(p) =j; > |(p €P)g (j; € N

Di and Ri refer to the identical 3 and Py Every Dk and Rk is of the

above form. The only difference is the jk is used instcad of ji. The actual

transformations are as follows:
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D:DI(D) - RI(D)

D:DZ(D) -+ R2(D)

D:Dn(D) - Rn(D)

The distributor tr.ansforms the value in its input 'ink i] Lo anvoue of

its empty output links Fi: There is one restriction on the use of .
distributor. It must be connected to a graph such that pno two of its

output links Py pz have the identical value at the same timne.

DISTRIBUTOR-MERGER STRUCTURE

If the output links of a distributor are connected to diffcrent
graph structures then the transformation is nondeterministiec. That is,
since the distributor arbitrarily picks one of its empty output links

it does not know ahead of time how the job on its input link will be

processed.

Definition 2.1; The distributor-merger structure is illustrated in figure

Tt is defined as an ordered 6-tuple DM =« L, 1, A, P, B, G~ where:
1) L = fﬁl, 22, cee gz] is its finite set of links

2) 1= {il} is its single input link which is the input link of
the distributor D.

3) A= {al, a ...a )} is the finite set of output links of the

2 distributor D whose input link is in the
: set I.
4) P = {pl} is its single output link which is the output link
of the merger M
5) B = {bl, b2, ...bk) is the finite set of input links of the

merger M whose output link is in the
set P

6 G = {gl, 8y ...gk1 is a finite set of equivalent graphs

7) L=IyAyPysB

2

.6.
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gl sde gk
Figure 2.6

DISTRIBUTOR-MERGER STRUCTURE
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A, B, and G conta n the identical number of elements k. zZach p
has one input link zi(!i € &) and one output link g, (¢, ¢ B)Y.
13
A distributor-merger structure doss not have Lane cboy prodlea,

The transformation from its input link i1 to its output liwa o f¢ the

same for each job.

PIPELINE GRAPH

A pipeline graph consists of a finire sev of C-opuratersinterconmected
with links. To start the processing, a value is placed + a subsct cof rhe
graphs links called the input interface links. When that v "ac¢ sheerrs in
a second subset of the graphs links called the output iut -~ ace links the
processing is completed. The value placed in the links is calie. Lhe job

number and is associated with one particular job.

Definition 2.2: A pipeline graph is an ordered 5-tuple PG =« L, C, IT,

0T, J > where:

1) L = {2y 12, RN Lz} is its finite set of links

2) C ck] is its finite set of operators

{cl, c2, ceey

3) IT , ir} is its finite set of input interface links

{11, 12, .o
4) OT = {tl, t2, cee, te} is its finite set of output interfuce links

5 J = {jl, j2, «vey j Y is the finite set of values (job numbers)
’ that can appear in the links of the set IT.

6) L= ITy OT

7) Every c; is either a function operator or a data selector or a
control selector or a merger or a distributor in a distributor-
merger structure.

8) Every link gi(zi € L) can be included in the input-output sets of
at most two c-operators. A link connecting two c-operators must

be an input link of one c-operator and an output link of the other.
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9) The construction of the graph must be such that it does anot
violate the restrictions on the c-operatcrs.

10) Every job has a unique set of input interface links IT(Ji)
(IT(Ji)g IT) and a unique set of output interface links
0T(J,) (OT(J )< OT).

11) Every job has a unique job uumber i (ji € J).

Definition 2.3: A job is started on a pipeline graph by putting

the same value ji(ji € J) into each input interfac: link Lk(ﬂk = lT(Ji»
of that job. At that time the value ji appears in no other link

in the graph. When the graph finishes processing that job, that

value appears in each output interface link La(ﬁa : OT(Ji» for

that job and does not appear in any other link in the graph.

FUNCTION OPERATOR HANGUP:;

In order to transform, a function operator must have the same value
in each of its input links. If it has different values on its input links
there is no way that the values can be changed or removed. The function
operator is said to be hung up.

Referring to figure 2.7, Ml and M2 are mergers, F1, F2, and F3 are function
operators, and DS is a data selector. 2, and 2, are job number "1'"'s input
interface links and 110 its output interface link. I and 24 are job number
"2'" 's input interface links and i its output interface link. The values
shown in the links are the initial values. Let M1l transform the value in

4, to 25 and M2 transform 2y to L Next Fl transforms the value in s to

1

9.9 and F2 transforms the vdlue in L6 to g8. The input links 25 and Lg of

F3 now have the values 1 and 2 respectively. F3 is hung up.
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Definition 2.4: A function operator in standard form has a set of

internal links that store every value that appears on cach of its
input links. When the identical number has appeaved on cah of |
input links and has been stored in its internal links that number
will be transformed to the set of output links of the function
operator.

Figure 2.8A illustrates one possible internal structure of a
function operator in standard form. It can have at mosr tw. walver
(jobs) appearing on each of its two input links Ly and £, C81 and
CS2 are control selectors, Fl, ..., F7 are function operators and il
is a merger. Figure 2.8} shows the symbol for a function operator in
standard form. £y £2’ z3 and 24 ére the corresponding links in figure
2.8A and 2.8B. Referring to figure 2.8A, F5 detects if J1 lLas entered
both links zl and 12. F6 detects if the other job number has entcred
both 21 and ¢2. If both F5 and F6 transform at the same time‘thcn M1
will select the output from one of them and transform it to the input
link of F7. F7 is needed to distribute the job number to more than one
output link. CS1 and CS2 channel the job numbers to F5 or Fé6. Fl, ..., F4
are needed because CS1 and CS2 cannot transform unless their output links
are zero.

A function operator in standard form is used whenever the function
operator has more than one input link. The maximum number of internal
storage links it needs is equal to the maximum number of job numbrrs that
can appear on anyone of its input links times the total number of input links.

The maximum number of job numbers that can appear on an input link is equal

to the number of sets of input interface links.
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Figure 2.8B

SYMBOL FOR FUNCTION OPERATOR IN STANDARD FORM



EXAMPLES OF A PIPELINE GRAPH

Figure 2.9 illustrates a pipeline graph which can process twy jons
(J1, J2) simultaneously and produce the identical transformitions oo bobf.
CS1 is a control selector, DS1 and DS2 are data sclocters, FI, ... F9 are
function operators, and M1, ..., M3 are mergers. Ll and 13 are the input
interface links of job J1 and ES is its output interface liank. llf [
and rg are the input-output interface links for job J2. T links with
letters in them represent the initial condition of the graph. All links
with no letters in them contain zeros (empty). The graph ¢ nrains a
loop starting at Ml and the loop has a decisional branch at U=, [ loes
not matter which job leaves the loop at DS1 first because F9 is in stancard
form. CS1 places each job in its proper output interface Llink.

Figure 2.10 illustrates a pipeline graph which can process two jobs
(J1, J2) simultaneously.but which does not produce identical transformations
on each job. CS1 and CS2 are control selectors, Ml and M2 are mergers, and
Fl1, ..., F8 are function operators. gl, 33 and 25 are the input-output
interface links of job J1 and 12, za and 26 are the input-output interface
links of job J2. Control selector CS1 sends job J1 to Fé ard job J2 to F7.

The rest of the graph is shared by both jobs. Note that F4 and F8 must be

in standard form.

OUTPUT FUNCTIONAL PIPELINE GRAPH
A pipeline graph is output functional if for the same set of initial
conditions it always produces the same values in its output interface links.

A pipeline graph is completely functional if for the same set of initial
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conditions the same va ues in the sane ovder appear on every lLink.
Fred Luconi in his Ph.D. thesis’has developed a set of terts to
determine if a set of c-operators will always form a completely
functional graph. Thes: tests (condition 2.1 and 2.2 and theorcm
2.1) are taken from his thesis and repeated here. The thecrem is

repeated without proof.

Condition 2.1: A control structure is conflict-free if for any pair

of operators a and b that can become applicable simultancously cither
i) a and b have no output links in common, or ii) a or b do not alter
the value of a common output link, or 1ii) both a and b indicate
identical value changes to all common output links.

Condition 2.2: A control structure is transformation lossless if for

any pair of operators a and b that caa become applicable simultaneously
either i) a and b do not communicate, or 11) the application of neither
can affect the value changes about to be made in the other.
Theorem 2.1: All control structures which meet conditions 2.1 and 2.2 are
completely functional.

Theorem 2.1 will be used to prove that a pipeline graph is output
functional. The graph cannot be completely functional because for
example the merger arbitrarily picks one of its input links to transform
to its output link. Therefore the sequence of values in its output link
is not repeatable.
Theorem 2.2: A pipeline graph is output functional.

It will be proven that the jobs are non-interacting (do not interfere
with each other), that conditions 2.1 and 2.2 apply with respect to ecach job

and that this establishes that the graph is output functional.
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Proof:

1. No interaction takes place at the input links of a c-cperator.
The data selector, control selector, and distributor have only onc
input link. Therefore no interaction between jobs can take place
at the inputs of these c-operators. The same appliecs to a meryger
because it transforms the value in only one input link at « time.
The function operator will not transform unless all of its input
links have the same value (job number). The function operator can

therefore hangup (see section on hangups) but will not generate a

wrong answer.

2. No interaction takes place at the output links of a c-operator.
The function operator, data selector, control selector, and merger
will only transform if all of their output links are zero. The
distributor is part of the distributor-merger structure. All of the
output links of the distributor are connected to equivalent graphs.
The distributor transforms the value on its input link to one of its

empty output links. Therefore there is no job interaction.

3. 1 and 2 prove that there is no job interaction at a c-onerator and
definition 2.2 establishes that there is no interaction in the links.

Therefore there is no interaction between jobs in a pipeline graph.

4. Conditions 2.1 and 2.2 apply with respect to each job. Consider
the function operator, data selector, control selector, and distributor-
merger structure but not the merger. Every link appears in the input-

output sets of at most two c-operators. The transformations are related



-33-

Fl

’
Iolla

Figure 2.11A

»
ol

Figure 2.11B

o™
o



-34-

so as to guarantee tha: at most one of the c-operators wi 1 be transformed
at any one time. If necighboring operators cannot simultaueously transform,
the connection is both conflict-free and transformation lcssless.

The merger is conflict-free and transformation lossless with respect
to each job. The condition in figure 2.11A cannot occur bicause this is
a violation of the rest-iction that mergers can never have the same
value (job) on any two of its input links. [n figure 2.111L if M transforms
first L4 will equal 1. If Fl transforms first L3 could equal 2., This
would not cause any problems because each job is independent and non-
interacting. Since the merger and any other c-operator connected to it
can not simultaneously transform if they have the same job in their links

it is conflict-free and transformation lossless with respect to each job.

5. It has been proven that a pipeline graph is conflict-frve and transfor-
mation lossless with respect to each job and that the jobs are independent
and non-interacting. This means that each job will cause the same sequence
of c-operators to transform in the same sequence as if it were the only

job in the graph. The pipeline graph is therefore output functional.

HANGUPS IN A LOOP FREE GRAPH

It has already been proven that the pipeline graph is output functional.
This means that for a graph with N jobs in it the answers which are generated
in the output interface links are repeatable. The question now asked is
how long will one have to wait until these answers are generated. If the

time it takes to generate an answer is infinity then some set of c-operators
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in the graph is hung up. Note that a c-operator takes a .inite amount
of time to perform a transformation from its input links to its output
links and that there are a finite number of c¢-operators and links in
the graph.

In Figure 2.12 Ll and 9, are the input interface links and Lo and i
are the output interface links. Job number "1" is placed in £ and job
number "2" is placed in 52. All other links are set to zero. The merger
M selects 2, first and transforms the value in £, to f.q¢ Now function
operator F transforms the value in 13 to ‘a and LS' Next M transforms that
value in 25 to 24 F will transform the value in L5 to % and .5 as soon
as both ;4 and LS are set to zero. But 54 is not connected to any c-operator

Therefore £, can never be set to zero and F can never perform the

transformation.F is said to be hung up.

STATE AND TRACE
The objective of this section of the thesis is to prove that under
certain constraints a pipeline graph will not hangup. Before this can be

done some terminology must be defined.

Definition 2.5: The state of a graph (STATE({)) is defined as a set
whose elements are the values in every link in the graph at a particular
instant "i", L = {Ei, 12, ey Ln} is the finite ordered set of all the
links of the graph. STATE(i) = {V(Ll), v(zz), ceny v(gn)] is the finite

ordered set of the values of all the links in the set L.
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Definition 2.6: The set of states of a graph (SET.STATES) is delfined as

the set of all possible STATES(i) of a graph that can be -eached from
any allowable initial «tate STATE(j) and includes the initionl states.
Each state STATE(i) in SET.STATES is unique, rhat is no twa states have
elements all of whose values are identical.

SET.STATES = {STATE(1), STATE(2), ..., STATE(Z)}

SET.STATES is a finite et because a pipeline graph is defined as having

a finite number of links and will accept only a finite number of jobs.

Definition 2.7: A trace (TRACE(gi, j) is an ordered set of c-operators
which if each were transformed in sequence would cause a link ti to be
set to zero (empty). It is defined for a graph in STATE(j).
TRACE(Li, 3) = [INITIAL.SET (iif ), C(I+1), ..., C(K)] is an ordered set
of c-operators

INITTAL.SET (gi, i) = {Cc(), ..., CJ)} is a set of c-operators
Each C(j) in INITIAL.SET (Li, J) is a c-operator which can transform without
waiting for any other C(i) in the set TRACE (gi, j) or INITIAL.SET (gi, i)
to transform.

Working backwards in the definition of TRACE (gi, j), C(K) could transform
and set link 2y to zero if C(K-1) could transform.C(K-1) could transform if .
C(J+1) could transform. C(J+L) could transform if the set of c-operators in
INITIAL.SET (Li, j) could transform. The order of c-operators in TRACE (zi, i)
does not have to be unique. It is possible that two c-operators could
transform simultaneously. TRACE (zi, j) describes onepossible serial sequence
of c-operator transformation. INITIAL.SET (21, j) will contain c-operators
whose output links are empty or c-operators who store the values which are in
their input links into their internal links (function operator in standard form).

Referring to Figure 2.13 F1, ..., F6 are function operators in standard
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form. M1, M2, M3, and M4 are mergers. CS] is a control selector.
Links L4 219° and tyq aTe the output interface links. Liks Lqs
22, 23, LA’ 56’ and 09 are the input interface links. Links “9’
t12° 15 and ¢,¢ have the value "1". Links ¢, and L16 have the

value '"2". Links S5 and hg have the value "3". All other links have

the value "0".

EXAMPLE 2.1
TRACE (15, J) = (INITIAL.SET (55, J), F1}

INITIAL.SET (LS, J)= (F2y

EXAMPLE 2.2

TRACE (211, J) = [INITIAL,SET (Lll’ J), M3}

INITIAL.SET (111, J) = (F6)

In example 2.2, F6 cannot transform because it has diffcrent values
on each of its input links L5 and 216’ It is in standard férm and
therefore the values in g,5 cén be transformed to F6's internal links.

A TRACE (gi, J) is RUN if the c-operators are made to transform and

A is therefore set to zero.

RESTRICTIONS FOR PREVENTING HANGUPS

Definition 2.8: A pipeline graph has a unique set of input interface links

for each job. When a job is gtarted the same value (job number) is put into
each input interface link of that job. That value appears in no other link

in the graph. When the graph finishes processing that job, that value appears
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in each of the output iiterface links for the job and does not apnear
in any other link in the graph (including internal links ot functien
operators in standard form). Every function operator is ir standard

form.

Experiment 2.1: Each of N jobs (each with its own unique job nuwher,

input and output interface links) is processed separately on the groh.
This means that all links in the graph are set to zero and then job !

is started. When job 1 is finished all links are set to zero and job 2
is started, ..., to job N. None of the N jobs hangup and each produces

the correct final result according to definition 2.4.

THEOREM ON.HANGUPS FOR LOOP-FREE GRAPHS
Theorem 2.3: If the N jobs defined in experiemtn 2.1 are ruvn simultaneously
in a loop-free pipeline graph the jobs will not hangup.

Theorem 2.3 is a theorem on processing complexity. A graph constructed
of c-operators is not guaranteed to meet the requirements of definition 2.4.
Clearly a graph can be constructed which does not work. The issue here is whether
a graph which can successfully process N jobs individually, can process N
jobs simultaneously. It has already been proven that a grapn which meets
the requirements of definition 2.8 is output functional. Therefore when
values appear on the output interface links it is guaranteed that they are
the correct ones. Theorem 2.3 establishes that the values will appear on

the output interface in a finite amount of time.



-40-

PROOF: The proof will first show that there is an c¢ffective algerithm
for constructing a TRACE (zi, j) for every link 0y in every STATE (j)
in the set SET.STATES.
1) L = [zl, Lys +oos LZ] is the finite ordered set of links in a graph.
2) (v £) () [(g; € 1) & (STATE(]) € SET.STATES) » TRACE (¢, 3)]
TRACE (zi, j) will then be used to prove that a graph will neot hangup.

The graph starts al an initial legal STATE (i). 1t then goes through
a series of legal tramsitions until it reaches STATE(J) where STATE(J) C
SET.STATES because SET.STATES is defined as containing all possiblce states
that can be reached from a legal initial state. Consider an arbicrarw
link I in state STATE (J).

TRACE (Az*, J) ALGORILTHM

zx - Li
1. If link Liis zero go to Done otherwise go to 2.

2, If link Li is not the input link of a c-operator go to Done otherwise

goito 3.

3. 1If £ is not the input link of a function operator F(j) in standard form

go to 4 otherwise:

INITIAL.SET (g, J) = {C(1), ..., C(N), F(§)}"

TRACE (zx, J) = {INITIAL.SET (Lx, J) C(N+1), ..., Cc(zN
go to Done

4, 1If Ly is not the input link of a merger M(j) go to 5 otherwise:

The merger has only one output link zj.

)
C(1), ..., C(N) were formed by N previous iterations of this algorithm.
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If zj is zero then
[INITIAL.SET (2,5 1) = {C(1). ..., C(N). ML)
TRACE (zx, J) = {INITIAL.SET (gx, JY, CN+HLY . oL, N
go to Done ] otherwise
[1f Lj is not zero then
TRACE (g, » J) = {INITIAL.SET (4> 3), M(§), C+D), ... C(2).
Relabel Lj as Ei'
‘go to 2. ]
5. If £i is not the input link of a data or control selector $(i) go to 6.
otherwise:
S(i) has two output links ﬁj and N
If Lj and zk are both zero then
[INITIAL.SET (g, J) = {C(1), ..., C(N), S(i)]
TRACE (g, J) = {INITIAL.SET (g , J), C(N+1), ..., C(2)}
go to Done] otherwise
If gj or Ik is not zero (assume zj) then
[TRACE (zx, J) = (INITIAL.SET (ax, J), S(i), C(N+1), ..., c(z)}
Relabel tj as zi.
go to.2]
6. I is the input link of a distributor D(i). If any of the output links
of D(i) are zero (assume Lj) then {INITIAL.SET (gx, J) ={Cc(1), ..., c(),
D(1)}
TRACE (zx, J) = {INITIAL.SET (Lx, J), C(N+1), ... €(2)}
go to Done] otherwise

If none of the output links of D(i) are zero choose any one of the output

links (assume zj) then
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[TRACE (ax, J) = "INITIAL.SET (Lx, JY, DEGY, CENHDY, oo QL)
Relabel ﬂj as zi

go to 2.])

DONE TRACE (gx, J) is completed.

The term output functioual which is used in the following paragraphs also
implies that the jobsin a graph are noninteracting. That is, each job
takes the same path as it would if it where the only job in the graph.

In step 1 if by is zero then TRACE (Zi’ J) is the empty sct
and there is no problem.

In step 2 this link must be an output interface link.

Proof: It will be assumod that it is not an output interface link and it
will be shown that this leads to a contradiction.

The wvalue in zi must be the same as in experiment 1 for this job
because the graph is output functional. When this job is finished in
experiment 1 this value will be in 44 because 24 is not the input link
of any c-operator. But according to experiment 1 this is not possible
because only the output interface links can have nonzero values.
Therefore there is a contradiction and zi is an output interface link.

In step 2 2 will have the value zero except in the degenerate casc
TRACE (zi, J) where it may be nonzero.

Proof: It will be assumed that £y is nonzero for the non-degenerate case.
It will then be shown that this leads to a contradiction.

£y is the output link of some c-operator C(i) which wishes to transform
from its input links to Zi. This is by definition of TRACE (Lx, J).

According to definition 2.8 each job has its own unique set of output
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interface links. Ther=2fore the same job that put the valie in ii is
trying to put a second value into ;- Since the garaph is output
functional the same condition happens in cxperiment 1. But rthis

is a contradiction because the job in experiment 1 did not hangup.
Therefore the link £ is zero.

In step 3 a function operator F(i) in standard form i: dc.ine!
as having a set of internal links which can store every value that
appears on its input links. When the proper values appear on its
internal links F(i) will transform the value on those links to its
output links. F(i) is an element of INITIAL.SET (zi, J) according
to the definition of TRACE (ﬁi, J).

In step 5 the transformations of a data and control seicoctor are
such that only one of its two output links can have a nonzerc value.

It has now been established that when TRACE (£i, J) is completed
@o to Done in the ALGORITHM). INITIAL.SET (zi, J) will contain the
proper set of c-operators, that is c-operators whose output links are zero
or function operators in standard form.

Now it must be established that the ALGORITHM will terminate for
every TRACE (zi, J)

Proof: Assume the contrary that TRACE (zi, J) does not terminate and show
that this leads to a contradiction.

I1f TRACE (Li, J) does not terminate there is an infinite number of
c-operators in the graph or some c-operator is repeated in TRACE (gi, J).
The first case is impossible because the graph is finite and the second
is impossible because the graph is loop-free. Therefore there is a

contradiction and every TRACE (zi, J) terminates (goes to Done in the

ALGORITHM)



~bty-

Because the definition of TRACE (gi. J) is completely general every
link 25 in every STATE (J) €SET.STATES has a TRACE (gi, J).

We are now finally ready to prove that a loop-free pipeline wranh
will not hangup (theorem 2.3). A c-operator will hangup if it has the
proper set of values in its input links but its set of output links
never have the value zern. A c-operator will hangup if it ias the
improper values in its input links.

It will now be proven that the values in the outpuf lirks (clv---, ﬂn)
of an arbitrary c-operator C(i) in a loop-free pipeline graph which is in
an arbitrary state STATE(J) will be transformed to zero. In the degen-rate
case where the output links are the output interface links there is no
problem because if they have a nonzero value then the graph has finished
processing that job.

Choose 21 and Run TRACE (Ll, J). g, now has the value zero. Next
choose LZ and Run TRACE (zz; K). zz now has the value zero. 2, still
has the value zero. Since zl, ceny Ln are the output links of a common
c-operator C(i) the only way that TRACE (22, K) could make Ll nonzero is
if there was a loop back to C(i) from Ly- The graph is loop-free therefore
‘1 remains zero. This reasoning is the same for the other output links.
Therefore the values in the output links of an arbitrary c-operator can be
set to zero.

It will now be proven that every c-operator C(i) has the proper values
on its input links. The data selector, control selector, and distributor
have only one input link. If its value is zero there is no problem.

If it is nonzero then the c-operator is ready to transform. The merger

selects only one input at a time therefore the same reasoning applics.
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A function operatcr in standard form by definition cai store every
value that appears on its input links into its internal links. Thercfore
it can make a transform from its input links to its internal links for
every value that appears in its input links. When the proper valucs
are stored in its interral links the function operator wili transloram
them to its output links.

The proper values will appear in a finite amount of time.

Proof: It is assumed that the values will not appear in a finite amcunt

of time and is shown that this leads to a contradiction.

Case 1. Some c-operator is hung up and the necessary value can not

reach the function operator. It has already been proven that no c-operator
will hangup.. Every c-operator has the proper set of values on its

input links and its output links can be set to zero.

Case 2. There is not a directed path from the value to the function
operator in question. Since the graph is output functional this means

that there would not be a directed path in experiment 1 which is a
contradiction.

Theorem 2.3 is now proven. Every c-operator can transform and the

graph will not hangup.

HANGUPS IN LOOPS

So far it has been shown that hangups can be caused by function
operators. A function operator in standard form has been defined and
it has been proven that a loop-free pipeline graph with function operators
in standard form will not hangup (theorem 2.3). Now the problems of

loop structures will be considered.
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Referring to Figure 2.14 assume that the loop is cmbedded in a pipeline
graph. M is a merger, Fl, F2, and F3 are functioun operators in standard
form and DS is a data selector. Assume that there are N jobs (N> &)
which want to enter the loop through link Ly

M can arbitrarily pick either input link 21 or ¢, to transform to its
output link Lo It will be assume that it always picks El when there is
a choice. This means that eventually five jobs enter the leoop. Assuming
that no jobs leave the loop there will be a nonzero value in links Ly
13, 24’ L6 and 17. M cannot transform again until its output link ZZ
is zero. 2, will not be zero until F2 transforms. F2 cannot transform
until DS does which cannot until F3 does which cannot until M does.

The loop is hung up.

SIMPLE LOOP IN STANDARD FORM
It is the purpose of this section to define a restricted class of
loops that will not hangup.

Definition 2.9: A p-merger (PM) is a merger with a preferred set of

input links. Referring to figure 2.15 the dots (...) in the p-merger
symbol indicate that this set of input links (bl, . br) is the
preferred set. PM will not transform the values in il’ ey ik

until b br all have the value zero.

10
It is defined as an ordered 5-tuple PM =« L, I, B, P, J> where:
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1) L {gl, £2’ ey fz} is its finite set of links

2) I = {il’ 10 o ik} is its finite set of non-prefcerred input Llinks

=
|

3) ={b,, b cees br} is its finite set of preferred iwput links

1’ 72’
4) P = {p11 is its sinyle output link

5) J {jl, j2’ cees jr} is the finite set of valucs (job 1umbers) that

can appear in the links in the set 1 0 B

6) L

IyByep?”
The function associated with the p-merger is:
PM:D, (PM) o R, (PM)

PM:DZ(PM) i RZ(PM)

PM:Dn(PM) 3 Rn(PM)

where

I

D; (M) = (< V(g) =3, vi(p) =0 | 7 ¢ [(vg) =i))¢&

0) 1)

1

(5; € ) & (g € BV (g € I) g (V(B)
R;(PM) = {< v(g,) =0, v(B) =3, > | (j e e (g, € Tu L)}
Di and Ri refer to the identical ji and zk. Every Rk and Dk is of the

above form. The only difference is that jk is used instead of ji and

possibly a different £y is used.

Definition 2.10 A simple loop in standard form (figure 2.16) is defined as

an ordered 5-tuple SL =« L, I, P, C, J > where
1) L = [11, Ly coes zz] is its finite set of links

2) I

{il, 12, ey id} is its finite set of input links and are the nonpreferred

input links of a single merger
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1) P = {pl} is its single output link and is the output link ol a data

selector.

4) C c ., cmj is its finite set of c-operators and consists

]
—
0
—
-

2 b
of one merger, one data sclcctor and M-2 function
operators in standard form which have a =incic
input and a single output link. The mevper hos

only one preferred input link b..

5 J = {jl, j2, cee s jn] is the finite set of values (job aumbers) that

can appear in the links in the set 1

The input to the loop is through the non-preferred links of the merger.
The exit to the loop is through the output link of the data selector. The
loop originates on the output link of the merger and terminates on the
preferred link of the merger.
Theorem 2.4 A simple loop in standard form will not hangup.
Proof: The proof will be shown for the special case in figure 2.16 but it is
completely general and will apply to any loop of that form. It will be
assumed that all the links (22, 23, £4, 25’ 24 28 and bl) in the loop except
one has a nonzero value. Each value is unique and represents a job in
the loop. It will be shown that one more job cannot enter the loop and
that this is sufficient to prevent a hangup.

The only way that another job can enter the loop is for 52 to have the
value zero. PM would not otherwise be able to transform. If £2 is the
link with thé zero value then b1 must have a nonzero value. Only one
link in the loop is zero. PM by definition will choose the preferred
link b1 and therefore a new job cannot enter the loop. It has now been
shown that a loop of the form of figure 216 will always have at least one

link with the value zero. A TRACE (Li, J) which terminates on the c-operator
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whose output link is the one with the zevro valuc or whose cutput Pink is

26 can be constructed for every link in the loop. The output link of

every c-operator in the loop can therefore be set to zero. No c-operator

in the loop will hangup.

COMPLEX LOOP IN STANDARD FORM

The simple loop in standard form which has just been considered is

too restrictive. A standard form for complex loops will now be defined.

Definition 2.11; A p-merger - distributor structure counsists of one

p-merger and one distributor (figure 2.17). It is defined as an order

5-tuple PMD =< L, C, I, B, J > where

1)
2)
3)

4)

5)

6)

L = {Ll, Pos oes L)) is its finite set of links

C ={PM, D} is its set of two c-operators (onej-merger and one distributor)
I = {il, 12, ey id} is the set of nonpreferred input links of the p-merger
B = gbl, b2’ N br} is the set of preferred input lirks of the p-merger
and is the set of output links of the distributor
J = {jl’ Jgs wees jn] is the finite set of values (job numbers) that can
be in the links of the set I.
LoIysB

Every output link of the distributor is a preferred input link of the

p-merger and every preferred link of the p-merger is the output link of

the distributor.

Definition 2.12: A complex loop in standard form (figure 2.18) is defined

as an ordered 4-tuple CL =<« L, C, X, J > where
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Figure 2.1

P-MERGER - DISTRIBUTOR STRUCTURE

COMPLEX LOOP IN STANDARD FORM
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L = fﬂl’ 12, eee, 4} is its finite set of links

C = (cl, Cos »ve ck} is its finite set of p-merger-distributor strvucturces
and data selectors
_ . . . . _— . .
X = [xl, Xos toes xP} is its set of pipeline graphs. Sach X5 has ono
input link, one output link and dJdoes not hangup

when processing K jobs simultanecusly.

—
|

= fjl, j2, .e+, j.} is the finite set of values (job numbers) that

can be in the links of the set L.

The graphs s (xi € X) and the c-operator c. (Ci € C) arc connected

to form a single series path in the loop.

The only entrances to the loop are through the non-preferred links of

the p-merger-distributor structures s (ci € 0).

The only exits from the loop are through the output link of a data

selector ci(ci e C).

Let R equal the sum of the maximum number of jobs that cach x, can

process simultaneously.

p
R= ¥

MAX JOBS(x,)
i
i=1

Every distributor in a p-merger-distributor structure has R+1 output links,

where R+l is the same for every p-merger-distributor Ci(ci € C).

Theorem 2.5: A complex loop in standard form will not hangup.

Proof: It will be proven that a complex loop in standard form will always

have R free links and that this is sufficient to prevent a hangup.
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1. A complex loop will always have R free links.
Proof: Referring to figure 2.18 it will be assumed that all
jobs enter the locp at PM1. All PMl's R+l preferred iaput lirks
must have the value zero if a job is to enter the loop. J.bs
are now sent into the loop. 1In the worst casc vvery 4 LS
processing its maximum number of jobs. Everv other link has a
nonzero value (job) except the R+1 preferred links of PM1. Now on.
more job enters the loop. It must go in one of the preferred links
of PMl1. Since PM1 has a job on one of its preferred links no new
jobs can enter the loop. No new jobs can enter from any other PMi
because they have jobs on all of their preferred links. Thus now
there are R free links in the complex loop.
2. The R links are sufficient to prevent a hangup.
Proof: Assume that the maximum number of jobs are in the loop. There
are R empty links. 1In the worst case each X, is such that no new jobs
can enter Xy until all the jobs in x; have left. If this happens to
all the xi's then the equivalent of R new jobs have been sent into the
loop. There is a TRACE (gi, J) from the output link of each Xy to the
distributor with R empty output links. The R jobs from the xi's can
therefore be stofed in these links. Each of the xi's is now empty
and will accept at least one new job. The proof is now the same as
for a simple loop in standard form. The complex loop in standard form
will therefore not hangup.
It was assumed that each x, was hangup free. This means that it could
be a loop-free structure in standard form, a simple loop in standard form,

or a complex loop in standard form. Complex loops are therefore very general

in nature.
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CHAPTER 111

HIERARCHICAL DESIGN

The thesis has so far conceuntrated on the problems involved in
designing a control system (pipeline graph) which can control the
processing of N indepencdent jobs simultaneously. In softw:re
terminology each pipelin2 graph when properly connected to a processing
structure 7,8 is equivalent to a subroutine. The problem that will now
be considered is that of structuring these subroutines together to form
a larger program. The main problem that will be investigated is the
communications between pipeline graphs.

This chapter will later consider a pipeline graph which computes the
tangent of a number. In the process of computing the tangent, the graph
sends control to two other pipeline graphs which compute the sine and cosine.
There are a number of problems involved. It is possible that there will be
a number of simultaneous requests for the use of a pipeline graph. If the
requested graph can process more than one job simultaneously, then there is
the problem of distributing requests and returning the answers to the proper
requesters. To solve the above problens two new c-operators will be defined.
It will then be shown that interacting pipeline graphs can be connected together.

This is a modular design approach. The basic building blocks are the
pipeline graphs considered in the last chapter. These are interconnected to
form complex processing structures. The advantage to this approach is that
the pipeline graphs can be built and debugged without considering the larger

structure in which they will be embedded.
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EXTENDED FUNCTION OPERATOR

The extended function operator (EF-operator) is used %o place the

proper job into the set of input interface links of a pipeline graph.

When that job number appears on the graph's set of output interface

links, the EF-operator rends control to the c-operator whica is

connected to its output links.

The EF-operator (figure 3.1) is defined as an ordered 7-tuple

EF =« L, I, P, A, B, §, J > where:

1)
2)
3)
4)
5)

6)

7)

8)

32|
"y
[w)

t1
v
o
NN NP =N

m
o
o

EF:D

2]
C]
o)

m
*ry

g
[~ S ST A

L= {zl, Los +ees g, is its finite set of links

I

P

L

={i.} is its single input link
1 p

= {Pl}

{81’
{by>

{J1}

{Jl’

is its single output link

a ceny ak} is its finite set of initiation links

2,
b2, ey bm} is its finite set of completion links
is the single job number which is put into the initiation

links and detected in the completion links

j2’ ...,jn} is its finite set of job numbers thiat can appear

in the links of the set I

IyPyAyB

The function associated with the EF-operator is:

(EF) + RI(EF)

(EF) + K. (EF)

(EF)

(EF)

(EF)

(EF)

-+

-

.

-

1
RZ(EF)
2
R, (EF)
R (EF)

2
Rh(EF)
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—

DLEF) = | v(D) = i;, V(&) =0, v(8) =0, v(B) =0 |j, € J]
RIEF) = (< v(D) = 3, v(A) = J1, v(B) =0, v(®) =0 | (j; £ 9) & (1o 9
Di(EF) =i< v(I) =3, v@®) =0, v(B) =J1, v(P) =0 |j; € N
RO(EF) = {< v(D) =0, viA) =0, v(B) =0, v(B) = j; > | j; € J)

1 2 1 2 )
There are two domajns Di and D, and two ranges Ri and Ri associated
1

1 2 1 2
with each job number j, (j, € J). D, , D;, R, and R_ refer to the
i i S S | i
2 2
identical job number ji' Every Di, Dk’ Ré, and Rk is of the above form.

The only difference is that jk is used instead of ji'

The value J1 (figure 3.1) is the job number which {s placed in the
initiation links and detected in the completion links. When the pipeline
graph is connected to a processing structure, the initiation links start
the processing and the completion links detect completion of the processing.

Figure 3.2 illustrates the connection of EF operators to a pipeline
graph Pl which can process two jobs simultaneously. Note that once a
job enters a set of input interface links a second job cannot enter

those same links until the first job has left the pipeline graph.

EXTENDED CONTROL SELECTOR
The extended control selector (EC-operator) is used to send jobs

to the proper c-operator. If a pipeline graph is processing a number

of jobs, the EC-selector can be used to channel the output of the

graph for each job to the c-operators which had requested that processing.
The EC-operator (figure 3.3) is defined as an ordered &4-tuple

EC =« L, I, P, J > where:
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EF
J1
17 % b
TRANSFORMATION

.. bm pl Y 11 a

.00 0 4 X 7

... J1 0 0 O

Py
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L ak b
1 ... J1 0O

. 0 9

EXTENDED FUNCTION OPERATOR

Figure 3.1

5]

EF1

J1

Pl

J2

EF2 o P,

Figure 3.2
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D) Lo=A{fys sy --+n LD is its finite set of links

2) 1

{il] is its single input link

3) P = (P2 Pys vt pn] is its ordered finite set of output links

4) J = {Jl, J2, ..., IN} is an ordered finitc sct where

J1 = {jl, ceey jkl

JN = [ja, ooy jb} is a unique finite set of job numbers
5) L=Iy P

The number of elements in P is identical to the number of elements in
J. Each JK is a finite set of job numbers. Jl is associat:d with output
link Py J2 is associated with output link Py """ JN is associated with
output link P,

The function associated with the EC-operator is:
EC:DI(EC) - RI(EC)

EC:D, (EC) + R, (EC)

EC: Dy (EC) 4 Ry (EC)

where
D,(EC) = (< Vv(I) = j, v(B) =05 | j € J}
R, (EC) = {< v(I) =0, v(p,) =3, > | T py(p; € P) & (j € ID)}

There is one domain D, and one range Ri associated with each output

i
link pi(pi € P). Di and Ri refer to the identical job number I Every

Dk and Rk is of the above form. The only difference is the PL is used instcad

of Pi*

The EG-operator transforms the value (job number) in its input link to

the output link that has that job number associated with it.
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S e

JN

EXTENDED CONTROL SELECTOR TRANSFORMATION
L) Py o Pyg Py Fyyp oo Py 201 Ppoos Py Py Piy
X0 ...0 00 ...0 =400 ...0 X0

Where X matches the job number associated with Py

RESTRICTIONS: 1. Each output link has one or more unique job

numbers associated with it.

2. The set of job numbers associated with the
output links contains every job number that

could appear in the input link.

Figure 3.3

EF1
Pl
35
A
J1
£s O 2 ECT
13 M2
Lo e

Figure 3.4
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Figure 3.4 illustrates the use of an EC-selector. Fl1, F2, and F3 are
function operators, M1 and M2 are mergers, D1 is a distributor, ECI js an
EC-selector and Pl is a pipeline graph. gl and 0y 62 and ps and ¢y
and g, are the input-output interface links for jobs J1l, .2, and I3
respectively. Each of the jobs is first processed by its correspounding
function operator. Nexi. the three jobs are processed by Pl which can
process two jobs simultaneously. Finally ECl sends each job to its

proper output interface link.

PIPELINE GRAPH IN STANDARD FORM
A pipeline graph in standard form (figure 3.5A) is defined as an
ordered 7-tuple SF =« L, C, I, P, X, D, J > where:
1) L = rzl, Lgs wres zz} is its finite set of links.
c

2) C=¢f(c ceny cm} is a finite set of c-operators consisting of

2 2
two mergers (M1, M2), one distributor (D1),

one EC-operator (ECl) and M-4 EF-operators.
3) I = {il, i2, ""*ib} is its finite set of input links

4) P = , pb] is its finite set of output links

|
—
sl
s
-

Pys =

5 X = is the single pipeline graph which can process k jobs

|
—~—
”
—
—d

simultaneously.
6) D= tdl, d2’ .oes dg] is the set of dynamic input-output interface
links for the graph x4 (x1 € X)

7) J = {jl, j2, cany jn} is its finite set of job numbers that can appear
in the links of the set I.
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Figure 3.5A

)

SIN(J1,J2)

TAN

C0S(J1,J2)

1k

[:5 é Figure 3.5B
d3 :l4

PIPELINE GRAPH IN STANDARD FORM
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I is the set of input links of a single merger M1 (Ml = C).  The
output link of M1 is the input link of cistributor DI (DL, O) . The
output links of the distributor arc the input links of thc M-2 EF-oporateors
(EF ¢ C). The output links of the EF-operators are connected to o
single merger M2(M2 ¢ C). M2 in turn is connectued to an EC-operatoer
EC1(ECl¢ C). The outpuc links of ECl are the set P. Each sct of
input-output interface links for each job that the graph x; van process
simultaneously is connected to an EF-operator. The dynamic input-output
interface links are the set of links on the graph Xy which are used to
request processing by other pipeline graphs.

Figure 3.5A illustrates a pipeline graph in standard form. TAN is
a pipeline graph constructed according to the rules discusswd in the
previous chapter. It can process two jobs simultaneously, where El’ fos
53 and b, are the input-output interface of job J1 and 05> 26’ 9.4 and tg
for job J2. Links dl’ d2, d3, and dl+ are the dynamic input-output
interface links. They request processing other pipeline graphs.

The symbol for a pipeline graph in standard form is illustrated
in figure 3.5B. SIN(J1, J2) means that the set of dynamic input-output
interface links (dl’ dz) request processing from the pipeline graph

labeled SIN and will transmit either the job number J1 or J2.

A SPECIAL PURPDSE COMPUTER
This section will illustrate the design of a special purpose computer
which can calculate the sin, cos, tan, cot, sec, and csc trigonometric

functions. The basic building blocks are pipeline graphs to compute
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each of the functions. The tan, cot, sec, aud csc can be defined in torms
of the sin and cos. Their pipeline graphs will send contral to the sin
and cos graphs in the process of computing their respective funcitons.
Each of the pipeline graphs is put into standard form. Ther arc
interconnected as shown in figure 3.6. To simplify the diagram a central
channel is shown. Each number is the channel appears twice and represents
a connection between those two points. The job numbers are not shown in

the diagram.
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CHAPTER IV
CONCLUSION
There are a number of applications for a pipeline grapt:. One is
in the design of special purpose computers such as considevcd "¢ th.

last chapter. An important application which will be considered here
is their use in the central processor of a general purposc computer.

The processing units in a central processor are adders, s ric.ovs,
multipliers, dividers, etc. All computer languages must be written
in terms of these operations either directly or indirectly. Asscmbly
languages are written directly in terms of these operaticns and b :h
level languages such as FORTRAN IV must be compiled, that is translared
into an assembly language. Since most programming is done in terms of
high level languages the compiler has become an important factor in
limiting the power of computer languages. It is inefficient to build
up hierarchies of high level languages.

With a system such as the pipeline graph it is possible to wire-in
(hardware) a set of processing instructions which are common to most high
level languages. This would reduce the importance of the compiler,
increase the speed of processing and would make it easier to develop
complex programming languages.

There any many problems which need to be investigated for central
processors which are controlled by pipeline graphs. The memory-hardware
interface needs to be investigated and so does the dynamic sharing of

the system by many users.
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This thesis did not consider the connection of the p peline eviph
to a processing structure. The connection must be made in such a

manner as to insure that the theorems on output functionality and

hangups still apply.
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APPENDIX A

SUMMARY OF NOTATION

v(l) = x
vig) =x

D(F)

R(F)

F:D(F) 5 R(F)
v(bl) R Vi

v(b ) RV,

is true if and only if A belong to B

is true if and only if both A and B are true

is true :.f and only if A or B or both are tiue
means if A is true then B is true

means for all x

means that there exists an x such that A is true

means that the value of every element in the set [
is identically equal to the value x

means that the value of 24 is identically equal te the
value x

means the domain of F

means the range of F

defines the transform F

means that the value of b1 is in the range ol the value Vi

means that the value of b1 is not in the range of the value V,
i
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