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Abstract

Two parallel implementations of a state-of-the-art ocean
model are described and analyzed: one is written in the
implicitly parallel language Id for the Monsoon multi-
threaded dataflow architecture, and the other in data par-
allel CM Fortran for the CM-5. The multithreaded pro-
gramming model is inherently more expressive than the
data parallel model. One goal of this study is to un-
derstand what, if any, are the performance penalties of
multithreaded execution when implementing a program
that is well suited for data parallel execution. To avoid
technology and machine configuration issues, the two im-
plementations are compared in terms of overhead cycles
per required floating point operation. When simulating
flows in complex geometries typical of ocean basins, the
data parallel model only remains efficient if redundant
computations are performed over land. The generality of
the Id programming model allows one to easily and trans-
parently implement a parallel code that computes only in
the ocean. When simulating ocean basins with complex
and irregular geometry the normalised performance on
Monsoon is comparable with that of the CM-5. For more
regular geometries, that map well to the computational
domain, the data-parallel approach proves to be a better
match. We conclude by examining the extent to which
clusters of mainstream symmetric multiprocessor (SMP)
systems offer a scientific computing environment which
can capitalize on and combine the strengths of the two
paradigms.

1 Introduction

In this paper we present a case study of a state-of-the-
art ocean circulation model [32, 31] implemented in Id
(a truly implicitly parallel language) [34] on Monsoon (a
multithreaded dataflow machine) [38] and then critically
compare it with the same algorithm developed in a data
parallel Fortran dialect on the CM-5 (a massively paral-
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lel, distributed memory, Von-Neumann architecture) [25].
The ocean model contains abundant data parallelism and
attains good performance on the CM-5. The process of
implementing the multithreaded Id version gives us insight
into the techniques necessary to attain good performance,
on real scientific applications, using implicitly parallel lan-
guages, multithreaded architectures and data-driven com-
putation.

Multithreading is the simultaneous parallel execution of
multiple threads of computation: threads can spawn new
threads and may synchronize with other threads. In the
arbitrarily-general form of multithreading presented by Id
on Monsoon the sequence of computation is entirely data-
driven and controlled solely by data dependencies in the
underlying algorithm. This allows all forms of parallelism
in an algorithm to be exploited.

Despite the elegance of this approach, the arbitrarily-
general multithreading programming model has not gained
widespread usage in parallel scientific codes. Instead the
single program multiple data (SPMD) approach has been
widely adopted for production parallel codes. Here the in-
herent data parallelism common to many scientific codes
is exploited and a rigid regime of synchronous computa-
tion followed by communication is followed. Although
an expressively restrictive framework which only exploits
certain forms of parallelism, this programming model is
generally acknowledged as being highly efficient for many
scientific codes in which the data structures are highly reg-
ular.

The data parallel model implementation examined here
uses CM Fortran, which exploits data parallelism at the
statement level. Another common approach in scien-
tific computing uses shared-memory or message-passing
multi-processing to exploit data parallelism at the sub-
program level. In either case the computational model is
limited to, and can only really work efficiently for, prob-
lems that are predominantly data parallel and regular. In
contrast, the fully general multithreaded environment pre-
sented by Id on Monsoon can exploit all the forms of
parallelism, including data parallelism, that an algorithm
possesses, and so imposes less restrictions on expression.
However, a lack of mainstream software and hardware sup-
port and a conseqent lack of absolute performance have
precluded much serious attention being given to such gen-
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eral multithreading by the architects of present day parallel
scientific applications.

Even within the discipline of computer science, there
are relatively few studies of multithreaded implementa-
tions of large scientific applications carried out on mul-
tithreaded architectures. Closely related to this study,
Hicks, et.al. [22] considered performance of Id on Mon-
soon for several applications and compared it to sequential
performance in C or Fortran 77 on a conventional RISC
architecture. Yeung [48] uses the preconditioned conju-
gate gradient algorithm to study the effects of architectural
support for synchronization on the MIT Alewife archi-
tecture. Hiromoto, et.al. [27] have performed detailed
performance studies of various scientific applications for
the Denelcor HEP. Hammes, et.al. [21] have performed a
comparison of Id and Haskell for a Monte Carlo photon
transport code. Sur and Bohm [46] study different Id im-
plementations of FFT in the context of solving partial dif-
ferential equations and implementations of the Dongarra-
Sorensen eigensolver [45]. Arvind and Ekanadham [8]
have compared the implementation of the hydrodynam-
ics modeling application SIMPLE in Id and in Fortran;
Arvind, et.al [7] have also explored the benefits of fine-
grained parallelism in scientific applications. In one of the
original papers about programming for dataflow machines,
Dennis, et.al. [16] describe the process of implementing
a weather modeling code for a theoretical static dataflow
architecture as well as the sources of parallelism within
the code.

Other related work includes high-performance imple-
mentations of functional languages. Most notably, SISAL
has shown very good performance on a number of “con-
ventional” parallel architectures [12] as well as multi-
threaded architectures [20] [44] [36] and has been used
to write a number of scientific applications [12]. Miranda
has been used to code an oil reservoir simulation [37].
Haskell has been used to code a parallel finite-element
problem [19].

The authors believe this study is the first detailed
system-level comparison of a large, real scientific appli-
cation implemented in a data parallel environment and a
multithreaded environment. Comparison is possible, but
definitive conclusions are difficult to draw because of the
differences in languages, compilers, architectures, tech-
nology, and investment levels in manpower. Nonetheless,
in accounting for some of these differences, we conclude
that overheads for the two implementations come from
very different sources and that, surprisingly, they balance
out for realistic problems.

The paper is organized as follows: Section 2 begins
with a brief algorithmic description of the model and an
analysis of its computational requirements (readers pri-
marily interested in the computer science aspects of this
study may choose to skip Section 2 without much loss of

Water Zone Land Zone

Rigid Lid

Bottom

Layer 1 Layer 2

Layer 3 Layer 4

Figure 1: Ocean states are represented as three dimen-
sional arrays. Some elements of the arrays represent land
zones and some represent water zones.

continuity). Section 3 and Section 4 describe the program-
ming, optimization, and best case performance of the data
parallel and multithreaded versions of the ocean model,
respectively. Section 5 compares the performance of the
two versions when they are adjusted for overheads seen in
real problem definitions. Finally in Section 6 presents the
relevance of this research in the context of current trends
in the design of high-performance parallel systems.

2 The ocean model

The model used in this study is the MIT ocean circula-
tion model, referred to in this paper as the “General Circu-
lation Model” or GCM. It is being actively used in oceano-
graphic research, and daily production runs are performed
on a CM-5 and, more recently, on high-end symmetric
multi-processor systems.

The physical basis of the model and its continuous and
discrete forms are described briefly in the Appendix, and
more detailed accounts can be found in [32], [31] and
[23]. The model is based on the incompressible Navier-
Stokes equations and can be used to study the ocean from
convective ( � 100m in the horizontal) up to global scales.
The numerical procedure involves alternating prognostic
and diagnostic steps: prognostic to step forward in time
the ocean currents and thermodynamic variables, diag-
nostic to find the pressure field. The “pressure correction”
method is used to ensure that the evolving velocity field re-
mains non-divergent. A Poisson equation with Neumann
boundary conditions is solved to diagnose for the pressure
field. This latter step is a computationally challenging one
because it involves communication of information across
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Figure 2: A significant percentage of real ocean geome-
tries may be land. In this 171 � 93 � 4 Pacific basin
geometry, 40.0% of the zones represent land. Land zone
states remain constant over time.

the whole model grid to the boundary, in a geometry as
complicated as that of an ocean basin.

2.1 Ocean geometry and state

The ocean is confined to a basin that can have a highly
irregular geometry. A geometry, which defines the shape
of the ocean basin, is represented as a three-dimensional
array of finite volumes that we call zones. The faces of
the zones must be chosen to coincide with coordinate sur-
faces, except when they abut a solid boundary (the coast
or bottom). At these solid boundaries the zones may be
“sculptured” to fit them to irregularities in the topogra-
phy [31, 1]. Each element of the geometry array specifies
whether the corresponding zone is land or water. We will
assume that the ocean has a rigid lid at the upper surface.
The rigid lid is a device to filter from the model rapidly
propagating surface gravity waves that would severely re-
strict the possible length of the model time-step. For some
integrations a free surface is admitted, but handled implic-
itly as discussed in [31]. The geometry array is constructed
from the bathymetry – a two-dimensional array of depths
for each column of the ocean at a chosen horizontal res-
olution. A highly idealized geometry for a 4 � 4 ocean
with 4 layers of water is shown in Figure 1. The white
zones are water; the gray zones land. A more realistic
geometry is shown in Figure 2, representing the Pacific
basin at the resolution of 1 degree of latitude by 1 degree
of longitude; there are 171 zones along each line of par-
allel, 93 zones along each line of longitude and 4 zones
in the vertical. In typical ocean modeling applications the

number of zones stacked on top of one another is between
1 and 100, generally fewer than the number employed in
the horizontal.

Each zone has six faces, and these faces categorized
according to orientation:

� longfaces: vertical faces running along longitudes

� parfaces: vertical faces running along parallels

� horfaces: horizontal faces

The faces of the zones remain fixed during the integration
over time; they are dependent only on the geometry of the
ocean basin and the resolution at which it is discretized.

The state of the ocean is described by the velocity
�������
	 � 	��� , the pressure � and the density � . The density

is a function of the (potential) temperature � , the salinity�
and pressure � . Zone quantities – � , � , � and

�
– are

defined at the center of the zone and are implemented as
zone arrays. Face quantities are defined on the faces of the
zones – velocity components

�� – in longface arrays (
�

),
parface arrays ( � ) and horface arrays (

�
). Zone and face

arrays are three-dimensional arrays, and typically there are
a dozen such arrays in use at any one time.

In certain applications of the model (see [32]) appropri-
ate periodicity conditions must be employed.

2.2 The numerical algorithm

The heart of the model is a main time-stepping loop that
is repeated many times. Depending upon the dynamical
process being studied each time step may represent several
hours of time or just a few seconds; a typical simulation
entails thousands or millions of time steps. The main loop
computes the changes in the values of

���� ����	 � 	��� , � ,
� and

�
by applying the laws of classical mechanics and

thermodynamics to the fluid contained within the zones.
Discrete forms of the continuous equations are deduced
by integrating them over the zones and using Gauss’s the-
orem. From � , � and

�
the density � is computed.

During each time step, it is also necessary to compute
the forces normal to the faces of the zones to yield, accord-
ing to Newton’s Laws, the acceleration of fluid parcels.
This is done by evaluating the pressure-gradient � , iner-
tial, Coriolis, and applied stresses and frictional forces, as
described in [32, 31].

A high-level description of GCM is shown in Figure 3.
Steps 1, 3, 4, 5 and 6 only require local communication
and nearest-neighbor communication to update ocean state
arrays, but Step 2 necessitates solving the following linear
system, a discrete form of the Poisson equation for the
pressure: �

����� 1 ��� � ��! 	 �� �  (1)

where
�

is a sparse " � " matrix.
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GCM ()�� 0 	 � 0 	 � 0 	 � 0 	 � 0 = compute initial ocean states()
for each time step �

Step 1:
��  
�

= estimate Gv(
�� � ,� � , � � )

Step 2: � ��� 1 = diagnose pressure(� � ,
�� � ,

��! 
�
)

Step 3:
�� ��� 1 = advance velocity(� � � 1, � � ,

��! 
�
)

Step 4: � ��� 1 = advance temperature( � � ,
�� ��� 1)

Step 5:
� ��� 1 = advance salinity(

� � ,
�� ��� 1)

Step 6: � ��� 1 = calculate density( � ��� 1,
� ��� 1)

return(
������ ��� � 	 � �	� �
� � 	 � ��� ��� � 	 � �	� �
� � 	 � �	� ��� � )

Figure 3: High-level specification of the GCM algorithm.

Our algorithm is designed to perform efficiently across
the scales of interest in the ocean, from non-hydrostatic
phenomena on the smallest scales, to the highly balanced
hydrostatic flows on large scales. The approach, which
involves separating the pressure field in to its hydrostatic,
surface and non-hydrostatic components, is set out in [32].
In the hydrostatic limit, Equation (1) is a two-dimensional
inversion for the surface pressure, with " � "�� � "� .
The pressure in the interior of the ocean is then obtained on
intergation vertically using the hydrostatic approximation.
But in non-hydrostatic applications of the model " �
"�� � "� � "�� is the total number of zones, � is a vector
of length " carrying the pressure of each zone, and � is the
source function. In typical ocean modeling applications,
" � and "  range from 100 to 1,000; and " � from 1 to
100. Thus,

�
is potentially huge, and special techniques

must be used to invert Equation (1) for � ��� 1. Because
non-hydrostatic simulations are the most demanding of
computation, that limit is the focus of attention here.

2.2.1 The elliptic problem

Solving Equation (1) efficiently requires an understanding
of the form taken by the matrix

�
; its structure is sketched

schematically in Figure 4. The column vector � in Equa-
tion (1) comprises the pressure in every zone in the ocean.
Its singly subscripted elements are � � , where first points in
each vertical column are enumerated first, then points in
the horizontal directions, as follows:

� ����� " � ����� 1
 � " � "  ����� 1



where
�

is an index increasing eastwards,
�

is an index
increasing southwards and � increases downwards. There
are " � "�� � "� � "�� elements in total.

The elements of
�

comprise the discrete representation
of the Laplacian operator � 2 (in the three space dimen-
sions), suitably modified to take account of boundary con-
ditions on the upper, lower and lateral boundaries; it is

zN
Nz Ny

Figure 4: Matrix
�

, of size " � " where " � " � �
"  � " � .

constant in time and depends only on the basin geometry.�
is symmetric and, although huge, has only 7 diagonals

representing the coupling in the 3 space dimensions. The
three central diagonals are flanked, on both sides, by di-
agonals displaced a distance "�� and "�� � "� from the
central diagonal, as indicated in Figure 4.

To write down the complete form of
�

consider the
representation of � 2 � for one particular zone (labelled � )
in terms of the six surrounding zones (labelled  , ! , " , " ,�

and # ). Suppose that the dimensions of the zones are$&%
by

$&'
by

$)(
, where

$&%
is its length in the eastward

direction,
$&'

is its length in the southward direction, and$)(
is the length in the vertical extent of the zone. Then� 2 � , to an accuracy which is second order in the

$&%
, can

be written as follows (keeping
$&% � $&'

and
$)(

constant
for simplicity).1

* 2 + , +.-�/0+21�3 2+24576�8:9
2

/ +2;</0+2=>/?+�@�/0+2AB3 4+24576�C29
2

, 2576�8D9
2 E F 1

2
+ - 3 5

1 / 2 G 9 + 4 / 1
2
+ 1IHJ KML NOQP�R�S�TUSMVXWZY\[]P�^:[`_	^�abR�c

/

G F + ; /?+ = /0+ @ /?+ A�HJ KML NOQPUR�S�db_eV�Y 8 _ec�WZP�^ + ^�PUcIS
f

(2)

where g � �Uh �h �  2 measures the aspect ratio of the zones.
The detail of the structure underlying

�
is now readily

understandable; the three leading diagonals are the coeffi-
cients multiplying � ’s in the same vertical column of ocean
(�ji , �.k and �.l ); the four diagonals in the wings are the
coefficients multiplying � ’s in zones surrounding the zone
of interest in the same horizontal plane (�nm , �jo , �.p and
�nq ).

1In applications, rts , r>u and rwv may vary and often do.
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Figure 5: Blocked representation of the Matrix
�

. � �
"�� � "� , and each block is of size "�� � "�� . The � and �
blocks are themselves tridiagonal and diagonal matrices,
respectively.

The inner three diagonals of
�

can thus be blocked
and arranged as shown in Figure 5 where each block �
is a tri-diagonal matrix representing the communication
between zones in the same vertical column of ocean; �
is a matrix of size "�� � "�� where there are "�� zones in
each column of ocean (there are "�� "� such blocks, one
for each column of ocean). The � ’s are " � � " � matrices
made up of g along the diagonal and zero elsewhere:

� �
����
�
g g

. . .
g

�����
	

For example, if the ocean were only four zones deep
at a particular horizontal position then by inspection of
Equation (2) the � would have the form:

� ,
��
�
3 5 1

2
/ 2 G 9 1

2 0 0
1
2

3 5 1 / 2 G 9 1
2 0

0 1
2

3 5 1 / 2 G 9 1
2

0 0 1
2

3 5 1
2
/ 2 G 9

���
	

Note that the elements in the top left and bottom right
of the matrix have been appropriately modified to take
account of the boundary conditions at the top and bottom
of the ocean. If at another horizontal position, the ocean
were only three zones deep, then � would have zeros in
the last row and column.

The entries of
�

must also be modified for zones that
are laterally adjacent to a rigid boundary, whether it be the
coast, a submerged island or an island that cuts the ocean’s

surface. For example, suppose the north face of zone C
is the coast. Then homogeneous Neumann conditions on
� must be imposed here (see [32, 31]) which, in discrete
form is: � m � � k$&% � 0

and the entries of � are appropriately modified; zeros will
appear at appropriate positions along the diagonal.

�
,

however, will remain symmetric.
One further property of

�
must be noted. g is typically

very much less than unity. This is because the ocean is a
thin film of fluid filling the basin that is several thousand
kilometers wide but only a few kilometers deep – the � 2 �
operator is dominated by 
 2
 � 2 . So

�
is dominated by the

elements of the blocks � . This is exploited by the solution
method.

The size of
�

, and the distance of the outer diagonals
from the main diagonal make direct methods of solving
the system difficult for large geometries because the in-
verse of

�
is dense. Operating with the inverse would

involve " 2 multiplications, and this is an unrealistic task
given that typically "�� 105. An iterative procedure is
adopted that exploits the sparseness of

�
and its diagonal

dominance. The procedure involves repeated multiplica-
tion of the iterative solution by

�
and by another sparse

matrix  , an approximate inverse of
�

;  is called the
preconditioner. The iterative algorithm employed to solve
the linear system is called the preconditioned conjugate
gradient algorithm and it is described in more detail in the
next section.

2.2.2 Preconditioned conjugate gradient algorithm

The preconditioned conjugate gradient (PCG) algorithm
has been extensively studied and is a popular algorithm for
implementation on highly parallel platforms because it is
easily parallelized. Barrett, et.al. [9] give a good overview
of various iterative methods for solving linear systems
including conjugate gradient; Golub and Van Loan [17]
is a good general reference for matrix computations, in-
cluding conjugate gradient and Shewchuk [42] gives a
clear and light introduction to conjugate gradient. Here, a
brief derivation of the preconditioned conjugate gradient
method is provided.

Pre-multiply Equation (1) by a (carefully chosen) pre-
conditioning matrix  , which is an approximate inverse
of
�

. Equation (1) can then be written (dropping super-
scripts) as ��� ���  � �  �
where

� � � �  � . If
�

is close to zero then the above
suggests the following iterative scheme, where

�
is the

iteration step:

� � � 1 � � � � �  �
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� � � ��� �
where � � � �� �
is called the search direction and

� � � � � �
� �

is the residual vector. The � � ’s and �X� ’s can be deduced
from the previous iteration using the relations:

� � � 1 � � � � � � �
� � � 1 � �� � � 1

The above iterative procedure, referred to as the
Richardson iteration, can be accelerated by choosing
search directions in a more optimal way. In GCM, the con-
jugate gradient method is adopted, which selects search
directions as linear combinations of the previous search
direction �X� and current gradient � � � 1 modified by the pre-
conditioner  :

� � � 1 � � � � 1 ����� �
where � � � 1 � �� � � 1

Conjugate gradient also selects a parameter � to minimize
the magnitude of the residual vector as measured by 	�
 � 	 ,
where (if there were no preconditioning) 	 � � � � � � ��������
is the error vector along the direction � � . Choosing the
optimal values of � and � results in the algorithm shown
in Figure 6.

We have designed a preconditioner  so that (i) it can
be efficiently stored, (ii) the number of operations one
has to perform when multiplying by it is as small as pos-
sible, (iii) it is a good approximation to

���
1, allowing

the iterative procedure converge more rapidly and (iv) it
requires as little communication as possible in the data
parallel implementation. After considerable experimenta-
tion, we have chosen a block-diagonal preconditioner (a
matrix  whose diagonal is made up of the inverse of the
tri-diagonal matrices � defined above):

 �

�������
�

� � 1
1 � 1 � � 1

1 � 2 � � 1
1 � 3

. . . � � 1m�� � m��

��������
	

Evaluation of the inner products to compute � and � in
the above involves forming the vector � , where

� � ��

PCG(
�

, � )� 0 ��� � �
� 0;� 0 � �� 0� 0 ��� 0

while � � � 
�� � ��� do� � � � � 
 �U� � � �"! � �M� 
 � �M� 
� � � 1 � � �I� � �M�� � � 1 � � � � � � �M�� � � 1 � �� � � 1� � � � � � 1 
 �U� � 1

 !#��M� � 1 � �U� � 1 �����M�� � � � 1
return(� ��� ��� � )

Figure 6: The preconditioned conjugate gradient algo-
rithm, which solves the linear system

�
� � � in an iter-

ative fashion. The variable � is the tolerance and � 0 is an
initial estimate of � �	� �
� � .

Multiplication by the preconditioner $ is therefore
"�� � "� independent ( "�� � "�� ) matrix multiplications,
each one corresponding to a column of water at

� 	 �
:

� �&% � � � 1� � % � � � %
Dispensing with the subscripts,

� � � � 1 �
If the ocean model has many levels, then � � 1 will also be
dense; consequently, storing and multiplying by � � 1 is
also demanding of resources. So, GCM exploits the fact
that � is tri-diagonal, and use LU decomposition to solve
the preconditioning equations for � in the form:

� � � �
We write � �('*) where ' is a lower-triangular matrix
and ) an upper triangular matrix. Solving for � is then
equivalent to solving the two sets of equations:

'+�-, � �).� � � ,
first for � , and then for � . This is straightforward because
of the triangular structure of ' and ) . (See [15] for more
details of the tri-diagonal LU decomposition.)

Ignoring the operations for LU decomposition, these
forward and backward substitution steps involve / � "0� 
operations as compared to / � " 2�  if we had used the in-
verse directly. However, because the geometry (and con-
sequently

�
) are fixed, LU decomposition of � , the block
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Floating Point Ops per Time Step per Zone
Step 1: estimate Gv 467
Step 2: diagnose pressure 32 � PCG iter. � 32
Step 3: advance velocity 20
Step 4: advance temperature 122
Step 5: advance salinity 118
Step 6: calculate density 6
Total 32 � PCG iter. � 765

Figure 7: Step 2 (diagnose pressure) of the time stepping
loop contains the preconditioned conjugate gradient algo-
rithm. In the situations we focus on in this study, this step
may iterate hundreds of times until convergence, making
it the dominant step in the algorithm.

diagonal elements of
�

, is performed only once. Notice
that the multiplication by the preconditioner is actually
implemented as "�� � "� independent tridiagonal linear
equation solvers of size "�� � "�� .

The resulting preconditioner was found to be a good
compromise: it significantly reduces the number of iter-
ations required to find a solution to Equation (1), it is an
acceptable approximation to the inverse of

�
, it is sparse

and its application requires no communication across the
network in the data parallel implementation of the algo-
rithm.

2.3 Computational characteristics

To effectively program GCM for a parallel platform, we
first determine how much computation must be performed
in each step of the algorithm and then consider what
sources of parallelism are available.

2.3.1 Distribution of overall computation time

Figure 7 shows how many floating point operations are
required in the GCM’s main time-stepping loop. There
are also initialization and termination phases that are not
considered in this table. These only occur once per model
run, and will not be significant factor in long simulations.

From Figure 7 we can see that a fully general imple-
mentation of GCM requires that the PCG algorithm be im-
plemented efficiently. For example if the number of PCG
iterations exceeds 300 per time step, the diagnose pressure
stage will dominate the total count of floating point oper-
ations, containing more than 90% of the operations. This
scenario is typical of extremely high-resolution ( � 100m
resolution laterally and vertically) non-hydrostatic ocean
simulations, the focus of this study.

Time is also spent in communications, non-floating
point computation, and idling due to load imbalances;

Floating Point Ops per PCG iteration per Zone
PCG component occurrences FLOPs Total
3D inner product 4 2 8
3D daxpy 3 2 6
7-point stencil 1 13 13
preconditioner 1 5 5
PCG Total 32

Figure 8: PCG is composed of four simple components.
Each component performs a set number of floating point
operations per zone, and some components occur more
than once in PCG.

however, for GCM, the style of computation in all of
the steps is similar enough that floating point operation
counts give a fair view of the distribution of time. To
optimize GCM, we must concentrate on the time spent
in non-essential floating point and other overhead opera-
tions, because given a particular model run, the number of
essential floating point operations is fixed.

Although ocean modeling applications do perform sub-
stantial amounts of I/O we do not analyze I/O costs here.
Rather, we focus on the comparison of two different com-
putational models. The difference in performance of I/O
susbsystems is not predominantly a function of the com-
putational model. Thus, to expose the impact of the com-
putational models, we have removed I/O costs from both
implementations.

2.3.2 Distribution of computation in PCG

The PCG algorithm itself can be further decomposed
into four simple components: 3D inner product, 3D daxpy,
a 7-point stencil and the preconditioner. These compo-
nents can be seen in the algorithmic outline in Figure 6;
the actual number of floating point operations contributed
by each component is shown in Figure 8.

Each of the components operates on three-dimensional
state arrays. The 7-point stencil component implements� � (the multiplication of the Laplacian operator) and the
preconditioner component performs the multiplication of
the preconditioner  , which is actually implemented as a
tridiagonal linear equation solvers (see Section 2.2.2).

To efficiently implement the PCG algorithm, each of
the components must also be implemented efficiently. In
Sections 3 and 4, the implementations of these components
in both the data parallel and multithreaded models are
described.

2.3.3 Available parallelism

Most of the potential parallelism in GCM comes from the
data parallelism in updating each of the large ocean state
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arrays. This parallelism is typically sufficient to keep a
large parallel computer busy and, because this computa-
tion is so regular, it lends itself well to vector computation.

There is also procedure-level parallelism available: for
example, much of Step 4 can be done in parallel with
Steps 1, 2 and 3, and within individual steps some blocks
can be executed in parallel. In Step 2, for instance, at
least three separate state arrays can be computed in par-
allel. This source of parallelism can be exploited by the
multithreaded implementation, but not by the data parallel
implementation.

Producer-consumer parallelism is also plentiful in
GCM, because the computation of new state arrays al-
ways depends upon old state arrays. Given appropriate
linguistic and architectural support, the computation of
parts of new state arrays can begin as soon as the parts of
the old state arrays they depend upon are computed.

3 Programming data parallel GCM

Given the algorithmic specification in Section 2, the high-
level view of both the data parallel and multithreaded im-
plementations are very similar. Both implementations de-
fine the same high-level procedures, and both have the
same structure in the time-stepping loop.

We begin with the data parallel version because we feel
that the reader is likely to be more familiar with it, and
many studies have been done on the performance of the
CM-5 and other data parallel platforms.

Although programming models are separate from the
hardware they are implemented on, there is a very close re-
lationship between what the programmer writes and what
is executed on the hardware. Without a clear understand-
ing of how the hardware works and how a high-level pro-
gramming language construct is mapped to the hardware,
the programmer cannot develop an efficient implementa-
tion of his application. Therefore, we first describe the
hardware at a level of detail that is relevant to the user or
the reader of this paper, then the programming and com-
piling of components of GCM, and finally evaluate the
overall performance of the data parallel implementation
of GCM.

3.1 The CM-5 hardware

Figure 9 shows a high-level view of the CM-5 architec-
ture. Scalar computation and control are performed on
the front-end workstation, which is typically a Sparc 10,
while parallel computation is performed on the nodes.
Each node consists of a 32 Mhz Sparc 2 processor with
four 16 MHz vector units (VU’s), with each VU capable of
32 Mflop/s 64-bit floating point peak performance. Mem-
ory is local to each node, and each VU has direct access to
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Figure 9: The CM-5 consists of nodes connected through a
point-to-point data network and a global control network.
A front end workstation is used for scalar computation,
while nodes are used for parallel computation. Each node
consists of a Sparc 2 microprocessor and four vector units,
which provide most of the computing power.

its own bank of memory. Every node is connected to two
separate networks: a data network and a control network,
which perform different kinds of data parallel communi-
cations. The data network is capable of a maximum of
20 MB per second per node, and is optimized to handle
short messages. The control network is used for global
synchronization, broadcast and reduction operations.

The CM-5 nodes are controlled by the Sparc 2’s, which
have poor floating point performance. The Sparc 2’s
should be considered sequencers or controllers for the
VU’s, which are fairly powerful – a VU can simultane-
ously generate memory addresses, load data and execute
pipelined floating point operations if properly scheduled
by the CM Fortran compiler. Figure 10 shows a sim-
plified version of VU assembly code emitted by the CM
Fortran compiler for the inner loop of the �

� ��� daxpy
computation. An estimated cycle count and exact floating
point operation count are annotated by the compiler. (Note
that Step S1 seems to belong outside of the loop; in this
case, the CM Fortran compiler may not have been able to
determine that it was a loop constant.)

The VU’s can be very powerful and efficient when ex-
ecuting highly regular vector code, as seen in step S3,
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Operation Cycles FP ops
S1: load scalar a into S 4 0
S2: load 8 dwords of X into V1 8 0
S3: load 8 dwords of Y into V2 8 16

and � 2 � � � � 1 � � 2
S4: store V2 into Z 8 0

and bump offset
and compare offset to end
and goto S1 if not done

Total 28 16

Figure 10: The sequence of steps executed by each vector
unit for the daxpy computation � � � � � � as generated
by the CM Fortran compiler. S is a scalar register and V1
and V2 are vector registers that hold eight doublewords.
The cycles counted are 16 MHz VU cycles and are only
approximate counts used by the compiler.

where the VU performs a vector load simultaneously with
a multiply-add operation. The Sparc 2 can concurrently
execute with the VU, as is shown in step S4, where the
loop compare-and-branch is handled by the Sparc 2, while
the vector register store is handled by the VU.

If we only consider this daxpy inner loop, a floating
point operation is executed every 28 ! 16 � 1 � 75 VU cy-
cles. This ratio is considerably smaller than on most con-
ventional RISC processors for this computation,especially
for large problem sizes where the RISC processors would
go out of cache. Because the VU is also a memory con-
troller, the VU does not stall for memory operations that
are vectorizable.

We should note, however, this inner loop of the daxpy
computation is about as efficient as the CM-5 gets. Fur-
thermore, there are other overheads even for this computa-
tion such as garbage padding, and the cycle count estimate
generated by the compiler is overly optimistic. As we will
see in Section 3.3, the actual speed of the daxpy code is
not as fast as this inner loop would indicate.

The CM Fortran compiler can also generate code to run
without VU’s (i.e. directly on the Sparc processors), but
the performance is exceptionally poor because the code
generated for execution without VU’s is naive, and the
Sparc processors themselves have very poor floating point
performance. Therefore, in this study we have chosen to
show performance numbers only for the CM-5 with VU’s.

All performance measurements on the CM-5 were taken
with the CM-5 hardware timers, which can measure at
microsecond resolution time spent by the front-end, the
vector units, control communications and data communi-
cations. Front end scalar computation can execute at the
same time as parallel computation on the nodes, so in the

best case, time spent in scalar computation is completely
masked by parallel computation, where we expect most of
the work to be done.

3.2 Data parallel programming in CM For-
tran

CM Fortran (CMF) [47] is a data parallel extension to For-
tran 77 for the CM-5. Many of the features of CM Fortran
are present in Fortran 90 and High Performance Fortran
(HPF) [28]. CM Fortran includes syntax for array oper-
ations such as elementwise operations, permutations, and
extraction of array subsections. The CM Fortran compiler
is back compatible to Fortran 77, but will not automati-
cally parallelize Fortran 77 code: the programmer must
explicitly specify parallel array operations that the com-
piler distributes among the nodes.

Execution of a CM Fortran program on the CM-5 com-
prises alternating computation and communication phases
with each phase separated by a global synchronization
barrier. During the computation phases, the front end is
reponsible for scalar computation such as the addition of
two scalar values, as well as the overall control of the pro-
gram, such as looping, procedure calls, and conditionals.
The nodes are responsible for parallel computation, and
all nodes perform identical operations on different data.
Although the nodes may be closely synchronized, each
node computes results and modifies data independently,
and consequently modified data values are exclusive to
individual nodes. At the end of a computation phase,
communication between nodes and between the front-end
and the nodes is orchestrated by the front-end.

Data parallel communication occurs primarily in two
highly stylized manners:

� Control communications, which include barriers,
reductions and broadcasts. These operations are
mapped to the control network on the CM-5.

� Data communications, which cause the rearrange-
ment of elements of an array, are mapped to the data
network. They include nearest neighbor communi-
cations which are used in the GCM code, and more
general permutations of data that are significantly
more expensive.

In the next sections, we describe how the data parallel
version of GCM is written, and some of the decisions we
had to make to optimize its performance.

3.2.1 Array operations and layout directives

CM Fortran allows the expression of element-wise array
operations to be specified very concisely. For instance,
a three-dimensional daxpy computation �

� � � can be
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Figure 11: Array distribution on distributed-memory par-
allel computer. The water zones are in white, and land
zones are in gray; distribution of water on nodes differs
widely.

expressed as follows:

Z = a*X+Y

where X, Y and Z are declared statically as array variables,
and a is a scalar variable.

Parallelism for the above expression is exploited by
different nodes performing operations on different parts
of the X, Y, and Z arrays. How the work is divided up is
determined by the layout of the arrays across the nodes –
each node only works on portions of the arrays that are in
its local memory.

Array extents and layouts must be explicitly declared at
compile-time. For example, a state array for GCM of size
171 � 93 � 5 may be declared as follows:

real X(5,171,93)
cmf$layout X(:serial,:NEWS,:NEWS)

Given this declaration, we have decided to map the up-
down ( � ) dimension to the leftmost index, the east-west
(
�
) dimension to the second index, and the north-south (

�
)

dimension to the rightmost index.
The :serial layout declaration for the � axis places

elements within the same column (i.e. with the same
�

and
�

coordinates) on the same processor. The :NEWS
declaration spreads the elements along that axis across the
machine. The resulting array is laid out along the nodes as
shown schematically in Figure 11. All of the ocean state
arrays in the GCM code have the same extents and layouts
as described above.

For given array extents, array layout and machine size,
the CM Fortran compiler cannot always distribute the array
across the machine evenly, for the simple reason that array
extents do not always divide evenly across the machine.

Furthermore, the unit of division is not nodes, but VU’s,
so for a 32 node CM-5, the two :NEWS dimensions of the
array must be divided across 128 VU’s. The array X as de-
clared above is therefore padded out to size (5,172,96)
to fit evenly on the CM-5 – the additional padding elements
are “garbage” elements that are added to the sides of the
arrays.2 These garbage elements are ignored by the VU
hardware but add overhead in the sense that a problem of
size 171 � 93 � 5 requires exactly the same amount of
time to execute as a problem of size 172 � 96 � 5.

Because the array layout declarations affect padding,
we must choose the layouts carefully not just to mini-
mize inter-processor communications, which is the pri-
mary concern in selecting a layout, but also to make sure
that there no more padding than is necessary. For exam-
ple, if we decide to make only one of the axes :NEWS,
then more garbage padding is necessary to make the array
distribution even over the machine. Because there are 128
VU’s, the :NEWS axis must be padded out to a multiple
of 128.

If we have the option of choosing our problem sizes, it
is usually easy to choose a problem size which does not
require too much padding, if any. In the case of GCM,
the problem size is often determined by external factors
(such as the data collection intervals of satellites), so a
seemingly odd problem size like 171 � 93 is actually used
despite the additional, though generally small, overhead it
may incur.

3.2.2 Array reduction

The vector inner product of two arrays
� 
 � can be ex-

pressed as follows:

b = sum(X*Y)

where sum is a CM Fortran function that sums the ele-
ments of the array passed by its argument. The control
network is used in operations that require reduction of
values across the whole machine. The sum function is
implemented by sequentially summing elements local to
each processor and then globally summing the results of
each processor using the control network.

The CM Fortran compiler tends to do less analysis be-
yond a single array operation than other Fortran com-
pilers, which try to group array operations and execute
them together to reduce memory accesses. This sort of
optimization is especially crucial for cache-based RISC
machines. Instead, the CM Fortran handles each array

2The array is actually padded out to 192 � 96 � 5 unless the compiler
flag -nopadding is used – the larger amount of padding is a historical
artifact due to the desire to make iterations over array dimensions even
multiples of the VU vector length of 8. The flag -nopadding refers to
vector padding, not garbage padding as described above.
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operation individually, using temporaries rather than at-
tempting to gain performance through loop fusion and
chaining vector registers. On the one hand, this simplifies
the job of programming because we can estimate the speed
of each individual line of code and determine the overall
performance of a procedure by simply summing the times
required by each line of code. On the other hand, even
for an operation as simple as this inner product, the CM-5
performs the operation in two steps: by first multiplying
X and Y and storing the result into a temporary array and
then calling the sum library function with the temporary
array as an argument. The time breakout for the reduction
communication shown later therefore includes time spent
summing the local parts of the array.

The scalar value b that is calculated by the reduction
network is sent to the front end processor, which uses it
for scalar computations. If a scalar value is needed for
a parallel computation by the nodes, the front end must
broadcast it to them using the control network. In general,
the movement of scalar values between the front end and
nodes are not expensive because the control network has
fairly low latency.

3.2.3 Shifting array elements

Some computations in GCM require each element of an
array to be calculated using values from neighboring el-
ements of other arrays. In CM Fortran, this operation is
implemented by shifting entire arrays by one element and
then performing element-wise operations on the shifted
arrays.

Shifting an array
�

to the north one direction can be
expressed as follows:

Y = CSHIFT(X, +1, 3)

where +1 indicates shifting in the positive direction, and
3 indicates shifting of the third dimension of the array X.
(Array dimensions are named 1

	
2
	
3 respectively). Each

value at location
� � 	`� 	 � � 1


in array X is now residing

at location
� � 	 � 	 �  in array Y. The values residing at the

border wrap around to the other side in the obvious man-
ner. The wrap-around behavior is correct for representing
circular geometries such as the globe, but in cases where
the geometry is not circular, a “ghost zone” of land is
added around the entire array on each side. These ghost
zones are part of the application code and may cause addi-
tional garbage padding to be introduced by the compiler,
as discussed earlier.

The core of the 7-point stencil used for the matrix-vector
multiplication

� � can therefore be expressed as follows:

Ab =
& b * AC
& + CSHIFT(b,+1,1) * AL
& + CSHIFT(b,-1,1) * AU
& + CSHIFT(b,+1,2) * AE
& + CSHIFT(b,-1,2) * AW
& + CSHIFT(b,+1,3) * AN
& + CSHIFT(b,-1,3) * AS

The “vector” b is actually a three-dimensional array,
and

�
is represented only by its diagonals in the three-

dimensional arraysAC,AL,AU, etc. Although this is a very
non-intuitive way of performing matrix-vector multiplica-
tion, this stencil actually implements the multiplication
using a data representation that fits the model, and using
operations that map well to the CM-5. (The “&” character
is used to continue the statement to the next textual line in
the program.)

Note that AL, AE and AN represent the symmetric diag-
onals of AU, AW, and AS in the

�
matrix and are therefore

identical arrays, shifted by one element. In the Id version,
we use one array to represent both diagonals because we
assume a shared memory model where accessing an el-
ement and its neighbor cost the same amount. For CM
Fortran, if the machine configuration has enough mem-
ory, we keep separate versions of the diagonals to avoid
additional CSHIFTs, because CSHIFTs can cause a large
amount of additional communication.

Although the stencil computation does not require cre-
ation of full temporaries to hold shifted arrays, the CM
Fortran compiler does not do analysis to determine that
most of the elements required by a processor are already
local to the machine, and accessible with some address
calculation – rather, temporary shifted arrays are usually
created because the vector units pay little penalty for the
memory accesses.

3.2.4 Computational masks

Some calculations require different behavior at zones that
have a land boundary than at zones that are completely
surrounded by water. Whenever possible, we handle these
cases by setting land or border zones to special “benign”
values that make the array computation uniform for land
zones and water zones. For some computations, this is not
possible, and we must handle the borders differently and
explicitly as shown by the following example.

The
�

matrix (consisting of the arrays AC, AN, etc.)
used in the stencil computation is calculated once at the
beginning of the program from data on the size of each
zone and a few other physical constants. Zones for the
different components of the

�
matrix that are on the border

of water and land must be calculated in a slightly different
manner than water zones that are completely surrounded
by water. For example, to compute AC and AN, the central
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and the north diagonal of the
�

array respectively, we first
compute these quantities as if all zones were water zones
and were surrounded by water on all sides. Then, we fix
the zones that are adjacent to land zones. In the following
code, we make the correction when a water zone has a
land zone as its northern neighbor. (WLMASK is an array
that contains 1’s on land zones, and 0’s on water zones.)

where ((CSHIFT(WLMASK,+1,2)-WLMASK)
& .eq.-1)

AC = AC + AN
AN = 0.d0

endwhere

The statements within the where block are evaluated only
on the points where the predicate is true; on other points,
values of the variables remain unchanged. The expression

(CSHIFT(WLMASK,+1,2)-WLMASK).eq.-1

describes those water zones that have a land zone as a
northern neighbor.

This manner of handling conditional execution in the
data parallel programming style is inefficient because only
a tiny fraction of the elements of an array are on the bor-
der, but the entire array must be tested with the mask to
determine which elements should be handled. Further-
more, each of the north, south, east, west, up and down
borders must be handled separately. The CSHIFT is also
expensive but, because the geometry of the ocean does
not change significantly, the masks can be computed once
and reused if there is sufficient memory to hold arrays
determining the borders. For the GCM code, however,
this sort of computational masking is used only during
initialization, and is not a serious overhead.

3.2.5 Computing on array subsections

As discussed in Section 2, the preconditioning step of the
PCG actually performs a forward-backward substitution
using precalculated ' and ) arrays for each column of
the ocean independently. Note that for our data layout, the
preconditioning step does not require any communication
between nodes because each column lies in the same node.
The preconditioner and array layout were chosen explicitly
for this reason; although we could use a different and more
efficient preconditioner for the multithreaded version, we
use the same preconditioner chosen for the data parallel
version to give a better comparison between the two.

To exploit data parallelism in CM Fortran, the expres-
sion of the preconditioning step requires that all of the lin-
ear solvers for each column be executed in lock-step. That
is, rather than expressing the computation in the most nat-
ural fashion, as " � � "  independent forward-backward

substitutions, we perform the first step of the forward sub-
stitution on every element of the top layer of the ocean
then continue with each layer of the ocean down to the
bottom of the ocean.

The backward substitution happens in the reverse man-
ner, starting from the bottom layer, and then substituting
up for each layer to the top. In the following code, UD,
MD and LD represent, respectively, the upper, middle and
lower diagonals of the ' and ) factors of the � matrices,
and q(K,:,:) refers to the horizontal slice of the array
q at depth K of the geometry. (The � matrices represent
the diagonal block elements of the

�
matrix.)

C Forward Substitution
q(1,:,:) = MD(1,:,:)*r(1,:,:)
DO K = 2, NZ

q(K,:,:) = MD(K,:,:)*
& (r(K,:,:)-LD(K,:,:)*q(K-1,:,:))
ENDDO
C Backward Substitution
DO K = NZ-1, 1, -1

q(K,:,:) = q(K,:,:) -
& UD(K,:,:)*q(K+1,:,:)
ENDDO

Because the ocean has different depths at different
places, the linear systems for each column of water may
be of different sizes, but the data parallel programming
model forces us to treat each column as if it were the same
depth as the deepest column in the ocean, padding land
zones representations with null equations.

3.2.6 Putting it together

With the pieces we have described so far, we can imple-
ment the preconditioned conjugate gradient solver, which
has four basic operations: inner product, daxpy, 7-point
stencil and the preconditioner. Figure 12 shows the PCG
loop expressed in CM Fortran. For clarity, we have omitted
array declarations and layout directives – all of the arrays
in this loop have identical extents and layouts. Also, in
the actual code, the procedure calls to multiply by A
and precondition are written in-line, rather than im-
plemented as separate procedures, in order to eliminate
procedure call overhead.

Because PCG is the key inner loop for the entire appli-
cation, we have taken care to eliminate expensive opera-
tions; there are no mask operations in this loop, and there
is no use of the data network, except for the CSHIFT’s in
multiply by A. The sum reduction operations use the
control network, which is relatively inexpensive.

As our analysis in Section 2.3 indicated, for extremely
high-resolution problems, the vast majority of the time
in GCM is spent in the PCG kernel, so the overall GCM
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DO WHILE (loopflag)
gamma = sum(r*xi)
CALL multiply_by_A(b,Ab)
alpha = gamma / sum(b*Ab)
p = p+alpha*b
r = r-alpha*Ab
CALL precondition(r,xi)
beta = sum(r*xi) / gamma
b = xi+beta*b
if (sum(r*r).le.epsilon)

& loopflag=.FALSE.
ENDDO

Figure 12: The preconditioned conjugate gradient loop
written in CM Fortran is very concise because of the array
syntax. Note that the results of the two subroutine calls
to multiply by A and precondition are returned
through arrays passed to those routines, namely Ab and
xi, respectively.

performance is almost completely dependent upon PCG.
We should note, however, that the issues important for
executing PCG efficiently are the same ones that come up
in optimizing the rest of GCM.

3.3 Data parallel GCM performance

Figure 13 shows the cycles spent for each floating point
operation for the constituent parts of the preconditioned
conjugate gradient. This measure of performance allows
one to factor out machine size, and we have chosen a
problem size (256 � 256 � 32) that does not produce any
garbage padding and is also large enough to factor out
idling due to insufficient parallelism and vector startup.

These times were obtained from the most highly opti-
mized versions of the PCG components. Note that in our
calculation of overhead cycles for floating point opera-
tions here, it is assumed that every floating point operation
executed by the CM-5 for these operations is necessary.
In fact, in the GCM code, many of the operations counted
could be occur over land and, therfore, are redundant.

Regardless of these caveats, the performance shown by
the CM-5 and CM Fortran compiler is impressive; if is
is assumed that each vector unit has a peak performance
of 32 MFlop/s (assuming a multiply-add on every cycle)
then GCM achieves approximately 1/6 of the peak per-
formance. A more realistic assumption of 16 MFlop/s as
peak would give GCM 1/3 of peak performance.

Although the compiler estimates for the inner loop from
Figure 10 seemed to show that the daxpy computation
would require only 1.75 cycles per floating point oper-
ation, there is additional overhead due to looping code

0

1

2

3

4

5

6

C
yc

le
s 

pe
r 

flo
at

in
g 

po
in

t o
pe

ra
tio

n

 Front End
 Reduction
 CSHIFT
 VU

3D ip 3D daxpy stencil precond. PCG GCM

Figure 13: VU cycles spent per floating point operations
on the CM-5, best case. Times are for a 32 node machine,
running a problem size of 256 � 256 � 32.

surrounding the inner loop shown in Figure 10, which
brings up the cycle count to a little more than 2.5 cycles.
This same overhead is seen in each of the four operations.

The reduction operation in inner product takes a bit more
than 0.5 cycles, which should be the minimum, and the
CSHIFT operation in the 7-point stencil is fairly expen-
sive, as expected. For the most part, the code executed by
the front end was insubstantial or overlapped by parallel
computation, except in the forward-backwardsubstitution,
where the looping control overhead was higher to handle
the forward and backward substitutions in the precondi-
tioner.

The distribution of time in the PCG is a weighted av-
erage of the distribution of time for the components of
the PCG. The stencil is most heavily weighted because it
accounts for 13 of the 32 total floating point operations
in the PCG. An additional 8 floating point operations per
zone come from the inner product, 6 from the daxpy, and
5 from the preconditioner.

We measured the performance of the entire GCM code
by running the program for several hundred time steps to
eliminate the effects of initialization of the system. For
the cases we focus on here, the overall distribution of time
in GCM reflects PCG, where most of the time in GCM is
spent, and this is clear from the almost identical profiles
for PCG and GCM.

Note that these timings are the absolute best case for the
CM-5 because there is no garbage padding, the ghost zones
overhead is negligible, and the problem size is sufficiently
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large to allow the VU’s to work at full speed. Section 5,
shows how to compare these best-case numbers against
the performance statistics for the Id and Monsoon version.

4 Programming multithreaded GCM

The data parallel model of computation is ideally suited
for an application like GCM, that uses large, regular data
structures, and where most of the work is in element-wise
operations over these data structures. For other, less regu-
lar applications, the data parallel model is too restrictive in
the way that parallelism can be expressed. Multithreading
is a more general model of parallel computation that al-
lows different processors to work on different tasks at the
same time in a less synchronous fashion. Consequently,
multithreading has some overheads that result from more
dynamic scheduling and synchronization. In the case of
GCM and other highly structured codes, the multithread-
ing overheads may be unnecessary because the applica-
tions may not require the expressiveness multithreading
offers. One goal of this study was to quantify and charac-
terize multithreading overhead and contrast it with some
of the overheads of data parallel execution.

Figure 14 gives a high-level view of the multithreaded
execution model. Each procedure may be associated with
an activation frame, which is local to a processor; a pro-
cedure may fork off child procedures that may execute in
parallel with the original procedure, either on the same
processor or a different one. Similarly, the iterations of a
loop may also execute in parallel. These procedures and
loops may access data in a global heap of shared objects.
Multithreading can be expressed in various languages and
can be executed on different kinds of machines. The se-
mantics of threads and styles of communication and syn-
chronization between threads vary significantly, as can the
typical length of threads, depending upon the language
and architecture.

The programming language used to exploit multithread-
ing may be explicitly parallel such as Cilk [10] or Mul-T
[29] (allowing the programmer to annotate procedures or
loops that should be executed in parallel),or implicitly par-
allel such as Id [34] (allowing the compiler to decide how
to parallelize the code). Furthermore, the memory models
for the languages can differ considerably. For example,
most data structures in Id are based on I-structures, which
are implicitly synchronizing; a fetch of an I-structure el-
ement will not return until the store to that element is
executed.

The degree of hardware support for multithreading may
also vary, as Cilk has been implemented on the CM-5,
networks of workstations, and SMPs, none of which have
special support for multithreading. Mul-T has been im-
plemented on Alewife, which has support for scheduling

 Tree of 
Activation Frames

f:

g: h:

loop

 Global Heap of 
       Shared Objects

Figure 14: A high-level view of multithreaded execution;
activation frames are associated with procedure invoca-
tions and parallel loop iterations while data structures re-
side in a shared global heap.

and synchronization primarily at the basic block level, [2]
and Id has been implemented on Monsoon [38], which has
support for multithreading down to the instruction level.
Monsoon also has direct support for I-structures. Other
architectures that support instruction-level multithreading
and I-structure-like memory include HEP [43], Sigma-1
[26], EM-4 [40], and Tera [3].

We have implemented GCM in Id on Monsoon, which
is one extreme of multithreaded architectures. In doing
so, we try to exploit parallelism at the instruction-level,
procedure-level, and loop-level, incurring various execu-
tion overheads despite extensive hardware support for mul-
tithreading in Monsoon. We begin our discussion of the
multithreaded implementation of GCM with a description
of the Monsoon hardware and its execution model that is
based on dataflow graphs. We then discuss how GCM
was coded in Id. Next, we describe some practical prob-
lems in running GCM for realistic data sets on Monsoon.
Finally, we describe optimizations that are performed by
the compiler and programmer to obtain good performance
on Monsoon and give some performance figures for the
multithreaded implementation.

4.1 The Monsoon dataflow machine

Figure 15 shows a high-level view of the Monsoon multi-
processor. Monsoon [38] consists of eight 64-bit process-
ing elements (PE’s) and eight I-structure memory modules
(or IS’s) connected via a multi-stage packet switched net-
work. Each PE is an eight-stage pipelined processor that
handles dataflow tokens. On each processor cycle, a token
enters the pipeline and its result is available eight cycles
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Figure 15: Monsoon consists of processing elements
(PE’s) connected to I-structure memory modules (IS’s)
through a multi-stage network. Each PE is an eight-stage
pipelined dataflow processor.

later. Each token carries with it (1) a value, (2) a pointer to
an instruction to execute, and (3) a pointer to a context, or
activation frame, in which to execute the instruction. The
execution of an instruction may cause the creation of up to
two more tokens, which may be circulated locally or sent
out on the network to other PE’s. Each PE can process 10
million tokens per second and has 256K 64-bit words of
local memory where activation frames are allocated.

Globally shared heap objects reside in the IS’s, each of
which contains 4M 64-bit words of memory. Both frame
and heap memory have presence tags associated with each
word to support fine-grain synchronization. Each IS mem-
ory access goes over the network. Monsoon’s network has
a bandwidth of 100 MB per second, and the network inter-
face can accept or deliver a message every cycle. Messages
are sent from PE’s to IS’s for heap references, or from PE
to PE to communicate data between procedures or loops.
All heap locations are equidistant to all the PE’s. Heap
objects are interleaved by hardware across the IS’s and in
general, data mapping has no effect on performance.

Every Monsoon instruction executes in one or two cy-
cles. A binary instruction synchronizes on the arrival of its
two inputs: the data from the first input token is stored in
the activation frame and a bubble is passed in the pipeline,
while the arrival of the second token causes the instruc-
tion to execute, producing more tokens. Unary instruc-
tions execute in one cycle without a bubble, as do binary

k

fork

sum

floatplus

next sum next k predicate

 a[] 

i-fetch

 b[] 

i-fetch

1

intplus

 ku 

intle

fork

floattimes

Figure 16: Monsoon dataflow graph for the body of the
innermost loop of a three-dimensional inner product code.

instructions with one constant input. Global memory ac-
cesses are handled in a split-phase manner; a message is
sent out to the network to the IS memory, and a result or
acknowledgement comes back from the network at an ar-
bitrary time later. During this time, Monsoon can process
other tokens, using parallelism to mask the latency of the
memory operation. Keeping an eight processor Monsoon
busy requires at least 64-fold parallelism because each
stage of the pipeline executes a different thread, and some
additional parallelism to mask the latency of heap memory
references.

To measure performance, each Monsoon processor has
16 cycle counters that can keep exact instruction counts
(these counters were used for all measurements in this pa-
per). We also have a cycle-level simulator, called MINT
(Monsoon Interpreter), which is capable of running small
programs. MINT has played a crucial role in micro-
benchmarking and enhancing our understanding of various
factors that affect performance.

4.1.1 Dataflow graphs for parallel execution

Unlike conventional RISC processors, the machine lan-
guage of Monsoon is dataflow graphs. Dataflow graphs
specify only a partial order on instructions and thus im-
plicitly represent instruction-level parallelism; in con-
trast, conventional superscalar RISC processors dynami-
cally detect opportunities for instruction-level parallelism
within a linear instruction stream. To illustrate several
features of the Monsoon execution model, consider the
innermost loop of the 3D inner product:

ku�

k � kl
a[k,j,i]*b[k,j,i]
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These loop constants must be stored
into the frame before the loop is executed

loop body

Figure 17: Sequential loop implementation of the inner
loop of 3D inner product. The sequential loop executes on
one PE, and only exploits instruction-level parallelism.

Assuming the arrays are stored in row major order, Fig-
ure 16 shows the Monsoon dataflow graph for the body of
the loop, including the loop predicate.

The nodes of a dataflow graph represent instructions,
and dataflow tokens flow along the arcs to pass values
generated by parent instructions to their children. Be-
cause Monsoon instructions can send a value to at most
two destination instructions, the fork operator is required
when a value values is needed by more than two destination
instructions. Because of instruction encoding limitations,
some instructions, can send a value to only one destination
instruction. The arcs leading from the two i-fetch instruc-
tions to the floattimes instruction are drawn as dotted arcs
to emphasize that I-structure references are split-phase.

Literals and loop constants are represented in light gray
in Figure 16. Literals are stored into local memory at load-
time by the loader,while loop constants must be stored into
local frame memory at run-time using the constant-store
instruction. Both types of constants can be accessed at
run-time without incurring a bubble in the pipeline.

Control in Monsoon is implemented by using the switch
operator that steers an input value to one of two locations,
depending upon the value of an input predicate. Figure
17 shows the “sequential” loop schema for the loop body
shown in Figure 16. Before the first iteration of the loop
begins, loop constants are stored into the activation frame.
The initial values for the input variables are fed to the top
of the loop body, and then the loop body in Figure 16
is executed. The resulting values are either steered back
to the top of the loop, or else output as the final values.
The values are steered using switch instructions, with one
switch for each induction variable. If there are more than
two induction variables, forks are needed to distribute the

predicate value to the switch’s. Because the switch instruc-
tion can steer a value to only one destination instruction,
additional forks are often required after a switch.

Sequential loops only execute on one processor, and
generally use the activation frame of the surrounding pro-
cedure. In the next section, we show how inter-processor
parallelism is exploited in Monsoon for both procedure-
level parallelism and loop-level parallelism.

4.1.2 Run-time system and inter-processor paral-
lelism

In Monsoon, dataflow-style instruction-level parallelism is
exploited only within a PE, to keep the eight pipeline stages
busy. Inter-processor parallelism is exploited by allocating
activation frames on remote PE’s. Activation frames are
allocated when a procedure is called or a parallel loop is
initiated, and the frame may be allocated on an arbitrary
Monsoon PE, although frames do not migrate once they
are allocated. Thus, the mapping of work to processors is
governed by the frame allocation policy, which is a part of
the Monsoon run-time system (RTS).

In the Monsoon RTS [13], frame memory on each pro-
cessor is divided equally among all processors, so that each
processor manages part of the frame space of every other
processor. Frame allocation requests are then handled lo-
cally in a round-robin fashion across all of the processors
to provide load balancing. Since the RTS is invoked on ev-
ery procedure and parallel loop invocation, care has been
taken to minimize RTS costs, to the point where much
of the RTS is written in assembly and supported by spe-
cial “microcoded” machine instructions. Despite all this
care, allocating and deallocating a frame on Monsoon typ-
ically takes about 40 to 50 cycles. This shows that frame
management in this parallel environment is still more ex-
pensive than in a sequential environment, where a simple
pointer-bump can allocate or deallocate a stack frame.

A procedure call begins with allocating an activation
frame. Once the frame is returned by the RTS, the ar-
guments to the procedure and the return continuation are
sent as messages to the frame, which is usually on a re-
mote processor. Although the composition, sending and
receiving of these messages are well supported in Mon-
soon hardware, argument-passing is still relatively more
expensive than register-style argument passing in sequen-
tial processors. In general, the programmer should define
most small leaf procedures as inlinable to avoid procedure
call overhead.

Loops can trivially exploit inter-processor parallelism if
they are implemented as recursive procedure calls. How-
ever, such an implementation usually uses too many frames
and consequently has a very high overhead both in terms
of storage and RTS calls. Id on Monsoon exploits an alter-
native compiling scheme known as � -bounded loops [14].
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Cycles/iteration of the 3D inner product inner loop
completely

Opcode unrolled sequential k-bounded
fork 2 3 6
intplus 1 1 1
i-fetch 2 2 3
floattimes 2 (1) 2 (1) 2 (1)
floatplus 1 (.5) 1 (.5) 2 (1)
switch 4 (2) 1
intle 1 1
message 4 (2)
i-take 1
i-put 2 (1)
sync 3 (1)
Total 8 (1.5) 14 (3.5) 26 (6)

Figure 18: Comparison of cycles per iteration for un-
rolled, sequential and � -bounded loop implementations.
The number of bubbles incurred by each operation per
iteration are set off in parentheses.

The � -bounded loop schema employs a ring of � activa-
tion frames that are allocated and linked at the beginning
of the loop execution and deallocated at the end of the loop
execution. Loop constants must be stored into each frame
in a � -bounded loop, and induction variables are passed
from iteration to iteration like arguments are passed for
procedure calls.

Exploitation of inter-processor parallelism can be ex-
pensive even on Monsoon. In Figure 18, the cycle counts
for � -bounded, sequential, and completely unrolled im-
plementations of the innermost loop of the 3D inner prod-
uct are shown. Recall that the sequential loop schema
only exploits intra-processor parallelism and a loop can be
completely unrolled only if the loop bounds are known at
compile time. It takes three times as many cycles per it-
eration for the � -bounded loop as the completely unrolled
loop!

We explain these cycle counts further to satisfy the
reader’s curiosity. The completely unrolled implemen-
tation reflects the instructions in Figure 16 excluding the
instructions needed to evaluate the loop predicate. The
count for the sequential implementation can be derived
by adding the predicate and the two switches shown in
Figure 17. The � -bounded implementation uses two mes-
sage instructions to send the induction variables to the
next iteration. The i-take and i-put instructions are used
as semaphores to synchronize between loop iterations to
determine when a frame may be reused for the next it-
eration. The sync instructions gather signals from work
being performed in the current iteration to ensure that all
work is completed in the current iteration. Additional

fork instructions are used to distribute values to the new
instructions.

In addition to the per iteration costs shown in Figure
18, loops have startup and shutdown costs that may be
significant, depending upon the loop schema. Completely
unrolled loops have no startup cost, whereas sequential
loops must store loop constants into the frame before be-
ginning loop iterations. The startup and shutdown costs of� -bounded loops can be from about 100 to several hundred
cycles per � , to allocate and deallocate frames, to set up
loop constants and to wire up the frames in a cycle.

Given the widely varying costs of loop execution, even
for the same source program, it is clear that the program-
mer or compiler must make decisions to expose loop par-
allelism while minimizing instruction counts. We will
discuss these issues further in Section 4.2.5.

4.2 Programming in Id

Id is a layered language whose core consists of a higher-
order, statically typed, polymorphic, non-strict functional
language. Id also has mutable and synchronizing data
structures called I-structures and M-structures. The GCM
code is written using only the functional subset of Id, but
the Id compiler transforms functional data structures into
I-structures for execution on Monsoon. I-structures are
implicitly synchronizing, so that a fetch of an I-structure
element will not return until the store to that element is
executed. I-structure elements can be written only once
(although they can be read any number of times) to ensure
that programs are deterministic.

4.2.1 Array Abstractions

Id has only three built-in operations on arrays; fetch, store
and fetch array extents. However, it is possible to define
powerful array abstractions in Id and use them repeatedly.
Before definingmake 3D array, an abstraction to create
a three dimensional array, we show how it is used:

x = make_3D_array extents f

where extents defines the extents of the array and f
is a filling function. The net effect is that x[index] =
f index, for each index (k,j,i) that lies within the
extents. By giving a suitable definition for f we can
define each GCM state variable. Note that x is immutable
in the sense that once it has been defined it cannot be
modified. Consequently, at each time step a new array
for each state variable is created and the old is implicitly
discarded.

An (inlinable) function definition of 3D daxpy can be
expressed as:

17



Zones =
((min_W_longitude, max_E_longitude),
(min_N_parallel , max_S_parallel ),
(surface , max_depth ));

defsubst aX_plus_Y a X Y zone =
a * X[zone] + Y[zone];

defsubst daxpy_3d a X Y =
make_3D_array Zones (aX_plus_Y a X Y);

where zone represents an index and Zones represents
the dimensions of the box containing the ocean. One
can think of aX plus Y as a inlinable function that takes
four arguments and produces a number. When only three
arguments are passed to it, as shown above, a new function
is returned that takes one argument zone (an index) and
returns a number.

The make 3D array function is not a built-in oper-
ator in Id: it is defined as a library function using array
comprehension syntax as follows:

defsubst make_3D_array extents f =
{ ((kl,ku),(jl,ju),(il,iu)) = extents;

in
{3D_array extents of

| [index] = f index
|| i <- il to iu;

j <- jl to ju;
k <- kl to ku;
index = (k,j,i) }};

The initial binding destructures the extents argument
into its component parts. The phrase between “|” and
“||”, that is “[index] = f index”, specifies an in-
dex and an expression to be filled in the indexed slot of
the array. The phrases such as “i <- il to iu” that
occur after “||” are called generators and define a way to
enumerate the indices.

All of the abstraction involved in the array comprehen-
sion, destructuring and higher-order function call could
be extremely expensive, but if the programmer is care-
ful to declare the filling function and array constructor as
inlinable, all of the overhead is compiled down into an
I-structure array allocation and a triply-nested loop that
fills the I-structure using the inlined filling function.

This level of abstraction may seem to be overkill for a
simple operation like daxpy,but it is also used at every level
of the code, simplifying the specification of the algorithm
greatly and also allowing for easier modification to the
computation by changing of the underlying abstraction.

Notice that, in the Id array constructor abstraction, we
ordered of the axes as we did in the CM Fortran code,
although for a quite different reason. In Id, we want the
innermost loop to iterate over the vertical axis of the state
arrays so that we can avoid computation on land, and also
because we want to unroll the loop completely. Given that
the innermost loop iterates over the vertical axis, we also

want that axis to be stride-1, so that we can avoid overheads
from additional support instructions to calculate memory
addresses.

4.2.2 Avoiding unnecessary computation

In the elliptic solver, we compute four inner products in-
volving state variables. Because the land zones do not
contribute to the inner product, we could optimize this
computation by only iterating over water zones as shown
below:

defsubst ip_3d a b =
{ s = 0.0 ;
in
{for i <- min_W_longitude to

max_E_longitude do
s_jk = 0.0;
next s = s +
{for j <- northmost_parallel[i] to

southmost_parallel[i] do
s_k = 0.0;
next s_jk = s_jk +
{for k <- surface to

bottom[i,j] do
next s_k =
s_k + a[k,j,i]*b[k,j,i];
finally s_k};

finally s_jk};
finally s} };

where bottom[i,j] is the depth of the ocean
at (i,j). The variable surface has been de-
fined as a constant instead of a 2D array without
loss of generality. northmost parallel[i] and
southmost parallel[i] represent, respectively, the
northern most and southern most parallel at longitude i
where a water zone may be found. A note on syntax –
the next qualifier is used to express recurrences in for
loops – “next s” specifies the value the variable s will
assume in the next iteration. The finally qualifier is
used to describe the result of a for loop.

We can further reduce the computation by defin-
ing some of the state variables only on water zones,
if their values are not needed on land zones. The
make water zone array abstraction defined below
enumerates only water zones:

defsubst make_water_zone_array f =
{3D_array Zones of

| [zone] = f zone
|| i <- min_W_longitude to

max_E_longitude;
j <- northmost_parallel[i] to

southmost_parallel[i];
k <- surface to bottom[i,j];
zone = (k,j,i) }
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Consequently the following daxpy would do fewer float-
ing point operations than the one defined in Section 4.2.1.

defsubst daxpy_w_3d a X Y =
make_water_zone_array (aX_plus_Y a X Y);

4.2.3 Avoiding deadlocks due to undefined elements

Sometimes an attempt to avoid unnecessary computations
can lead to deadlocks in the Id code. Consider the stencil
computation in the PCG (as discussed in the data parallel
section, the diagonals of matrix A are symmetric; so only
four arrays need to be stored instead of seven):

defsubst seven_pt_stencil b =
make_water_zone_array (multiply_by_A b);

defsubst multiply_by_A b zone =
{ C = A_C[zone] * b[zone];

W = A_WE[Wfz zone] * b[Wzz zone];
E = A_WE[Efz zone] * b[Ezz zone];
N = A_NS[Nfz zone] * b[Nzz zone];
S = A_NS[Sfz zone] * b[Szz zone];
U = A_UL[Ufz zone] * b[Uzz zone];
L = A_UL[Lfz zone] * b[Lzz zone];

in
C + W + E + N + S + U + L }};

where the function Nzz computes the zone to the North
of a zone, while Nfz computes the north face of a zone:

defsubst Wzz (k,j,i) = k,j,i-1 ;
defsubst Ezz (k,j,i) = k,j,i+1 ;
...
defsubst Wfz (k,j,i) = k,j,i-1 ;
defsubst Efz (k,j,i) = k,j,i ;
...

The multiply by A filling function will attempt to
read elements of the array b that may correspond to land
zones, and thus may have undefined values. An attempt to
read an undefined array element in Id will cause a deadlock
because the I-structure fetch will never return. In the CM
Fortran version, the ocean is padded with a layer of land to
handle this boundary condition around the edges, and the
other land zones are filled with benign values. The same
strategy can be used in the Id version, however, the land
padding cannot simply be initialized once and re-used at
every PCG iteration. Rather, the padding must be filled
every time because a new array is defined for the variable
on every iteration of the solver.

Note that the land padding is not necessary for the non-
stencil operations in the PCG, so we only pad array b,
which is needed by the stencil computation. To accom-
plish this, we define a different array constructor that fills
zeros in all the land zones and use it to redefinedaxpy 3d

of Section 4.2.1. In the following code, OG represents the
ocean geometry:

def make_zone_array’ f =
{3D_array Zones of

| [zone] = {case OG[zone] of
| water = f zone
| land = 0.0}

|| i <- min_W_longitude to
max_E_longitude;

j <- min_N_parallel to
max_S_parallel;

k <- surface to max_depth;
zone = (k,j,i) };

defsubst daxpy_3d’ a X Y =
make_zone_array’ (aX_plus_Y a X Y);

4.2.4 Putting it all together

An important step in the elliptic solver is the multipli-
cation by the preconditioner  , which is actually imple-
mented as "�� � "� independent tridiagonal linear equa-
tion solvers of size "�� � "�� as described in Section 2.2.2.
As in the CM Fortran code, each of the "�� � "� inde-
pendent linear systems is initially factored into ' and )
matrices corresponding to the decomposition of the block
diagonal elements of

�
, and these matrices are stored

into a constant matrix, which are referenced in the call to
solve tridiag LU.

defsubst precondition r =
{3D_array Zones of
| [zone] = X[k]

|| i <- min_W_longitude to
max_E_longitude;

j <- northmost_parallel[i] to
southmost_parallel[i];

X = solve_tridiag_LU r (i,j);
k <- surface to bottom[i,j];
zone = (k,j,i) };

Given all these functions, it is straightforward to write
PCG in Id as shown in Figure 19. There are no other
issues that arise in coding the whole GCM code; each
filling function is either some sort of a stencil, or involves
purely local computation.

After compilation, if all the functions have been de-
clared as substitutable, the resulting code turns out to be
nothing but a nest of nested loops. Most of these loops and
the individual bindings in them can proceed in parallel, as
soon as the data dependencies for the binding are satisfied.
Note that because of the element-wise synchronization of
I-structures, parts of state arrays can be filled as soon as
the parts of the arrays they depend on are filled.
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{while (ip_3d r r) > epsilon do
gamma = ip_3d r xi;
Ab = seven_pt_stencil b;
alpha = gamma / (ip_3d b Ab);
next p = daxpy_w_3d alpha p b;
next r = daxpy_w_3d (-alpha) r Ab;
next xi = precondition (next r);
beta = (ip_3d (next r) (next xi)) /

gamma;
next b = daxpy_3d’ beta (next xi) b;

finally p}

Figure 19: The PCG in Id requires the definition of new
state arrays on every iteration. The order of execution is
not necessarily in the textual order – all of the bindings
proceed implicitly in parallel and must only wait for data
dependencies to be satisfied.

4.2.5 Programmer annotations and restructuring

Once the functionality of the code has been implemented,
the programmer may have to annotate his code to get good
performance. Standard loop optimizations such as un-
rolling, peeling, strip-mining, and interchange can have
a larger impact on Monsoon performance than for con-
ventional architectures because of the overhead of parallel
asynchronous execution of loop iterations in the dataflow
model. The Id compiler automatically performs some of
these optimizations, and the others are left to the program-
mer to be indicated as pragmas. We discuss the role of
loop pragmas here.

Unless otherwise annotated by the programmer, all
loops are assumed by the compiler to be sequential loops.
Constructs such as array comprehensions desugar into
loops, and in general, annotations that are used for loops
may also be used for array comprehensions. It is a good
rule of thumb to annotate outermost loops with parallelism
to be � -bounded loops. (It makes no sense to declare the
time-step loop in GCM to be � bounded because there is
not much parallelism between time-steps.) In this way,
large chunks of work are forked to remote processors, and
the overheads of � -bounded loop iterations are paid less
often. Inner loops should be annotated to be unrolled to do� iterations at a time to reduce sequential loop overhead.
If the number of iterations is a constant and small, then the
pragma to unroll the loop completely should be used.

Suppose that the programmer has annotated the outer
and middle loops of a triply-nested loop to be � -bounded,
with the � -bounds being ib and jb, respectively. In general� -bounds can be arbitrary expressions that return an inte-
ger; in practice, however, they are usually literals. Figure
20 shows the pattern of frame usage for the two loops
when ib is 3 and jb is 4.
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Figure 20: Pattern of frame usage for nested � -bounded
loops for the 3D inner product.

The amount of interprocessor parallelism exposed for
such a nested loop is then on the order of

� � � � � . Given a
certain machine configuration, we are interested in setting
the product

� � � � � such that it will keep the entire machine
busy. What are the optimal values of

� � and
� � , such

that the number of instructions executed by the loops are
minimized?

If there are
���
�
%

iterations of the outer loop executed,
then the number of frame allocations and initializations
(requiring hundreds of cycles apiece) is then:

� � � ��� � % �� � . For a set amount of parallelism
� � � � � we wish to

exploit in a nested loop, in general it is better to make� � larger and
� � smaller to minimize loop initialization

costs. A possible optimization is to lift middle loop frame
allocations so that it occurs

� � times as opposed to
���
�
%

times. This optimization has been implemented in the Id
compiler, but has not worked reliably.

Large values of � may not be useful in exposing par-
allelism if there are dependencies of any kind (data, con-
trol, producer/consumer) between loop iterations, or if
the number of iterations is not significantly larger than � .
Choosing loop bounds can make a tremendous difference
in performance, as shown by Culler [14], but to date, no
automatic compiler-directed policy has been implemented
that achieves high performance.

Some optimizations cannot be expressed simply with
pragmas and require restructuring of code. For example,
the precondition routine in Section 4.2.4 requires allocat-
ing a temporary array X for each column (i,j) of the
ocean for each iteration of PCG. The only purpose of
this array is to hold the values returned by the tridiagonal
solver before it is copied into the state array. This array is
eliminated by making the tridiagonal solver store directly
into array xi. Such a program can be expressed in Id
by writing the preconditioner using loops and I-structures
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rather than array comprehensions. A subtle issue is if the
ocean has a known uniform depth, then it is also possi-
ble to eliminate another array temporary in the tridiagonal
solver.

4.3 Running GCM on Monsoon hardware

Monsoon was designed at MIT and built by Motorola
under a research collaboration agreement. We received the
first Monsoon with one PE and one I S in November 1990.
Two machines, each with 8 PE’s and 8 IS’s, were delivered
to MIT and Los Alamos National Labs (LANL) in the latter
half of 1991. Several more machines with 2 PE’s and 2 IS’s
were built and placed at various research institutions across
the country. Detailed performance studies of Monsoon
were conducted in 1991-92 (see, for example, [22, 5, 46]).
During this period, both the Id compiler and run-time
system were being tuned continually for Monsoon.

By 1993, when the GCM study was begun, the team that
had built Monsoon at Motorola had disbanded; the ma-
chine at MIT was maintained by cannibalizing parts from
other Monsoons. At this point, an initial unoptimized ver-
sion of a fully functioning multithreaded GCM ran on an
8 PE 8 IS Monsoon approximately 100 times slower than
the data parallel version on a 32-node (128 VU) CM-5.
Given the speed difference, experiments took many hours
to run on Monsoon, and checkpointing was implemented
because the Monsoon hardware had intermittent failures.
We started doing most of the experiments on PCG and 2
PE 2 IS systems to avoid some of these problems. Our
experience with other applications on Monsoon [22] have
shown that 2 PE 2 IS performance translates directly into
8 PE 8 IS performance.

As is often the case in any such study, both implemen-
tations were continually being tuned based on observed
performance. However, algorithmic innovations were al-
ways guided by the concerns for greater efficiency on the
CM-5, as this was a production code. It was a difficult
task to keep the two implementations consistent for this
study, especially because gathering statistics on a 4 to 24
hour run on Monsoon was tedious. A major milestone in
this project was reached in early 1994 when we were able
to produce the same numerical results on both implemen-
tations for several large ocean geometries.

The hardware maintenance issue became more serious
in 1995 because key personnel at MIT were concentrating
on building new machines, and the condition of Monsoon
had deteriorated. Most of the experiments from 1995
onwards had to be performed 2 PE 2 IS machine. No
new experiments have been conducted on Monsoon since
mid-1996. Monsoon was decommissioned and donated to
the Computer Museum in February 1997, and the CM-5
was decommissioned in July 1997.

Although we also have a robust cycle-level Monsoon
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Figure 21: Comparison of the three versions of PCG for
a 171 � 93 � 5 geometry, 60% water. (
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� � � 3, 2

PE, 2 IS Monsoon)

simulator, even a 2 PE 2 IS Monsoon is many thousand
times faster. The Monsoon simulator was used extensively
for micro-benchmarking, and can run several iterations of
PCG with small data sets in a reasonable amount of time.
However, running realistic data sets with the entire GCM
code would be impossible on the simulator, whereas it is
feasible on even a 2 PE 2 IS Monsoon.

4.4 Multithreaded GCM performance

To factor out machine size and clock rates, as in the
data parallel case, we measure the efficiency of the mul-
tithreaded implementation of GCM by determining the
number of cycles spent for each floating point operation.
The “Water Only” bar in Figure 21 shows the breakdown
of the overhead operations executed in the PCG code for a
particular geometry, a 171 � 93 � 5 ocean with 60% water.

It is clear from this graph that the vast majority of
the time is spent in overhead cycles. “Move” instruc-
tions include forks and syncs, “Misc” instructions include
switches and message-passing instructions, “Memory” in-
structions include i-fetches and i-stores, and “Int” instruc-
tions include ordinary arithmetic and logical instructions.
Actual floating point operations consist of a tiny fraction
of overall time.

4.4.1 Decreasing overhead cycles

To reduce overhead cycles, we attempted to simplify the
computation by making it identical to the data parallel
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implementation. In doing so, we were able to completely
unroll the inner loops of each of the PCG components.
Complete loop unrolling is beneficial to 3D daxpy and 3D
inner product because the loop overheads are high relative
to the small loop bodies for these PCG components. It does
not help the 7-point stencil computation as much because
of the larger loop body of the stencil. The preconditioner
is significantly simplified because of the elimination of a
temporary array.

I-fetches for the north-south and bottom bounds of the
ocean were eliminated, along with the calculation of the
addresses for those i-fetches. By making the ocean bounds
constant, some loop constants can be eliminated by making
them literals. These simplifications reduce the number of
cycles per floating point operation from about 35 in the
“Water Only” case to about 12 in the “Land � Water” case
in Figure 21.

Note that the “Idle” cycle count is misleading in that the� -bounds for the loops are set in the context of the entire
application, not for the PCG executing in isolation. Those
idle cycles will be overlapped by other work when PCG
executes within the entire GCM code.

The reduction in overhead cycles per floating point op-
eration comes from fewer switches and messages for sim-
pler loops, and from fewer bubbles and forks incurred by
eliminated switches and messages. Address calculation is
also simpler, as evidenced by fewer “Int” instructions, and
some fewer memory operations are executed because of
the constant ocean bounds.

It is surprising to discover the degree to which the
“Land � Water” version was more efficient than the “Water
Only” version. Part of the explanation is in the very shal-
low geometry used; because the innermost loop executes
at most four times in the “Water Only” case, it is difficult
to take advantage of regular loop unrolling (as opposed to
complete loop unrolling) to reduce loop overheads. For
geometries with more layers, the difference will not be so
marked, although the completely unrolled preconditioner
would remain an advantage of the “Water � Land” version.

4.4.2 Hybrid PCG

Although the “Land � Water” version is much more effi-
cient per floating point operation executed than the “Water
Only” version, it must execute more floating point opera-
tions because of land zones. Despite this, the overheads
from land are more than made up for by the efficiency of
the “Land � Water” version for most geometries; however,
we would still like to take advantage of some of the ge-
ometry irregularity that result from land zones, while also
using a simplified loop structure.

To do this, a hybrid version of the PCG was developed
which only computes on the bounding hull of the water
on the surface of the geometry, while computing on entire
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Figure 22: The best case performance for the components
of the hybrid PCG, the PCG itself, and the whole GCM
ocean modeling code for a 32 � 32 � 32 ocean with 100%
water. (

� � � 5,
� � � 3, 2 PE, 2 IS Monsoon).

columns of water within the bounding hull. In this way,
much of the computation on land is eliminated, while still
allowing complete unrolling of the innermost loop. Figure
21 shows that this version has more overhead per floating
point operation than the “Land � Water” version, but less
than the “Water Only” version.

The hybrid approach is only superior to the Land � Water
approach in situations where it can take advantage of not
having to compute on land. Typically, geometries that we
are interested in simulating have between 30% to 70% of
their surface covered with water, so the hybrid approach
actually does pay off most of the time.

4.4.3 PCG component performance and GCM per-
formance

Figure 22 shows the best case performance in terms of
cycles per floating point operations for the four operations
of the hybrid version of PCG, the PCG itself and the overall
GCM code. The constituent parts were timed by extracting
the code fragment for the component from the elliptic
solver and running it in isolation. In this case, the same
criteria as the data parallel case is used; it is assumed
that all floating point operations executed are required
operations, without taking into account land.

The problem size we use is proportionately smaller than
the CM-5 version because the Monsoon machine config-
uration is smaller. Note that the Id program is the same
for a 2 PE Monsoon as for an 8 PE Monsoon, except for
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� -bounds for loops.
We optimized the � -bounds shown in Figure 21 and

Figure 22 for the entire GCM computation. By doing so,
when we extract portions of the code such as the PCG com-
putation or components of the PCG, additional idle cycles
appear because there is less work that can be overlapped
to eliminate idle cycles. These idle cycles are misleading,
because they could be eliminated by increasing � -bounds,
but doing so could distort other numbers in the overhead
accounting.

It is interesting to compare the performance of the 3D
inner product in Figure 22 with the detailed cycle count
for the completely unrolled inner loop in Figure 18. In
Figure 18, eight cycles are spent for two floating point
operations, yielding a ratio of four cycles/floating point
operation. In Figure 22, the full triply-nested loop shows
a ratio of about eight cycles per floating point operation,
indicating that much of the overhead arises from the outer
two loops of the inner product. This is similar to the CM-5,
where the detailed cycle count for the innermost loop was
much better than the actual measured time of the entire 3D
inner product.

Compared to the best case numbers for the CM-5, the
Monsoon numbers show that approximately three times
as many cycles are necessary for every floating point op-
eration. However, our choice of performance measure
showcases the best aspects of data parallel computing. In
the next section, we attempt to adjust these raw “best case”
numbers for situations that are more realistic.

5 Performance comparison

Both GCM implementations use the same numerical al-
gorithm, except for minor differences such as the order
of reductions. Despite this, comparing the two imple-
mentations requires care because of differences between
the languages, compilers, programming models, architec-
tures, implementation technologies, machine configura-
tions, and manpower expended on software and hardware.
In this section, we try to account for some of these dif-
ferences and determine the primary characteristics and
overheads of the two implementations.

5.1 Performance metric

Because both implementations have used the same math-
ematical algorithm, the numerical results and the number
of iterations for the conjugate gradient to converge in each
time step are identical. Consequently, both codes execute
the same number of required floating point operations,
though the number and type of overhead instructions exe-
cuted differ greatly. We consider floating point operations

performed on land zones or land-land surfaces to be non-
essential.

We attempt to factor out most of the differences between
the implementations using the simple metric of cycles per
required floating point operation. Up to this point, we
have been measuring cycles per floating point operation,
which includes any extra floating point operations which
are used for computations on land.

The cycles per required floating point metric factors out
many of the differences between the implementations; it
does not, however, quantify all the dimensions that affect
performance. For instance, one of the architectures may
be easier to implement at a high clock speed than the other
or more cheaply than the other; this metric also does not
take into account the much greater manpower spent in op-
timizing the CM-5 performance. It would be misleading
for us to try and rigorously quantify these factors, and we
leave it to the judgement of the reader to adjust our mea-
surements as they feel suitable. Nevertheless, as explained
below, using this metric (while understanding its limita-
tions) does yield significant insight into the efficiency with
which GCM can be mapped to the two contrasting com-
putational environments.

The cycles per required floating point operation metric
is clearly better than the cycles per every floating oper-
ation measure we have been using to this point for both
the CM-5 and Monsoon implementations. For example,
in Figure 21, the “Land � Water” version is more efficient
per floating point operation, but many of the floating point
operations that are considered are actually overhead opera-
tions because they are executed on land zones. When taken
into consideration, the ratio of cycles per required floating
point for the “Water Only” versus the “Land � Water” ver-
sus the “Hybrid” implementations of multithreaded PCG
is actually about 1 � 0 : � 44 : � 35, showing that the hybrid
version is the fastest.

5.2 Quantifying overheads

Monsoon and CM-5 can be viewed as radically different
attempts at feeding relatively standard FPU’s, though this
was certainly not a design goal of Monsoon. Taken in this
context, the “best case” numbers clearly indicate that the
CM-5 is much better when the situation is ideal – i.e., when
there is no garbage padding, ghost zones are not taken into
account and the problem size is large enough to overcome
vector startup costs. The rest of this section quantifies
further what the effects of the various overheads of each
model are.

5.2.1 Overheads due to padding and ghost zones

The overhead from garbage padding on the CM Fortran
verion is usually not more than 10%; the compiler can usu-
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Figure 23: The CM-5 version of PCG is more sensitive to
variations in the percent of water than the hybrid Monsoon
version.

ally find a layout which is fairly close to the one requested
by the programmer. Because of the hardware support for
ignoring garbage padding, the CM-5 does not pay any
additional cost in terms of execution for garbage padding,
above and beyond the direct overhead due to unused zones.

Ghost zones are a more serious concern for geometries
that are shallow or narrow. The Id version does not have
to work on the faces of the geometry, except to explicitly
insert ghost zones on the step before the stencil computa-
tion, and even the stencil computation itself does not need
to compute on ghost zones. Although the Id version also
must pay for the memory, it does not have to pay for the
execution time for filling ghost zones.

It is clear that ghost zones are not a serious overhead
for wide, deep geometries. However, we often work with
geometries that are of depth 5 to 10,in which case overhead
for ghost zones can range from 20% to 40% or more.

5.2.2 Overheads due to water

Figure 23 shows the effect of varying the percentage of
water zones on the surface for the Id and CM Fortran
codes. Water zones on the surface are counted, because
the hybrid version of the Id code can only take advantage
of eliminating an entire column of zones at a time.

The number of “required” floating point operations was
calculated as all floating point operations which are per-
formed in columns of the geometry which have a water

surface zone. This is not the actual number of required
floating point operations because floating point operations
on land zones are still being executed in the hybrid ver-
sion of the Id code. However, given the number of surface
water zones, the number of actual required floating point
operations may vary widely, and the purpose of this graph
is to compare the Id and CM Fortran versions against
each other, not against an ideal. For these purposes, this
measurement is fair, because any difference between the
required floating point operations in this graph and the
actual number of required floating point operations would
affect the performance of both versions proportionately.

The performance for the CM-5 version was calculated
by assuming an ideal performance of 3.5 cycles per float-
ing point operation when the geometry is 100% water, and
then extrapolating backwards by assuming that the execu-
tion time will be identical regardless of the percentage of
water zones. We give a zone of performance for the CM-5,
because the ideal performance may vary widely depend-
ing upon the padding overhead and the overhead due to
executing a smaller problem size. The upper end of the
zone assumes performance at 100% water of seven cycles
per floating point operation; this number is not necessarily
the upper bound of the performance of the CM-5 version,
and may in fact be worse for some problems as seen in the
next section.

The performance of the Id version was measured on a
large geometry, varying the percentage of water zones on
the surface. The geometry was of size 50 � 50 � 10,running
on a two processor system, and is a large enough problem
size to keep the machine busy. We varied the percentage
of surface water zones and measured the total number of
cycles as a ratio of required floating point operations.

The performance of both versions deteriorates as the
percentage of water decreases, but as exepected the CM-5
version shows more severe degradation, because it carries
out the same amount of computation regardless of the
geometry, whereas the Id version does less work for the
geometries with less water. Because many real geometries
of interest consist of 30% to 70% water, this overhead in
conjunction with others may make the performance of the
CM Fortran version more comparable with that of the Id
version.

5.2.3 Overheads due to small problem size

Both machines will have worse performance for smaller
problem sizes than for larger problem sizes because of less
parallelism to keep the machines busy. Figure 24 shows
the effect of varying the problem size, measured in ele-
ments of the geometry per processor. To obtain this graph,
the time needed to perform PCG for various problem sizes
is measured on both Monsoon and the CM-5; the hybrid
Monsoon version is employed, only geometries having
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Figure 24: Efficiency versus problem size for the PCG
computation; the CM-5 is more sensitive to problem size
than Monsoon. This difference is primarily due to the
added parallelism exploited by the multithreaded model
compared to the data parallel model.

100% water were considered.

The variable " 1 � 2 is typically used for vector processor
to measure the vector length necessary to reach one half of
the performance of the machine when it has a problem with
an infinite vector length. In a parallel setting, " 1 � 2 will
vary according to the size of the machine, and the problem.
For GCM, we see that on the CM-5, " 1 � 2 � 1000 per VU.
To obtain the number for the entire machine, we must
multiply by the number of VU’s in the machine. For
Monsoon, the same value is " 1 � 2 � 35 per PE.

Because the CM-5 starts out at about 3.5 cycles per float-
ing point operation versus Monsoon at about 11 cycles per
floating point operation, the CM-5 is still better in absolute
terms than Monsoon over much of the range shown in the
graph, despite the fact that its performance deteriorates
faster as the problem size decreases. The Monsoon ver-
sion reaches peak performance at a smaller problem size
because Monsoon exploits much more parallelism than the
CM-5 does. Whereas the CM-5 generally takes advantage
of data parallelism for each operation, Monsoon can take
advantage of data parallelism for multiple array opera-
tions at a time, as well as procedural and instruction-level
parallelism.
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Figure 25: The multiplicative effects of overhead for the
PCG, varying the number of layers.

5.2.4 Multiplying overheads

The three primary overheads (padding, water, and size)
described to this point are multiplicative in nature. Figure
25 shows the effects of these overheads on some example
geometries. The ocean geometry chosen has a relatively
high percentage of water (60% overall and 66% on the
surface) compared to some real geometries. The high per-
centage of water in this particular geometry favors the data
parallel approach; however, extrapolating the performance
of geometries with less water is straightforward.

The first geometry on the left in Figure 25 is the 5-layer
domain. Here, there is a significant amount of overhead
from ghost zones and water. Also, the base cycles per
(every) floating point operation is high because of poor
vector unit utilization due to the relatively small problem
size ( � 600 zones/VU). Garbage padding is a minimal
overhead. For Monsoon, we see a ratio that is fairly close
to the “best case” because Monsoon is less sensitive to
problem size and percentage of water.

When we go to a 12-layer geometry, the CM-5 version
improves significantly, primarily because of the better VU
utilization due to a larger problem size – this directly ef-
fects the absolute water overhead. The ghost zone padding
overhead is also reduced because of the deeper geometry.
The Monsoon version remains about the same because it
is not as sensitive to problem size.

For the final geometry, a 32-layer ocean, the CM-5
has a base cycles per floating point operation that is still
noticeably worse than its best case. The padding and
ghost zone overheads are almost negligible, but the water
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overhead boosts the ratio to about 9 cycles per required
floating point operation. We were not able to run a problem
of this size on Monsoon, but we predict it would be not
much different than the 12-layer case, because Monsoon
is not as sensitive to problem size as the CM-5.

The three problem sizes shown in Figure 25 are typical
of simulations that we perform on a daily basis on the
CM-5. If we had considered a geometry with less water,
both versions would have had higher overheads, but the
CM-5 performance would degrade more than the Monsoon
version, because the CM-5 is more sensitive to variations
in the percentage of water.

5.3 Conclusion

The best case for CM Fortran on the CM-5 is for very
large, all-water geometries, and the efficiency of the CM-
5 for these problems is about 3 times better than for Id
on Monsoon (3.5 versus 10.1 cycles per floating point
operation). However, in more realistic cases, the efficiency
of the data parallel implementation varied from 0.5 to 2
times that of the multithreaded version. The multithreaded
version was more flexible in handling problem irregularity,
and it reached peak performance at a smaller problem size
than the data parallel version.

For both versions, significant programmer tuning was
required to obtain good efficiency, and the type of tuning
for each version was very different.

Although multithreading is a far more general model
of parallel computing than data-parallel, our results in-
dicate that even for an application that is ideally suited
for the data-parallel model, a multithreading implemen-
tation can be comparable in efficiency to a data-parallel
implementation. Additional minor changes to the Mon-
soon microarchitecture (optimizing fanout, bubbles and
switches) could reduce multithreading overhead by about
30-40%.

6 Implications for the Future

Both the CM-5 and Monsoon are custom, integrated par-
allel designs – the programming languages, compilers,
processors and networks were all designed specifically for
a parallel computing model. In both cases, scant attention
was paid to compatibility with existing sequential or par-
allel programs. One lesson of the Nineties is that, to take
advantage of the continuous improvements in technology,
both the hardware and software for parallel computers
must be derived from the widespread personal computer
and associated server technology. Although the CM-5
used Sparc microprocessors for its nodes, most of its com-
putational power came from its custom-built vector units.
A modern symmetric multiprocessor (SMP) with four mi-

croprocessors is a much more general-purpose building
block than the CM-5 node. In the future, Monsoon style
multithreading may be incorporated in commercial micro-
processors, but the external interface is more likely to be
a sequential machine language than a dataflow graph.

Regardless, parallel computing has truly entered the
mainstream in the form of small-scale 2 to 8-processor
SMP’s. These SMP’s are based on the same commodity
microprocessors used in desktop workstations and PC’s,
and being brought to market simultaneously with work-
stations and PC’s by mainstream computer manufactur-
ers. They are typically used in the business world either
to handle multiple users running sequential applications,
or as large database and World Wide Web servers. Almost
incidently, they can also be used for scientific computing
applications such as GCM. For higher performance levels,
clusters of SMP’s can be networked using either custom
or commodity networks. Under the US Department of
Energy ASCI program [30], two 4-Teraflop machines are
being constructed as clusters of high-end SMP’s.

However, so far SMP’s have generally not been used for
parallel computing in the traditional sense, and therefore
research into the two programming models discussed in
this study are still relevant. Both the data parallel and
multithreading programming models can be implemented
on SMP’s and clusters of SMP’s, and represent the two
most promising models for exploiting parallelism on these
architectures. In the remainder of this section, we discuss
the implementation of data parallel and multithreading
programming models for SMP’s and clusters of SMP’s.

6.1 Data parallel and multithreading on
SMP’s and SMP clusters

Most parallel computing performed on SMP’s today can be
characterized generally as data parallel or multithreaded,
though SMP’s have no special hardware support for ei-
ther model. At the lowest level, the basic mechanism for
exploiting parallelism within an SMP is OS threads or
processes, and communication and synchronization occur
through shared memory. Between SMP’s, communica-
tion and synchronization are implemented through explicit
message passing.

These low-level mechanisms can be exploited through
C or Fortran programs via calls to parallel “libraries”,
that can be either multithreaded or data parallel.
Multithreaded-style lightweight threads libraries are im-
plemented on top of OS threads or processes, and provide
primitives for creation and synchronization of lightweight
threads. Message-passing libraries, such as PVM and
MPI, provide communications and synchronization rou-
tines for programs that are usually structured in a data
parallel manner (that is, they usually have a single logical
thread of control, interleaving stages of communications
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and computation). Thread libraries can be implemented
for clusters of SMP’s, although the lack of a shared mem-
ory across the cluster becomes problematic. Data parallel
message-passing libraries are more straightforward to im-
plement both within SMP’s and on clusters because they
implicitly have a distributed memory model.

At a higher level, several compilers for High Perfor-
mance Fortran (HPF) exist for SMPs – HPF is a successor
to CM Fortran that has become the standard data parallel
Fortran. Using HPF on high-end SMP’s the GCM algo-
rithm that has been under scrutiny here, can deliver a level
of performance approaching that of the CM-5 [24]. Sev-
eral vendors also provide HPF compilers for clusters of
SMP’s, and these compilers usually attempt to structure
computation even within an SMP as phases of computation
and message-passing style communication.

The state-of-the-art in high-level programming envi-
ronments for multithreaded computation is several years
behind data parallel, and no language or system has been
as widely accepted as HPF has for data parallel computa-
tion. We are pursuing our research into multithreading by
compiling Id and a related language pH for SMP’s [41, 6].
Whereas Id and pH have implicit parallelism and synchro-
nization, other languages require the user to expose the
parallelization and synchronization. Some of these lan-
guages include Mul-T [29], Cilk [10], Concert [39], Cid
[35] and Java [18].

6.2 Future research

It is important to discuss the problems that need to be
resolved in order to provide the user with a single effective
programming model which will work on a cluster and
scale down gracefully to a single SMP or a workstation.
We discuss both data parallel and multithreading models
from this point of view.

Most of the technology for compiling HPF for SMP’s
and clusters of SMP’s exists today, although it needs to be
improved. For example, for efficient message passing, the
compiler needs to coalesce messages to increase message
granularity, and for a more effective use of an SMP, the
parallel code fragments within an SMP need to maximize
the use of threads and shared memory. It remains to be
seen if the market for HPF is large enough for commercial
vendors to make the required improvements. A way to
broaden the use of data parallel compiler technology is to
apply it to standard Fortran and C programs. This approach
has been taken by the SUIF compiler [4], and research
issues in that direction include detection of parallelism,
mapping of data and work, restructuring of loops to exploit
hierarchical memories, and load balancing in the presence
of multiple users and processes.

Although data parallel is well-suited for GCM and other
regular scientific applications, it is ill-matched to the vast

majority of commercial applications that run on high-end
computers today. Yet, the research in multithreaded com-
puting on SMP’s is not as advanced as for data parallel.
The main compiler issues are the ability to optimize in
the presence of hierarchical memories, the implementa-
tion of a shared memory abstraction in a distributed mem-
ory environment, and load balancing coupled with tem-
poral and spatial locality concerns and multi-user envi-
ronments. The compiler also needs to be integrated with
the run-time system for efficient creation, synchronization
and scheduling of threads. Compilation of fine-grain par-
allel languages like Id also requires partitioning of work
into coarser grain threads for better efficiency. Further re-
search for incorporating multithreading into a mainstream
general-purpose language is also needed. It seems paral-
lelizing a sequential language for multithreaded execution
would have the biggest impact.

In comparing the suitability of these two models for
SMP’s and clusters of SMP’s, the same issues that we
have addressed in this paper arise. Overheads from the
data parallel model come from poor handling of irregular
problems, and overheads from multithreading come from
dynamic parallelism and synchronization. Our study in-
dicates that in some realistic circumstances overheads for
multithreading can be comparable to a data parallel im-
plementation even for regular scientific applications. The
generality of the multithreading model may attract greater
resources from industry, and may have much greater im-
pact in the future than the data parallel model.
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A Mathematical formulation of
ocean model

The ocean model solves the full three-dimensional Navier-
Stokes equations for an incompressible Boussinesq fluid in
a highly irregular domain such as that of an ocean basin.
Development of such a model is of general interest be-
cause:

� Navier-Stokes models can be applied to a vast range
of fluid flow problems in engineering and myriad
phenomenon in the atmosphere and ocean. In partic-
ular, when viewed isomorphically, the incompress-
ible Navier-Stokes equations can be used to study
a compressible atmosphere – they are the basis
of the pressure-coordinate quasi-hydrostatic atmo-
spheric convection models of Miller and Pearce [33]
– see [11]. Thus incompressible Navier-Stokes algo-
rithms can be used to study motion in the atmosphere
by exploiting a mathematical isomorphism.

� In oceanographic applications, the model is appropri-
ate for the study of convective scales, where the hy-
drostatic relation breaks down, right up to planetary-
scale motions. Thus if the resolution of the model
were to be continually increased the model equations
would be capable of representing motions down to
the scale of meters.

� Numerical algorithms based on the Navier-Stokes
equations need not be any more complicated (and
are sometimes simpler) than those based on approxi-
mated forms and may offer advantages. For example,
a common problem in hydrostatic ocean models is the
noise in the vertical velocity field on the grid-scale of
the model, particularly in the presence of steep topog-
raphy. This noise may be inherent in the numerical
algorithm; the equation that expresses the condition
of incompressibility – the continuity equation – is
used to compute the vertical velocity, leading to an
accumulation of errors as the vertical integration pro-
ceeds upwards from the bottom.

A.1 The continuous equations

The physical variables of the ocean model are the fluid
velocity

�� , the density � , the scaled pressure � defined as
the physical pressure divided by a constant average density,
the temperature � , and the salinity

�
. The equations of

motion are:
Newton’s Law � ����� � ��! � ���� (A1)

where
��  � � �� 
 �� �� � ���� �� � �� ���

ˆ	 � (A2)

and
�� is the Coriolis force,

��
are forcing and dissipation

terms and
�

ˆ	D� is the gravitational force.
The heat equation is � ���� � �	� (A3)

where
�	� � � �� 
 �� � � � � � � � (A4)

and the salinity equation has the analogous form� ���� � � o (A5)

� o � � �� 
 �� � � � o � � o (A6)

In Equations A1
�

A6,
��
,
� � and

� o are specified force
terms and the

�
’s are anisotropic dissipation terms of the

form
� � ��� �� o
 �
� � � $�� � � 2�.%

2
� � 2�.'

2

 � $�� � 2�j(
2


� � ��
� �
 �
�

(A7)
The velocity field satisfies the continuity equation

�� 
 �� � 0 (A8)

and the density is given by a ten-term polynomial approx-
imation to the local equation of state � � � 	 � 

A.2 Method of solution

Given the variables
�� � , � � , � � and

� � , a predictor step of
size

$��
is first taken to compute an approximate velocity

at step � � 1

�� � � �� � � $�� � ��! � �� � 	 � � � � 	 � � � � ���� �  (A9)

from which the Euler-backward driving term � at step� � 1 is determined
��  
� � ��  � �� � 	 � � � � 	 � � � (A10)
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To enforce
�� 
 �� ��� 1 � 0, the pressure at step � � 1 is

calculated from the Poisson equation

� 2 � ��� 1 � ��(
 ��  � � 1$�� �� 
 �� � (A11)

where the last term is retained to control rounding errors
and the velocity is then evolved to step � � 1

�� ��� 1 � �� � � $�� � ��  � � ���� � � 1  (A12)

The temperature and salinity are updated analogously,with
predictor step

� � � � � � $�� �	� � �� ��� 1 	 �  (A13)� � � � � � $�� � o � �� ��� 1 	 �  (A14)

followed by the Euler-backward step

� ��� 1 � � � � $�� �	� � �� � � 1 	 � �  (A15)� ��� 1 � � � � $�� � o � �� ��� 1 	 � �  (A16)

All derivatives in Equations A9
�

A16 are approxi-
mated by second-order differences with velocities being
defined on the centers of the mesh cell faces and � ,

�
,

and � defined at the cell centers. The Poisson equation is
solved by conjugate gradient iteration.
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