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Abstract

In this paper we illustrate, using the Id language, that both the op-
erational semantics of a language and its compilation process can be
formalized together. Id- is a higher-order non-strict functional language
augmented with I-structures and M-structures. The operational seman-
tics of Id is given in terms of a smaller kernel language, called Kid. Kid is
also the intermediate form used by the compiler to perform type check-
ing and optimizations. Optimizations are described as extensions of Kid
operational semantics. A criteria for correctness of optimizations is pre-
sented. P-TAC, a lower-level language, is introduced to capture some
efficiency issues related to code generation. The salient features of trans-

lating Kid into P-TAC are presented.
1 Introduction

Modern (functional) languages are too complex to be given direct operational semantics.

It is usually better to translate the source language into a simpler and smaller kernel
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language in order to explain its meaning precisely [11]. A program is said to be well-
formed if it can be translated into the kernel language, and if it satisfies certain other
constraints such as type correctness. Operational or dynamic semantics is concerned only
with well-formed programs.

All compilers do a similar translation into an intermediate form in the process of
generating code for a machine. A compiler performs type checking and optimizations on
this intermediate form before generating machine code. In this paper we will show that
the intermediate form can actually be the kernel language. In fact, we may translate
the kernel language into still lower-level language(s), where more machine oriented or
efficiency related concerns can be expressed directly. Furthermore, compiler optimizations
may be expressed as source-to-source transformations on an intermediate language. The
semantics of well-formed programs in these intermediate languages is important if we
want to show the correctness of these optimizations or the translation process. Thus,
each module of the compiler does one of the following three things:

e translate a language L; into language L;,1; or
e optimize, i.e., source-to-source transformation in language L;; or
¢ annotate a program in language L; with some properties, such as types, scopes or
source line numbers.
An advantage of formalizing the compiler modules in these terms is that it gives flexibility
to the compiler writer in choosing data structures for various modules. For example,
our presentation does not take a position regarding the representation of terms in our
kernel language. The compiler may choose different data structures, such as, parse trees
or graphs, for terms in different modules. The idea of viewing intermediate forms as
languages is not new in the functional language community [6, 9, 14], but it is still rare
in the Fortran community (Pingali’s work being a notable exception [15]).
In this paper we will show certain aspects of the process of compiling Id, an im-

plicit parallel language [13]. Id is a higher-order functional language augmented with



L-structures [5] and M-structures [7]. I-structures add a flavor of logic variables, while
M-structures add side-effects and non-determinism to Id. Id, like most modern functional
languages, has a Hindley-Milner type system and non-strict semantics. Id has been in
use at MIT as the language for programming dataflow machines. In the last few years
interest has grown in compiling Id for workstations and stock paralle! machines (16, 17].
We have recently started a project to write the Id compiler in Id, which will embody the
strategy outlined in this paper.

id
1 desugar

( Kelrnel Id

select representation

. Parallg! Three address Code, P-TAC
Reduction |

ma—— ' R —

Dataflow Graphs / Threads

Machine Graphs @1 Neumann computers

Y

Fixed program

Figure 1: Compilation sheme of Id

Figure 1 shows the high-level Id compilation process, while Figure 2 shows some of
the steps in going from Id to Kid, the kernel Id language. The circular arrows in Figure
1 refer to optimizations. The steps in Figure 2 together with the operational semantics
of Kid are needed to formalize the operational semantics of Id. The compiler needs to do

parsing and scope analysis in order to actually carry out the steps shown in Figure 2; we
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have not shown these phases explicitly.

1d

Fully Parenthesized

Gomprehensions --> |-struclures + Loops

Function def --» lambda-expression + Case

l

Dasugared Id

Complex Patterns --» Simple Case

Complex expressions --> simple expressions

"Dacorated" Kid

Figure 2: Operational semantics of Id

As an example of the desugaring process, consider the following function which maps

f to each element of a list.

Def map £ Nil
| map £ x:xs

Nil
(f x) : map £ xs;

The multi-clause definition gets turned into a case expression and the function definition

into a A-expression as follows:
map = { Fun 1 t2 = { Case (%1, $2) of

Nil
(2 x) : map £ x5 } }

(2, ¥Nil)
| (£, x:xs)

0o

where t1 and t2 are new variables. The pattern matching module simplifies the case-
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expression into the following simple case expression:

map = { Fun %1 t2 = { Case t2 of
| Fil
| x:xs

il
(t1 x) : map t1 xs } }

In Section 2 we will describe Kid, some aspects of translating desugared Id into Kid,
and some optimizations on Kid programs. The Kid to P-TAC translation, which involves
choosing representations for data structures and higher-order functions, is discussed in
Section 3. The tone of the paper is informal throughout; for a more comprehensive
description of the compiler the reader may refer to [3]. However, even in [3], M-structures

are not discussed.

2 Kid: The Kernel Id language

In Kid every expression, except a block, a case or a A-expression, is of the form
PF, (SE,,---,5E,)

where PF, is the name of a primitive function of arity n, and SE stands for simple ezpres-
sion which is either a constant or a variable. Some examples of primitive functions are
the + operator, the application operator Apply, and the array constructor I_array. A
simplified description of the language is given in Figure 3; for a complete understanding
of Kid the reader may refer to [4]. As a strongly typed language, Kid needs a different
case-expression and a set of selector and constructor operators for each algebraic type.
Since a discussion of user defined types will complicate our presentation without neces-
sarily providing additional insight, we have only included the operators for the list type.
Kid can be seen as the A-calculus with constants and let-blocks. However, unlike other
functional languages [14], let-blocks play a fundamental role in the operational semantics
of Kid. Our let-block semantics precisely defines how arguments are shared; an essential
feature for Id extended with I-structures and M-structures. Sharing is expressed by giv-

ing a name to each subexpression and by allowing substitution of values and variables
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SE 2= Variable | Constant

E u= SE|PF,(SE,-.-,5E)
| Bool Case(SE,E,E)
| List_Case(SE,E, E)

| Block

! A(Q!l, ey zn).E
Block = {[Statement;]* In SE}
Statement = Binding | Command
Binding = Variable = E
Command := P_store (SE, SE, SE)

Store.error | T,

Figure 3: Grammar of Kid

only. This idea can be formalized in a Conteztual Rewriting Systems (CRS) [2, 4] by the

following Substitution rules:
I=v I=Y

XI—vY XI—Y

where V is either an Integer or a Boolean or an Error. Intuitively, the above rule should

be read as follows: occurrences of X in a program M can be rewritten to V, only if the
binding X = V appears in the context of Xin M. A context represents a term with “holes”,
that is, a term with some unspecified subexpressions or bindings. If we substitute V for
X, or Y for X, everywhere then the corresponding binding can be deleted from the term.

The following Block Flattening rule is essential in all CRS’s.

{n Xn = {n §51; S5 --- {o X, = Y
In Y.} — 581; 8833 ---
Si; -+ Sa Si; -+ Sn
In Znm} In Zm)

where .X_’;. represents multiple variables. Multiple variables allow expressions in Kid to
return multiple values without the necessity of packaging them into a data structure. A
reader familiar with dataflow graphs may think of multiple values as a graph with multiple
input or output arcs. Multiple values require the following CRS rule:



— —

X.=Y, — (-X1:Y1;"'Xn=Yn)

2.1 'Translating Id into Kid

We will use foldl, the Id definition of the fold-from-left function to demonstrate the
translation from an Id program to a Kid program. The pictorial description of foldl is

given in Figure 4.

Def foldl £ s & = { (1,1) = Bounds 4;

In

{ for i<- 1 to u do
next s = £ A[i] s;

finally s }}

A

LT T 1T,

i i '
initial o -—-- un:l

Figure 4: An application of the foldl function to array A

Some of the uses of the foldl are:
foldl (+) 0; % sums elements of an array
foldl (<) oo; % computes the minimum element in an array

foldl (:) Nil; Y% converts an array into a list
The translation into Kid introduces explicit Apply operators and converts the loop

into a A-expression and FLoop combinator:



foldl = A(f,s,4).{ t1 = Bounds 4i;

1 = P-select(t1,1);
= P-select(t1,2);
1 ={b=2A0i,s).{ t1 = Select 4 i;
t2 = Apply(f,t1);
next-a = Apply{(t2,s);
In next-s };
tp = <{1,u);
tf = FLoop(u,1,b,1,s,tp);
In t£}
In t£1}

Now we discuss some salient aspects of this translation process.

Array selection

In Id there are only two operations defined on arrays. Selection, i.e. Afi], which returns
the value of the i** slot of array & assuming that i is within the bounds, and (Bounds ),
which returns the tuple containing the bounds. The selection A[i] is translated into the
Kid expression (Select 4 i). However, Select is not a primitive operator in Kid, due to
the complexity of bound checking. Kid uses P_select as a primitive selection operator
whose semantics does not require bounds checking. Thus, Select may be expressed in

terms of P_select as follows:
Select = A(x,i).{ (1,u) = Bounds x;
In If (i >u0Or i <1) then
Error
else
P_select(x,i) }

Notice that the translation of the tuple pattern in the fo1dl program is given using
the primitive select operator because type checking guarantees that the indices will be
within bounds.

The definition of array elements in Id are given either by array comprehension expres-
sions or by using I-structure assignment rules. In either case, the definition of an array
element translates into a P_store command. The behavior of P_select can be explained

using the following rule:



P_store(X,Y,Z)
P_select(X,Y) — Z

The above CRS rule says that the expression P_select(X,Y) in a program M, can
be rewritten to 2, if P_store(X,Y,Z) appears in its context in M. Notationally a con-
text is represented by C[0). C[P_store(X,Y,z)] then represents the program obtained
by filling the hole with P_store(X,Y,2). Thus, we can say that if M is the program
C[P-store(X,Y,Z),P_select(X,Y)], then we can rewrite M to the program C[P_store(X,Y,Z), 2.
Notice that the precondition is not affected by the rewriting; it only enables the rewrit-
ing. Furthermore, the precondition does not imply any semantic check; it involves only
syntactic pattern matching,

The rule for the Bounds operator is as follows:

X = I_array(Xp)
Bounds(X) -— Xy

I-structure semantics prohibits multiple definitions for an array element. This condition
can not be checked statically at compile time. Thus, we need the following rules for
generating and propagating inconsistent state represented by T or T,. These rules are

needed to guarantee the confluence of Id.

P_store(l, i, V)
P_store(X, i, V) — T,

{msz; 5134453 In zm} —

{n Ta; S13---SnIn 25} — T

Higher-order functions

Another part of the translation deals with higher-order functions. All functions in Id have

an associated arity. For example, the arity of foldl is 3. When all the three arguments



for a fold application are available the Apply rewrites to an Apy operator, and then the
following full application rule is used:

F = (Z).E
Apun(F, T,) — (RBIE]) [Xn / 2]

where RB is a function which renames the bound variables of E to avoid name con-

flicts. RB corresponds to the allocation of a frame in a stack-based implementation. The
notation [f; / Z_;,] stands for the substitution of X4 -.-X, for each occurrence of Zy e+ Zp.

Exactly how does an Apply become an Ap operator? Since the function being applied

is not necessarily known at compile time, we need to compile applications for all contin-

gencies. Notice that the Id expression (£ A[i] s) is a legal expression even if the arity of £ is

greater than 2 or less than 2. We compile each application as a function of one argument.

Thus, the Id expression (f A[i] s) is translated into the following Kid expression:

{ t1 = Select 4 i;
$2 = Apply(f,t1);
t3 = Apply(t2,s8);

In %3 }

The apply operator can now be described as follows:

F —_ An(Zn) . E [
| = Apply(F, X1) |
Fo = Apply(Fi, 1) |
Fnoi = Apply(Fn_2,%an-1)

Apply(Fa_1, ) — Apn(F,Xn)

The above rule says that in order to fire a function £ of arity n, we need to collect n
arguments. Thus, for example, the expression Apply(f,x) will not get subjected to any

rewriting. An alternative and easier way of expressing the above rule is:
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F=Ay(Za).E
Apply(F,X}) — Applyi(F,n,X)
B = Applyi(F,x_l,I_,:_) i<(n-1)

Apply(F',Xj14) — Applyit1(F,n,Xi 1)
F' = 4pplyi(F,n,X;) i=(n-1)
Apply(F',X541) —— Apn(F,Xa)

where each operator Apply; remembers the ¢ arguments collected so far.

Loops

The left-hand-side variable of a binding in a loop gets a new value in each iteration of the
loop. When a variable in a loop binding is preceded by the keyword next, (for example,
next x = ...), x and next x are two distinct variables which can exist simultaneously.
One should not think of variable x as being updated in a loop as one does in an imperative
language. A natural way of expressing this flow of information is by translating the loop

body into a function. For example, the body of the following loop in the foldl definition:
{ for i<- 1 to u do
next s = £ A[i] s;
finally s }}

is translated into the following function:

A(i,s).{ t1 = Select & i;
+2 = Apply(f,ti);
next-s = Apply($2,s);
In next-s};

)

which returns the nextified variable. The FLoop operator invokes this function under
the appropriate conditions. The paramenters of the FLoop operator correspond to the
upper bound, the step (1 in our example), the loop-body function, the nextified variables
(including the index variable), and finally, the predicate. The rule for the FLoop operator

is as follows:
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FLoopn(U,D,B,Xn, True) — {5 ton = Apnn_1{B,Xy);

t1 = +(X1,D);
t, = FLoopn(U,D,B,t_;,tp)
In t.}

FLoopn(U, D,B,X_,:,False) — I_;,

If the index variable is within the loop bounds, that is, the value of the last argument of
FLoop is True, then function b is invoked, index X, is incremented and checked to see if Xy
is still less than the upper bound, U, and finally, 2 new instance of the loop is generated. In
case the index variable is outside the loop bounds, that is, the value of the last argument
of FLoop is False, the values of the nextified variables are returned.

The reason for introducing special combinators for for-loops and while-loops is to

facilitate loop optimizations that a compiler may perform.

Lists

For the sake of completeness, we also give the rules for the algebraic type list.

Z = Cons(X,Y)
Cons_1(Z) — X
Z = Cons(X,Y)
Cons 2(Z}) — Y

List_casey(Nil,E{,E2}) — E;
Z = Cons(X,Y)
List_casey(Z,E{,E3) — Ej

2.2 Optimizations on Kid

There are many situations where a Kid rewrite rule can be applied at compile time. Take

for example, the following Kid program:

Det £ x = { i = +(2,3); P-store(x,i,v); ... a = P-select(x,6); ... }
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The compiler could clearly replace the expression +(2,3) by 5 and substitute 5 for i
everywhere. These optimizations are often referred to as constant folding and constant
propagation [1]. Moreover, knowing that the 5* element of array x is v, the compiler
can rewrite the P_select(x,i) to v. This optimization is called fetch-elimination, and
is performed in hardware by many supercomputers! The Id compiler also does many
optimizations which are not directly derived from the rewrite rules used for giving the
operational semantics of Id. A partial list of these other optimizations is:

¢ inline substitution;

¢ partial evaluation;

o algebraic rules;

e eliminating circulating variables and constants;

e loop peeling and unrolling;

¢ common subexpression elimination;

o lift free expressions (loop invariants);

¢ loop variable induction analysis;

o dead code elimination.

A very interesting fact is that all the above optimizations, except the last two, can
be expressed as Kid rewrite rules. For example, common subezpression elimination (cse)
and the algebraic rules may be specified in terms of the following rules:

Z; = +(X, Y)
Zo = +(X,Y) — 22 = 23
Algebraic rules: *(X,0) — 0
Equal(X,X) — True

X = +(Y,3)
< (¥,X) — True

Cse rule;
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Reduction Strategy for Optimizations

The example at the beginning of this section shows that an optimization can trigger
another one. Furthermore, optimizations can be applied in many different orders. Thus,
interesting questions arise regarding the uniqueness of the final program, and regarding
the termination of the optimization process. Since we have expressed the optimizations
as rewrite rules, the problem of termination and the effect of reduction strategies can be
- stated in terms of strongly normalizing rules and confluence, respectively [10].

Most optimization rules are indeed confluent. A few that do destroy confluence do
so only in programs with deadlocks. The confluence of optimization rules gives us some
flexibility in choosing the order in which rules are to be applied. A powerful and efficient
strategy is to apply the first five rules along with all the normal Kid rules in an outside-in
manner. After that, common subexpression elimination and the lifting of free expressions
can be done in an inside-out manner. Unfortunately, inside-out rules can trigger more
outside-in optimizations, and thus, the whole process needs to be repeated until the
expression stops changing.

The only optimization rules that can cause non-termination are the partial evaluation
and the inline substitution rules. This problem of termination has been studied extensively
in the partial evaluation literature which an interested reader may refer [19]. The deadcode
elimination can be done at any stage but must be done once more in the end to pick up
maximum dead code. Though we are not sure, we think that the loop variable induction
analysis should be done as late as possible, so that maximum information about array

subscripts and loop index variables can be used.

The Correctness of Optimizations

Optimizations extend the operational semantics of Kid, and therefore, it is interesting
to study if they preserve the meaning of a term. Questions about meanings are usually

addressed in denotational semantics. However, we think that a great deal of knowledge
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can be drawn from just the syntactic structure of terms, and thus, we prefer to formulate
the correctness problem from a more syntactic or operational point of view. We define
several different notions of equality for Kid terms. The fitst and the least troublesome
equality is based on the notion of convertibility, which is induced by replacing the arrow
in the rules by the equality sign. For example, constant folding and inline substitution
can easily be shown to preserve convertibility and thus, correctness.

Suppose we consider a slightly more complicated optimization, like the common subex-
pression elimination, it is easy to see that convertibility will not suffice for correctness.

Consider the following example:

M={x= +{a,b); cse M1 ={ x = +(a,b);
y = +(a,b); ~--—-> ¥y = x;

. z = +(x,y); z = +(x,y);
In z } In z}

M is not convertible to M1. It is, however, easy to see that the unravelled version of M,
+(+(a,b),+(a,b)), is equal to the unravelled version of Mi. In fact, M and M1 are said
to be tree equivalent. It is possible to show that the tree equivalence preserves semantics,
that is, no context will be able to distinguish between two terms that are tree equivalent.
Thus, we can conclude that the cse rule is correct.

Convertibility and tree equivalence are still very syntactic notions to show the equiv-

alence of the following terms related by an algebraic rule:

M={y=#(x,0); -—> Mi =0
In y }

A still harder question arises when we consider “infinite terms” (such as the infinite list

of 1’s shown below), that can be found in any non-strict functional language.

M={x=1:x; M1 = {Def £ x=x:(f x);
In x} In £ 1}

At this point we need to ask exactly what external behavior of a program we want to
preserve, In defining the concept of observable behavior or answer, we first introduce the
notion of a printable value associated with a term. Intuitively, the printable value of a
term corresponds to the stable or fixed part of the term, that is, the part which will not

be subjected to further reduction. For example, we could say that the printable value of
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{ x = +(2,3); In x}is Q, which means no useful information is printable. Only after
we reduce +(2,3) to 5, we can say that the printable value of the term is 5. This concept
of printable value is related to the notion of instant semantics introduced by Welch [18].
The answer is then defined in terms of the maximum information that can be extracted
by reducing that term. Levy [12] and Ariola [2] have shown that by picking a suitable def-
inition of print, the domain of answers becomes a term model for the language. Suppose
A(M) denotes the answer associated with M. Then we will say that a rule r is correct if

it preserves the answer, that is, for all programs M, we have:
M 5 M1 = A(M) = A(M1)

This notion is strong enough to show the correctness of all optimizations.

3 P-TAC: Parallel Three Address Code

If we were only interested in giving operational semantics to Kid then we could stop at
the Kid level; however, we want to generate code for a specific machine. Rather than
trying to generate code for a specific machine directly, we introduce a level of detail in the
translation process that will be relevant to (almost) all machines. We call this next lower
level language P-TAC. In P-TAC we have only one data structure called an I-structure

array. I-structures have the following rules associated with them:

Allocate(n) —— L

where L is a brand new label. Labels are treated like other scalar values such as integers
and booleans, and can be freely substituted and stored. The rest of the rules for I-
structures are very similar to Kid rules and are as follows:

P_store(L,i,V)
Pselect(L,i) — V
P_store(L,i,V)
P_store(L,i,V') — T,
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where V is either an Integer or a Boolean or a Label or Error.

(nX=TSyg;-SIn 2} — T

{aTei Sti-San Zm}) —
All composite objects, that is, tuples, arrays, higher-dimension arrays, all algebraic types,
and closures are represented using I-structure arrays. There are usually several reasonable
ways to represent each data structure in terms of I-structures. For each type we give one
representation, though not necessarily the most efficient one. We have included a “type”
tag field for all composite objects, even though it is not needed by the P-TAC interpreter
since Id is a statically typed language. However, we might need type information for
other reasons, such as garbage collection, and for printing values in a partially executed

program.
The grammar of P-TAC is given in Figure 5. Notice that in P-TAC, case expressions
for all algebraic types are translated into a single untyped dispatch operator.

Dispatchym(i,Ey,--+,Eq,+-By) — Ej

Prior to translating Kid into P-TAC, all nested A-expressions are lifted to the top level by a

SE 1= Variable | Constant
PHR = Allocate

PF, = P_select

E n= SE| PF,(SE,-.-,SE)

| Dispatchy(SE, Ey,---,Ey)
| FLoop(SE, SE, SE, SE, SE)
| Block

Block = {[Statement;]}* In SE}
Statement = Binding | Command
Binding = Variable= E
Command := P_store (SE, SE, SE)

Store_error | T,

Figure 5: Grammar of P-TAC

process known as A-lifting [8]. A Kid program after )-lifting only contains closed A-expressions.
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The translator, given a Kid program, produces the corresponding P-TAC program and a set,“D",

of definitions, The set D is initialized with constants that are introduced by the translator.

3.1 Translation from Kid into P-TAC

In the following we will only discuss how arrays, lists and functions are represented in P-TAC;

the interested reader may refer [3] for more details.

Arrays

The representation of Array(1,u) is given in Figure 6. The constant definitions for Hoadersize,

Upper, Lower, ete. should be included in D.

u-1+2

Type Bounds

Figure 6: Representation of 1D-array

TE[Bounds(X)] = P_select(X,Bounds)
TE[I.array(X)] = {1 = P.gelect(X,Lower);
u = P_select(X,Upper);
5 = —(u,1);
size = +(s,3);
t = Allocate(size);

P_store(t,Type, “Array”);
P_store(t,Bounds, X);

Int}

18



TE[P.select(X1,Xa)] = { tp =
1
t1
ty =
t =

In t}

TEI[P_StOIG(x;[,Ig,I;g)B = {tp =

1 =
t
t: =
k =

Int

P_select(X;,Bounds);
P_select(ty, Lower);
—(12, 1);
+(t1,Hoadersize);
P_select(Xy, t2)

P_select(Xs,Bounds);
P_select(ty, Lower);
- (x2: 1);
+(t1,Headersize);
P_store(Xy, t2,X3)

}

A representation that may be more efficient for computing slot addresses would store I and u

values redundantly in two additional fields in the array.

Lists

The representation of the list data type

is shown in Figure 7. The constant definitions for

Cons_gize, Hd, T1, efc. should be included in D.

[} 1 2 3
Cons:
Type Tag Ed 1
Nil: ° 1
Type Tag l

Figure 7: Representation of lists
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TE{Cons_1(X)] = P.select(X,Hd)

TE[Cons 2(X)] = P_select(X,T1)

TE[Cons(X1,X2)] = { t = Allocate(Cons_size);
P_store(t,Type, “List”);
P_store(t, Tag, Cons_Tag);
P_store(t,Hd,X;);
P_store(t,T1,X2);

Int}
TE[List_casen(X,Es,E2)] = {m t = P_select(X,Tag);
tn = Dispatchyn(t,Eq,Ey);
In t:.}

Function Calls and Closures

At the machine level, the apply operator checks if the arity of the function has been satisfied.
If the arity has not been satisfied, it stores the argument in a data structure called a closure.
There is a wide range of representations of closures and associated function calling conventions.
In fact, it is possible for a function to be compiled using several different calling conventions;
the compiler can pick the most appropriate one for a given application. A representation for the
closure data type is shown in Figure 8. The constant definitions for Closure _size, efc. should

be included in D.

Type Function Fast call Arity Chain
name nAMG /

Figure 8: Representation of a closure

We begin by describing a procedure that builds a new closure given an old closure and an argu-

ment.
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Make closure = A (cl,X).{ £ = P_select{cl,Funcname);

fsc = P._select(cl,Fastcallname);
n = P_select(cl,Arity);
ch = P_select(cl,Chain);

c¢l’ = Allocate(Closure.size);
P_store(cl’, Type, “Closure”);
P_store(cl’,Functionname, f);
P_store(cl',Fastcallname,fs.);
P_store(cl,Arity,n'});
P_store(cl’, Chain, ch');
n' = —(n, 1);
¢h! = Apa(Arg_chain,X, ch);
Incl'}
where the function to build argument chains is defined as follows:
Arg chain = A (X,Xs). {xs’' = Allocate(2);
P_store(xs’, Arg, X);
P_store(xs’,Rest, Xs);

In xs'}
The argument chain can be destructured using the following function:

Argsn = A (X). {u t3 = P_select(X,Chain);

an = P_select(ty,Arg);

t2 = P.select(ty,Rest);

an_1 = P_select(ty,Arg);

t3 = P._select(ty,Rest);

a = P._select(t,_1,4Arg);

In a._;} .

These three definitions must be included in D.
Now we can give the translation for the apply operator. As stated earlier, the apply basically

checks to see if the arity is satisfied and either makes a new closure or calls Ap.
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TE[Apply(F,X)] = {=n = P_select(F,Arity);

firep = Equal?(m,1);
fire; = BooltoInt(firep);
ros = Dispatchpa(fire;,
{ fun = P_select(F,Functionname);
as = P_select(F,Chain);
as’ = Apy(Arg_chain,X,as);
res’ = Ap(fun,as');
In res'},

Apz(Make_closure,F,X))
Inres}

Notice that the building of closures corresponds to the Apply; combinators. The first closure
for a function, which corresponds to the Apply; combinator, is processed during the translation

of A-expressions, as follows:

TE[Ma (Xa) -E] = {cl = Allocate(Closure_size);
P_store(cl, Type, “Closure”);
P_store(cl, Functioname, ‘T¢);
P_store(cl,Fastcallname,‘Ts.);
P_store(cl,Arity,n);
P_store(cl,Chain, “End”);
In cl}
The following two function definitions are included in D,
Tc=A1(Xs) . { Xa = Apyin{Azgsy,Xs);
t = TE[E];
Int}

Tsc = Ap (Xn) . TE[E]
‘T. indicates the name T. and not the value associated with 7,. Note that TE[E] can be com-

puted once and shared between the curried and the fastcall version of the function.

3.2 Signals generation

In P-TAC we can express some more low-level machine concerns, such as the generation of a
signal to indicate that a function call has terminated. Signals are needed, for example, for

deallocating frame storage. Signals are also needed to express sequencing in the presence of
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M-structures in Id. Before introducing signals, the P-TAC program is canonicalized, that is, all
blocks are flattened and variables and values are substituted. Furthermore, dead code should
be eliminated. We add signals only to non-strict combinators, and to combinators that pro-
duce side-effects, such as P_store. The output of a strict operator can be interpreted as a
signal that the instruction has indeed fired. We give the signal transformation using the trans-

lation functions S, SE and SC. The transformation is also applied to each constant definition in D.

si[/\n,m (xn)-{m T = Se; = ;\n,m+1 (xn) .
: ({a+1 ¥4 = BSey
Yn = Se, :
Yn+1 = Nsai Yo = 8en
: Yni1, Sg = SE[Nses}
Yotm = Nsey :
C1 Yoim So = SEEHS%]]
: Smt1 = SC[e4];
Cx :
In Ry} Smik = scce]; B
s’ = Syncpixyi (Deadvar, Sp )
In Ry, S'})

Where Se; stands for an expression involving strict operators, and Nse; stands for either an
applicative or a loop expression. Deadvar are the parameters that are not being used in the
body of the function.

SE[WLoopa (P, B, Yo, Y)] = WLoop!,(P, B, Ya, Sp, Y)

where S, is the signal associated with the invocation of the loop predicate.

SE[Apan(F;Xa)] = Apami1(F,Xn)
SC[P_store(X,I,Z)] = Ack_store(X, I, Z)

where Ack_store is a new P-TAC function symbol of arity 3, which generates a Signal when
the store actually takes place, that is, when X, I and Z all become values.

The new rewrite rules are;
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WLoopy(P,B,Xn,S,True} — {n41 tn,Sp = Apynt1(B,Xpn);

tp,5p = Jn-Pz.a,2(Pa15n);

s’ = Sn°3(57sbasp);
3,51 = WLoop}(P,B, tn, ', t5)
In t, S1}

— ~t
WLoopy(P,B, Xy, S,False) — X, S

Ack store(L,i,V) — {t = Signal;
P_store(L,i,V);
In t}

Synea(Va) — ()

Sync produces a void value when all the signals are received.

4 Conclusions

This paper has informally described the compilation process of Id. Following these lines a
project “Id-in-Id compiler” led by Shail Aditya and Yuli Zhou is under progress. Besides easing
the portability of Id, the Id compiler in Id will allow us to study the implicit parallelism in the
Id compiler.

We have not discussed the operational semantics of M-structures, even though we think
it is quite straightforward. However, the definition of a ferm model in the presence of non-
determinism is a difficult issue, and has not been investigated yet.

We also plan to formalize the compilation process beyond P-TAC, for both parallel and
sequential machines. For example, the notion of a frame to hold the temporary variables for a
function application or loop iteration, can be abstracted in a useful way for most machines. We
think this will facilitate the study of issues related to reuse of frames, storing of loop constants,
and pre-allocation of multiple frames for parallel execution. Similarly, the analysis required for

detecting sequential threads can also be performed in a machine independent manner,
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