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Abstract

Start is a newly proposed multiprocessor system consisting of up to 64 thousand
processing elements (PEs) interconnected with a network. Each PE has local memory
which can also be addressed by a unique global address. In this paper an effective
way to distribute global structures onto multiple PEs is discussed. First, interleaving,
which is a mechanism to distribute the structures on 2" PEs is introduced. Then hash-
ing, which enhances the memroy utilization under constant stride access by irregulary
permutating the distribution, is introduced. Some simulation was done to decide a
fitting hash pattern. With that hash pattern, the over all utilization of the memory,
under regular access pattern with constant strides, improved from that of interleaving
without hashing. Then the mechanisms were extended in two ways to distribute global
structures on 2" — k PEs. The mechanism using re-interleaving has less loss of memory
compared to the other using modulo table,
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1 Introduction

Start is a newly proposed multiprocessor system consisting of up to 64 thousand processing
elements (PEs) interconnected with a network. Each PE has local memory which can also
be addressed by a unique global address. This paper describes interleaving and hashing
mechanism, which makes global to local address translation efficient for the Start system. In
Chapter 2 the global memory access of Start system is described. In the following chapters,
interleaving, a mechanism to distribute a segment on multiple processors, and hashing, a
mechanism to irregularly permutate the distribution, are explained. First, interleaving and
hashing on 2" processors is described in Chapter 3. A simulation model and its results
on several hashing functions are also introduced in this chapter. Then, the mechanism is
extended to support any numbers of processors in Chapter 4. Finally Chapter 5 gives a
conclusion.

2 Global Memory Access On Start

This chapter describes the overview of Start remote memory access. The Start system has
a distributed global memory system. That is to say, it has local memory distributed to the
PEs. The local memory can not only be accessed within a PE, but can also be addressed
with global addresses from other PEs. Frames active on PE are located in the local memory
space so that access to them is very fast. On the other hand, there is a need for global data
structures shared among PEs. Start implements global data structures by distributing them
among the PEs. When a PE accesses a global data structure, it has to send a request to
another PE through the network. This is called remote memory access.

Figure 1 shows the mechanism of remote memory access. When the data processor wants
to access a global data structure, it issues a remote memory access to the sync processor.
The sync processor takes remote memory access command from the data processor and
performs address translation from global virtual address, which consists of segment number
and offset, to PE number and local virtual address. This translation will be explained in
detail in the following two chapters. After address translation, the sync processor sends a
remote memory request packet into the network. The packet includes a continuation, which
gives information on where to send the data back, as well as a destination PE number and
local virtual address. If the destination PE happens to be the source PE itself, instead of
sending off the packet into the network, it passes the request to the RMEM processor which
is a part of sync processor. Otherwise, the network takes the request and delivers it to the
destination PE according to the PE field of the packet. When the destination PE receives
the remote memory request packet, the RMEM processor translates the local virtual address
into a local real address. This is done the same way the address translation is done on the
data processor for the local frame access. The RMEM processor fetches the data from local
memory with the local real address, and sends it back to the continuation as a message. In
Figure 1, the message is sent back to the source PE. However, the continuation need not
point back to the source PE.

The rest of this paper describes a proposal for an efficient global to local address trans-
lation mechanism.
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Figure 2: Global Virtual Address

3 Interleaving and Hashing For 2" Processors

3.1 Interleaving

On Start, global data structures, which are shared among PEs, are physically distributed on
PEs. It is convenient to give these structures unique names so all the PEs can access the
structures similarly. The global virtual address space is the collection of these names.

Start has hardware support for translation from a global virtual address to a PE number
and a local virtual address. A global virtual address consists of 32 bits of segment number
and 32 bits of offset (Figure 2). A local virtual address is a 32 bit address, addressing
the PE’s local memory (Figure 3). There are two good reasons for having global virtual
addresses, other than giving a unique naming space for the system. Firstly, to give data
processor (which only has 32 bit addressing) a means to access a 64 bit address space by
extending the address with a 32 bit segment number. Secondly, to give segments their own
characteristics. For example, segments can be protected from destruction by making them
read only.

Before explaining address translation in detail, usage of segments is presented to give
a general image of the global virtual address. Each segment has its own base address and
interleave value. The base address shows the location of a segment within the global logical
address space ( which consists of logical PE number and local virtual address). The interleave
value tells among how many PEs the segment is interleaved. Being interleaved, the segment
is divided into 16 byte blocks (D-cache line size) and distributed among PEs (Figure 4). This
balances the memory request to each PE. Some segments can be interleaved on multiple PEs,
while others are not interleaved and reside on a single PE (Figure 5) at the same time. Data
shared among multiple processors should be allocated in interleaved segments, while the data
locally used by single PE should be allocated in segments which are not interleaved.

Now let’s look at the address translation in detail. First, the segment descriptor is
explained. A segment descriptor is shown in Figure 6. Segment descriptors has entries
attributes, hash bit, interleave, LVA (Local Virtual Address) base and segment size. The
attributes entry includes information used to check whether the request to the segment is
appropriate or not. For example, segments with protection bit on can only be accessed with -
kernel mode access, segments with read only (RO) bit on can only be read. I-structure access
and M-structure access can only be issued to segments with I bit and M bit on accordingly.
When these checks are violated, sync processor will cause a trap and the software on it
will handle the exception. The IO bit in the attribute controls whether the segment is
interleaved on IOPEs or not (refer to Chapter 4). The hash bit controls whether hashing is

7
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performed for that segment or not. Hashing will be described in Section 3.2. 5 bit interleave
value gives information showing the number of PEs among which the segment is interleaved.
Interleaving among 1 to 64 thousand PEs can be encoded as shown in the figure. The 16
bit PE number and 32 bit LVA in the 48 bit LVA base entry is used to define where in
the global address space the segment is located. The content of the LVA base entry will be
explained in the next paragraph. The 20 bit segment size is used for checking access beyond
the segment boundary. This check is necessary to allow variable segment size. Segment size
holds the upper 20 bits of the 32 bit actual segment size. The actual segment size has to be
a multiplier of 4k bytes (page size).

Address translation with segment descriptor is performed as shown in Figure 7. Input for
the translation is a global virtual address sent to the sync processor from the data processor
along with a remote memory access request. The segment number which is the upper 32
bits of global virtual address, is used to index the segment descriptor. Limited numbers
of segment descriptors are held in a hardware buffer called the segment TLB. In case of a
segment TLB miss, sync processor causes a trap and software on the SyIC Processor can
take care of it as an exception. If the segment descriptor is found in segment TLB, then the
attributes, hash bit, interleave, LVA base, and segment size are read from the segment TLB.
Most of the attributes are sent to the violation checker. As shown in Figure 8, the start
address of the segment is rotated and stored in the LVA base entry of the segment descriptor.
This rotation should be done in advance by software, either at initialization or at TLB miss
handling. The amount of this rotation is determined by the interleave value of the segment.
The offset which is the lower 32 bits of the global virtual address is arithmetically added to
the LVA base (the carry from LVA base to the PE number is ignored). At the same time,
the offset is compared with segment size. If the offset is greater, a trap occurs on the sync
processor causing an exception. Otherwise, the result of addition is XORed with the hash
patiern generated by hash pattern generator to create the hashed PE number. Hashing is
described in detail in the next section. Finally the result of addition is rotated back with
the result of hashing to generate the PE number and LVA. The amount of the rotation here
1s determined by the interleave value from the segment TLB. This way, cache lines with
consecutive offsets will be assigned to different PEs.

With the above mechanism, segments can be interleaved as shown in Figure 5 according
to their descriptors.

12
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3.2 Hashing

Interleaving gives a means of distributing data structures among multiple PEs. But since
it assigns PEs to each cache line in turns, the assignment is very regular (Figure 9). The
regularity in interleaving causes a problem when the access pattern on the segment is also
regular, such as accessing a column of an array by incrementing the index with a constant
stride. When the interval is a multiple of a power of 2, the accessed elements are distributed
only on a subset of the PEs assigned for the segment. This makes only part of the PEs busy,
while others remain idle. For example, in Figure 9, every byte address which is a multiple of
80 hex is located on PE#0. Even if the segment is interleaved among 8 PEs, if the segment
is accessed with a stride of 80 hex, only one out of the eight PEs will be busy while others
get no requests. The load balancing effect of interleaving is not working in this case.

This can be a problem for sequential machines, but for parallel systems like Start, it is
more severe. Each iteration of a loop can be executed on different PEs at the same time, and
in a system with split phase memory access, like Start, the number of outstanding requests
is much higher than in sequential machine. The performance of the system can dramatically
decrease if only one PE has to process all of these outstanding requests.

15
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Hashing is a way to assign a PE to a cache line irregularly by permutating the order
of assignment. Figure 10 shows interleaving with hashing (which uses hash pattern *fn3’ in
the following simulation). This has a better distribution compared to interleaving without
hashing. Any function that gives a permutation can be a hashing function. However when we
think of simplicity in hardware implementation, generating a hash pattern from the address
and XORing it to the interleaved PE number seems to be a good solution. Figure 11 shows
the idea of such a hashing function. Hash patterns can be generated by simply taking some
of the bits in the address. From now on, bit locations of the cache line address are used. As
the cache line size in Start is 16 bytes, bit 0 of the cache line address is equivalent to bit 4 of
the byte address. Let’s take bits 10..3 of the cache line address for an example hash pattern.
The hash pattern changes as bits 10..3 in the address change. Each hash pattern represents
a permutation pattern of 16 cache lines. With 256 PEs, if all 8 bits in a hash pattern change,
it gives 256 kinds of permutation patterns, which is good. There are two reasons for some
part of the bits to remain unchanged. First, when the stride constant is large, lower bits of
hash pattern never change. This becomes more of a problem in systems with small numbers
of PEs, because only the lower bits of hash pattern are used for hashing. In such case,

16
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the hash pattern will never change and the distribution is as bad as interleaving without
hashing. The other case is when the stride constant is small and the number of requests is
not large enough so the upper bits of the hash pattern do not change. In the first case, it is
good to use the higher bits for the hash pattern, for example, bit 15..8. In the second case,
it is better to use the lower bits, like bit 8..1. Is there a way to solve these contradictory
requirements? One simple idea is to have two different hash pattern, one for a long stride
and the other for a short stride. But, hashing has to be consistent for all requests to the
same segment. This makes it impossible to have two hash patterns for the same segment.
Instead, the proposal in this paper is to XOR two or more bit patterns to generate a hash
pattern. Instead of using bits like 10..3 or 15..8 as a hash pattern, we will use something like
(bits 10..3) XOR (bit15..8). Comparison beween these hash patterns is made in Sec.3.3.

17



3.3 Simulations and Results

The following modeling of the system was done to evaluate several hash patterns.
e There is no network delay or confliction.
o m PEs can issue requests simultaneously. m is called issue rate.

o There can be only k outstanding requests in the whole system at a time (k bounded
loop model). When there is k outstanding requests, no more requests can be issued
until the data comes back.

It takes t cycles from request issue to get the data even if the destination is idle. t is
called access delay.

If the destination is busy, request will be enqueued and taken care of after the desti-
nation becomes available.

Table 1 shows the memory utilization for different hash patterns with strides of power of
2. Utilization is defined as (Processing time required in the ideal case)/(Actual processing
time). Processing time required in the ideal case is the time required to process all the
requests when all the PEs are most effectively used in turn. Utilization decreases as some
PEs receives more requests than others. Table 1 shows the utilization for four kinds of hash
patterns. “No hash” is interleaving without hashing. “Low” uses bits 10..3 of cache line
address as a hash pattern. “High” uses bits 15..8, and “Xor” uses (bits 10..3) XOR (bits
15..8). Both the number of outstanding requests and the issue rate are the same as the
number of PEs. Access delay is also assumed to be the same as the number of PEs. Unit of
strides in all the simulations is cache line (stride 2 means 2 x 16 bytes).

The results showed that “No Hash” has the worst and “Xor” has the best utilization in
all cases. “Low” showed better utilization than “High” with 4PEs, stride 4. In other cases,
“High” showed better utilization than “Low”. “Xor” has the utilization same as “Low” in
4PEs, stride 4, and same as “High” in other cases, taking good parts of both.

Table 2 shows the memory utilization for odd strides. Both number of outstanding
requests and issue rate are the same as the number of PEs. Access delay is also assumed to
be the same as the number of PEs. The result showed that for odd strides, “No hash” shows
the best utilization. It showed perfect utilization in all cases. Comparison between other
three hash patterns is not so obvious. “High” shows better utilization than “Low” for 4PEs.
For 32PEs, “Low™ is better than “High” for stride 3 and 5. For stride 7 and 11, “High”
was better. “Xor” does not have better utilization than “Low” or “High” like in power of 2
strides.

18



Table 1: Memory utilization for power of two strides

Utilization (%

Hash pattern | Number Number Stride
of PE | of Requests 4 256
No hash 4 2*PE# || 25.0 25.0
32*PE# [| 25.0 25.0
256 2*PE# || 25.0 0.4
32*PE# || 25.0 0.4
Low 4 2*PE# || 50.0 25.0
3I2*PE# || 72.7 25.0
256 2*PE# I 50.0 3.1
I2*PE# 72.7 3.1
High 4 2*PE# || 25.0 100.0
32*PE# || 25.6 100.0
256 2*PE# | 100.0 100.0
I2*PE# || 100.0 100.0
XOR 4 2*PE# [ 50.0 100.0
32¥PE# || 72.7 100.0
256 2*PE# [ 100.0 100.0
32*¥PE+# || 100.0 100.0

Access delay: PE#
Issue rate : PE#

Number of outstanding requests : PE#

19




Table 2: Memory utilization for odd strides

Utilization {%)

Hash pattern | Number Number Stride
of PE | of Requests 3 5 I 7 11
No hash 4 32*PE# 1/ 100.0 | 100.0 | 100.0 | 100.0
256 32*PE# || 100.0 | 100.0 | 100.0 | 100.0
Low 4 32*PE# || 78.0( 66.7| 49.2[ 66.7
256 32*PE# || 65.3| 60.4| 53.3] 58.2
High 4 32*PE# || 97.0] 97.0| 97.0] 97.0
256 32*PE# || 33.3| 200 65.3] 65.3
XOR 4 32*PE# || 78.0 | 66.7[ 49.2] 66.7
256 32*PE# || 62.7] 604 | 604 55.2

Access delay: PE#
Issue rate : PE#
Number of outstanding requests : PE#

Figure 12 to 15 shows the memory utilization for the four hash patterns with 4,16,64,256PEs.

“Xor” has the best utilization as a whole. “No hash” has better utilization for odd strides
but shows poor utilization for large numbers of PEs and the worst as a whole.

20
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Figure 16 to 19 shows variance in numbers of requests per PE.
Variance is defined as follows.
> &

for all PEs

Where § = (Total number of requests)/(Number of PEs)— (Occurrence of request on the
PE). Even distribution of requests on all PEs gives zero variance.

“No hash” has very high variance for even strides and zero variance for odd strides.
“Low” has high variance for strides multiples of 16. “High” has high variances for only few
strides and better that “Low”. “Xor” has the lowest variances of the four hash patterns.
This means that with “Xor” hash pattern, the number of occurrence per PE is quite even
for most of the strides.
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Figure 20 to 22 shows how the change in some simulation parameters affects the memory
utilization for the hash pattern “Xor” .

Figure 20 shows the memory utilization for different access delays. As access delay
decreases, the utilization decreases. This is because the issue rate here is smaller than the
number of PEs. This way, if the requests terminate quickly, low request issue rate cannot
keep the number of outstanding request high. For access delay smaller than 16, memory
issue cannot keep up with request termination so the utilization is limited. With a issue rate
equal to the number of PEs, the difference in the access delay did not affect the utilization
at all.

Figure 21 shows the memory utilization for different numbers of outstanding requests.
The result shows some improvement when the number of outstanding requests increases from
256 to 512. With the number of outstanding requests smaller than the number of PE, the
system cannot make full use of all the PEs, and the utilization is limited.

Figure 22 shows the memory utilization for different issue rate. Change of issue rate
from 256 to 64 did not affect the utilization very much. With issue rate smaller than 16,
memory issue cannot keep up with request termination and the utilization is limited.
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Figure 22: Utilization for different issue rates
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Table 3 and 4 shows the average utilization for various hash patterns.

The average was calculated as harmonic means for the number of PEs of 4, 16, 64,
256, strides of 2, 3, 4, 5, 7, 8, 16, 64, 256, issue rates of 1/4, 1/2, 1, 2 times the number
of PEs. Access delay is the same as the number of the PEs. The simulation was done
with two numbers of outstanding request, the number of requests, and the number of PEs.
The former gives unlimited bounding and the result is equivalent to static analysis of the
maximum number of requests on a single PE.

As a conclusion, with all these trials, no other hash patterns better than “Xor” was
found.
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" Table 3: Memory utilization for various hash patterns

Hash Hash Average Utilization (%)
pattern pattern Unlimited | Outstanding
name description outstanding requests
requests < PE#
No hashing 6.0 6.0
Low bits10..3 25.0 23.6
High bits15..8 77.0 49.0
Xor bits10..3 XOR bits 15..8 91.9 74.6
in2 bits10..3 XOR bits 15..8 91.9 74.6
XOR 85 hex
in3 bits9..2 XOR bits 15..8 88.4 73.6
XOR bits12..5
in4 bits9..2 XOR bits 15..8 88.5 70.0
XOR bits 10,11,12,9,7,8,5.6
in5 bits9..2 XOR bits 15..8 91.3 69.1
fné bits9..2 XOR bits 8,9,10,11,12,13,14,15 66.0 40.3
in7 bits9..2 XOR bits 4,5,6,7,8,9,10,11 58.1 45.9
n8 bits9..2 XOR bits 3,4,5,6,7,8,9,10 39.8 34.2
in9 bits9..2 XOR bits 8,9,10,3,4,5,6,7 20.0 18.8
fnl0 bits9..2 XOR bits 14,13,12,11,10,5,4,3 39.8 36.9
fnll bits16,14,12,10,8,6,4,2 45.8 38.8
XOR bits17,15,13,11,9,7,5,3
inl12 bits6,2 XOR bits7,3 XOR bits 8,4 XOR bits9,5 11.9 11.7
fn13 bits14,12,10,6,4,2 XOR bits15,13,11,7,5,3 51.7 41.7
XOR bits8,6,4 XOR bits9,7,5
fnl4 bits5,4,3,2 XOR bits 12,9,6,3 37.2 31.8
XOR bits13,10,7,4 XOR bits14,11,8,5
fnl5 bits9..2 XOR bits24,21,18,15,12,9,6,3 73.6 49.5
XOR bits25,22,19,16,13,10,7,4 XOR
XOR bits26,23,20,17,14,11,8,5
fnl6 bits10..3 XOR bits29,23,17,11,5 64.8 50.5
XOR bits31,25,19,13,7 XOR bits27,21,15,9
fn17 bits9..2 XOR bits23,22,17,16,11,10,5,4 76.9 57.7
XOR bits25,24,19,18,13,12,7,6
XOR bits27,26,21,20,15,14,9,8
fnl8 bits9..2 XOR bits26,24,22,20,18,16,10,4 65.4 39.2
XOR bits12,6 XOR bits14,8
fn19 bits10..3 XOR bits23,22,17,16,11,10,5 4 86.3 67.9
XOR bits25,24,19,18,13,12,7,6
XOR bits27,16,21,20,15,14,9,8
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Table 4: Memory utilization for various hash patterns (Continued)

Hash | Hash Average Utilization (%)
pattern | pattern Unlimited | Qutstanding
name description outstanding requests
requests < PE#
fn20 bits9..2 XOR bits23,22,17,16,11,10,5,4 82.4 60.4
XOR bits25,24,19,18,13,12,6,7
XOR, bits27,26,21,20,15,14,9 8
n21 bits10..3 XOR bits21,20,17,16,11,10,5,4 88.5 67.9
XOR bits23,22,19,18,13,12,7,6
XOR bits25,24,23,22,15,14,9 8
n22 bits10..3 XOR bits21,20,17,16,11,10,5,5 87.0 63.8
XOR bits23,22,19,18,13,12,6,7
XOR bits25,24,23,22,15,14,9 8
fn23 | bits10..3 XOR bits21,20,17,16,11,10,5 4 65.6

XOR bits23,22,19,18,13,12,11.6
XOR bits25,24,23,22.15,14,14,9

88.9
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4 Hashing and Interleaving For Any Numbers of Pro-
Cessors

An effective method to distribute segments on multiple PEs was proposed in Chapter 3.
However the interleaving and hashing work only for systems with 2" PEs. In real life, some
of the PEs may be out of order (in a system with 64 thousand PEs, the probability that some
of the PEs are faulty is very high) or some PEs connected to IO(IOPE) may be exclusively
used for IO service. In such cases, it would be convenient if segments could be distributed
on 2" — k PEs, where k is the number of unavailable PEs, which is small compared to the
total number of PEs, 2",

4.1 Interleaving Using a Modulo Table

Straight forward interleaving is done by assigning PEs in turn for each cache line as we did
in Section 3.1. Although this was efficient for 2" PEs, it is quite inefficient for power of
2" — k PEs. Interleaving is a division of address by number of PEs. The remainder becomes
the PE number, and the result of division becomes the local virtual address. The division
by 2" is trivial, but division by 2™ — k is quite complicated. Instead of doing full division,
Figure 23 shows a slightly different implementation of this idea. In the figure, one PE out
of 8PEs is unavailable. The segment has to be interleaved among 7PEs. First, the segment
is divided into blocks. In the figure, the size of the block is 32 cache lines. It is convenient
to make the size of blocks a power of 2 to keep the division for obtaining block number and
offset in the block trivial. Each cache line in the block is assigned one of the available PEs
in turn. Since 2" — k cannot be a factor of the block size, there is unused space as a result
of the transformation. Instead of having a large hardware mechanism to do the division, a
compromise has been made to lose some of the memory.

This block transformation can be done by looking up a table called modulo table. The
modulo table for the example is shown in Figure 24. Each entry of the table contains a new
PE number and a new position. The transformation using the modulo table is performed as
follows. First, the old address, which is the sum of LVA base and offset, is divided by the
block size to obtain the block number. The remainder becomes the offset in the block. Then
the offset in the old block is used to index the modulo table to read the new PE number and
the new position. To calculate the new LVA, block number has to be multiplied by the new
block length and the new position in the block has to be added.

For example, let’s follow the transformation of cache line 11 hex in Figure 23. Cache line
11 is in block 0, and offset is 11 hex. The entry of the table addressed by the offset 11 hex
has PE number 3, position 2. PE number 3 means the cache line is located on PE 3. Local
Virtual Address of the cache line is calculated by 5 x 0 + 2 = 2, where 5 is the new block
length, 0 is the old block number, and 3 is the position read from the table.

This table is general and can be used for any number of unavailable PEs, but it has to
be initialized first, according to the number of unavailable PEs. In the example, the table is
initialized so that all available PEs are used in turn, but it can be more sophisticated. Just
as hashing in Chapter 3, usage of PEs stored in the table can be permutated at initialization
to increase utility under constant stride access. Strides which are a multiple of the block size

37



PE#0

Block #0 | 00 01 02 03 04 05 06 07
08 09 0A oB oC oD OE OF
10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F
Block #1
Unavailable PE
Block #0 00 01 02 03
o7 08 09 OA
~—{OE OF 10 11
15 16 17 18
1C 1D 1E 1F
Block#1 |20
2F

Figure 23: Hashing Using Modulo Table
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Table 5: Memory loss due to one unavailable PE

(1k entry table)

Total Number of PEs 4 8| 16| 32| 64 128 | 256
Memory Loss(%) 0.2/ 05(11)28(4.4(10.4]19.7
New Block Length 342 [ 142 | 69| 34 | 17 9 5

Table 6: Memory loss for different fractions of unavailable PEs

( Total 256PE, 1k entry table)

Fraction of Unavailable PEs [ 1/4 [1/8]1/16 [1/32]1/64 1/128 { 1/256
Memory Loss (%) 11.1 | 8.6 | 14.7| 17.4| 18.7| 194 19.7
New Block Length 6 5 5 5 5 5 5

need some other hashing capability.

One difficulty of implementing this method is the multiplication of the new block length.
The new block length for the system depends on the block size, the total PE number and
number of unavailable PEs. Implementing a full multiplier requires too much hardware and
the delay is large. A better way is to limit the multiplier to some subset of integers. By
choosing an appropriate block size, the new block length can be controlled to be the sum
of two power of 2 numbers. It is not so hard to built a multiplier in this case. It is only a
simple shift and add operation.

Some estimation has been done on the loss of usable memory resulting from unused space
in the block. Table 5 shows the loss for 1 unavailable PE in different total PE numbers. The
table size is 1k entries for all PE numbers. It shows that the loss rate is high for large
numbers of PEs. As table size adjustment was not made, 4, 8, and 16 PE have new block
size which makes it hard to do the multiplication.

Table 6 shows the loss for a 256 PE system with different fractions of unavailable PEs.
The table size is also 1k entries. With the same new block size, the loss rate is low for large
number of unavailable PEs. When 1/4 of the PEs are unavailable, loss is higher than 1/8
case because the block size increases.

Table 7 is same as Table 6 with 64PE. Compared to 256PEs, loss rate is lower.

Table 8 is loss for 64PE system with 256 entry table. Loss rate is identical to Table 6.
To obtain the same loss rate, larger system requires larger table.

The above estimation shows some problems with this method. First, it requires a large
table for a large number of PEs. Second, it shows high loss for small numbers of unavailable
PEs. The second doesn’t fit the real situation, because the number of unavailable PEs in
the system is rather small.
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Table 7: Memory loss for different fractions of unavailable PEs

( Total 64PE, 1k entry table)

Fraction of Unavailable PEs | 1/4 [ 1/8 | 1/16 | 1/32 | 1/64

Memory Loss (%) 3.0 38| 52} 28| 44
New Block Length 22 19 18 17 17

Table 8: Memory loss for different fractions of unavailable PEs

( Total 64PE, 256 entry table)

Fraction of Unavailable PEs | 1/4 | 1/8[1/16 [ 1/32 [1/64

Memory Loss (%) 11.1) 86| 14.7 | 174 ] 18.7
New Block Length 6 5 5 5 5
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4.2 Re-interleaving into a Subset of Available PEs

In this section, another way of distributing data structure among 2" — k PEs is introduced.
In this method, we use a virtual PE number. By virtualizing the PE number, we can keep the
lower half of PEs (< 2*~') always available. This is done by giving all the unavailable PEs
large virtual PE number (> 2"-1). We first interleave and hash as discussed in Chapter 3.
Whenever the result of hashing comes on an unavailable PE, we re-interleave into the lower
half of the PEs. In Figure 25, two unavailable PEs are each assigned virtual PE numbers
of m —2 and m — 1 (m = 2"). When the result of interleaving and hashing among m PEs
result on PE m — 2 or m — 1, it is re-interleaved into PE 0 to m/2 — 1 using special segment
descriptor. This special segment descriptor shows a segment where the memory space of PE
m —2 and m — 1 is re-interleaved. This segment has to be reserved on PEQ to m/2—1. This
way, the area marked unused in the figure cannot be used for interleave among all PEs, but it
can still be used for interleave between m /4 or less PEs. By the use of a virtual PE number,
the test of availability is easy and the result of re-interleave is assured to be available.

Figure 26 shows the hardware mechanism to support re-interleaving. In addition to
the original hash and interleave mechanism, there are two selectors before interleaving and
hashing, a matching mechanism to detect unavailable PE number, and an offset generator.
The added hardware is dotted in the figure. During the first hashing, selectors select output
from the segment TLB and the offset from global virtual address. Then the result PE
number of interleave and hashing is tested for availability. Using a virtual PE number, this
test can be simple matching of some bits or arithmetic compare, instead of full associative
compare. The result of the test is used to control the selectors. If the PE is available,
the result of the first interleaving and hashing is directly sent to the message formatter.
If the PE is unavailable, re-interleaving is performed. This is done by sending the special
segment descriptor to the interleave unit along with an offset from the offset generator. The
offset generator generates the offset from the result PE number and LVA address of the first
interleave and hashing. Finally, the result of the second interleave and hashing will be sent
to the message formatter. With this hardware, only when the result PE number of the first
interleaving and hashing was unavailable, it takes more cycles than in the normal case. First
hashing plays an important role here, because if all the requests goes to unavailable PEs, all
the requests will take additional cycles for re-interleaving. This will slow down the system.
It is important that this situation is avoided by the hashing.

In both cases, whether the result of the first interleaving and hashing has to be re-
interleaved or not, the result virtual PE number has to be translated into a real PE number.
For example, in Figure 27, real PE2, 5 are unavailable. In order to keep virtual PEQ to
3 available, real PE 2, 5, 6, 7 are given virtual PE numbers of 6, 7, 2, 5. The rest of
the PEs have the same virtual PE number as their real PE number. PE5 does not have
to be virtualized because it is in the last half of the PE, but the virtualizing makes the
availability test simple. Translation from virtual to real PE number can be done before
message formatting with fully associative memory. The number of entries in this memory
limits the number of unavailable PEs, which is supposed to be small, like 5% of the total PE
number.

Sometimes, it is convenient to have some of the segments interleaved on IOPEs, while
others are not. This can be implemented by having two classes of unavailable PEs, fault and
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Table 9: Memory loss for re-interleaving

Fraction of Unavailable PEs

172

171

178

1/16

1732

1/64

17128

1/256

Memory Loss (%)

0.0

111

8.6

5.2

2.8

1.6

0.8

0.4

IOPE. Instead of having an available/unavailable test, we can have an available/fault /IOPE
test. When the result PE number of the first interleaving and hashing was IOPE, only the
segments with IO bit off are re-interleaved. If the result PE number of the first interleaving

and hashing was fault, the segment is re-interleaved regardless of the IO bit.

Table 9 shows the estimation of loss for re-interleaving. This loss rate is true for any
total number of PEs. The result shows that loss is small for small numbers of unavailable

PEs.
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5 Conclusion

In this paper an effective way to distribute global structures onto multiple PEs was discussed.
First interleaving and hashing mechanism for 2" PEs was introduced. Then simulation was
done to decide a fitting hash pattern. With that hash pattern, the over all utilization of
the memory , under regular access pattern with constant strides, is better compared to that
of interleaving without hashing. Two mechanisms to distribute global structures on 2 —k
PEs were then introduced. The mechanism using re-interleaving has less loss of memory
compared to the other using modulo table.
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