CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

A Type System for Functional Imperative
Programming (Technical Summary)

Shail Aditya, Satyan Coorg

1994, July
Technical Summary

Computation Structures Group
Memo 368

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

A Type System for Functional Imperative Programming
(Technical Summary)

Computation Structures Group Memo 368
July 25, 1994

Shail Aditya
Satyan Coorg
MIT Laboratory for Computer Science
{shail,satyan}@lcs.mit.edu

The research described in this paper was funded in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research con-

\ tract N00014-92-J-1310. /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A Type System for Functional Imperative Programming
(Technical Summary)

Shail Aditya Satyan Coorg

MIT Laboratory for Computer Science
545 Technology Square, Cambridge, MA 02139
{shail,satyan}@lcs.mit.edu

July 25, 1994

Abstract

In this paper, we explore the design of a powerful type system that provides a general
mechanism to encapsulate low-level imperative program fragments into type-safe functional
abstractions without imposing any single-threadedness constraint. Although confluence is the
responsibility of the user, the type system guarantees that data-structures exported out of
the functional abstraction are fully polymorphic and non-mutable and therefore can be safely
embedded within functional programs without disturbing their functionality.

We present the static and the dynamic semantics of our system for a mini-language containing
ML-like references. We describe the mechanism of converting mutable types into functional
types and prove its soundness. Finally we discuss extensions to include arrays, tuples and
general multi-level data-structures in our framework.

1 Introduction

In modern programming languages, high-level functional abstractions are often implemented using
low-level imperative operations either directly within the compiler or separately within accom-
panying libraries. The imperative implementations have obvious advantages in terms of storage
efficiency and avoiding data-copying overhead on every update. But arbitrary use of imperative
constructs in a functional program destroys its nice functional properties that otherwise lead to
powerful reasoning techniques and compiler optimizations. In this paper, we propose a type system
which provides a reasonable solution to this problem in the context of the implicitly parallel and
mostly functional programming languages Id [15] and pH [16] (a parallel version of Haskell [8]).

1.1 The Problem

Consider the problem of implementing functional arrays that are homogeneous, non-mutable, poly-
morphic arrays. The function make_vector creates a one dimensional functional array that memo-
izes a computation for a given index range. A direct and efficient way of implementing make vector
is to allocate memory and then fill it with the value of the computation function at each index:

Example 1:
make_vector :: Vi.(int —t) — (int,int) — (¢t m_vector)
def make_vector £ (1,u) =
{ a = alloc_vector (1,u);
{for i <= 1 to u do
ali]l] (= £ i }
in a };

The problem with providing the above definition in a standard library as opposed to hard-coding
it into the compiler is the following. First, the above code is not functional and hence it is not
expressible in a functional language. Second, it returns a mutable array of type (¢t m_vector) instead
of a functional array of type (¢ vector). There is no guarantee that the user will not tamper with
the contents of the array once it is returned. Furthermore, in order to be sound, mutable objects
must be restricted in polymorphism [22] which is not what we want for fully polymorphic functional
arrays.

In order to express the above code in a standard library, the language must support an imperative
kernel in which low-level imperative operations such as memory allocation and assignment are
permitted. This means that the type system must have the capability to deal with imperative
objects and functions that create and manipulate such objects in a sound manner. Furthermore,
there must be a way to encapsulate such imperative programs that guarantees that the returned
array a is non-mutable and is given a polymorphic functional type.

1.2 A Proposal for “Close”

There are many existing type systems in the literature that already deal with the problem of
extending the Hindley/Milner type system to imperative objects [6, 10, 11, 14, 21, 22, 24]. Any
one of these may be used to support an imperative kernel language in a type-safe manner. As
for making the make vector function return a functional array in Example 1, we introduce a type
conversion operator called close:

Example 2:
make_vector :: Vi.(int —t) — (int,int) — (¢ vector)
def make vector f (l,u) = close { ... };

Now, the returned vector has a functional type which prohibits any subsequent assignments from
being performed over it. In general, the close operator can be used to convert arbitrary non-
functional data-structures like I-structures [1] and M-structures [2] into functional ones, retaining
all the advantages of using these data-structures inside the close’d expression. The close operator
delimits a well-defined control block within which the user has full flexibility and the raw power of
an imperative language before exporting mutable data-structures across its boundary and rendering
them functional.

1.3 Soundness Issues

However, simply converting the type of the returned result from an imperative program does not
automatically ensure its non-mutability. If the returned result somehow escapes the scope of the
control block in which it is being closed then that close operation is unsafe because the returned
object may be mutated even after it is assigned a functional type. For example:

Example 3:
b =ref ...;
def escape.l n =
close { a = alloc_vector (1,n);

b := a; % Storing into an external data structure
in a };
def escape 2 n =
close { a = alloc_vector (1,n);

def giv = h Allowing a write handle to escape
{ alil
in v };

in a,g };

v

In function escape_1, a reference to the locally allocated imperative array a is stored into an
external object b. The type of the object b is constrained to be ((¢t m_vector) ref) implying that
the array a is still accessible in its open form through this indirection. The same effect is achieved
in the function escape 2, although it is disguised in the form of a function that provides a write
handle to the array being closed.

1.4 Our Work

The goal of this paper is to design a type system that automatically verifies the soundness of the
type conversions implied by the close operations provided by the user. Our type system closes a
polymorphic mutable data-structure only if it is guaranteed that no write handle pointing to that
object remains accessible to the user after it is closed. Unsafe uses of the close operator such as
those in Example 3 are flagged as compile-time “close-errors”.

Note that close is purely a type domain operation, no run-time copying is involved while doing this
type conversion. Therefore, there is no time or space overhead of using the close operation once
it has been verified by the type system. Also, this approach may yield more parallelism because no
single-threading constraint is imposed on the underlying imperative program encapsulated within
the close operator. The following histogram example illustrates these issues:!

Example 4:
type tree ¢ = leaf | node ¢t (tree t) (tree 1);

def histogram t n =
close { a = alloc_vector (1,n);
{for i <- 1 to n do
ali] := 0 };
_ = accum t a n;

'"We use pattern-matching to destructure and dispatch according to the shape of the given tree. In a parallel
implementation, the array increment is performed atomically and the barrier (---) prevents the final array from
being released before all the accumulations have finished.

in a };

def accum leaf a n = ()
| accum (node x 1 r) an =
{ i = hash x n;
ali] := a[i] + 1;
_ = accum 1 a n;
_= accum r a n; };

In this example, a histogram of objects drawn from a binary tree is accumulated into an array a
which is closed and returned at the end. No copying is involved during accumulations or at the
time of returning the final array. Furthermore, the histogram initialization and the entire tree
accumulation can potentially be done in parallel. Thus, the close construct enables returning
a functional result without any copying or restricting the parallelism inherent in the underlying
implementation.

From a practical standpoint, our type system provides a sound semantic interface between high-level
functional constructs of the language and their imperative implementations in libraries. Further-
more, the language is not restricted to a fixed set of functional constructs built into the system; the
users can program their own imperative implementations of arbitrary functional data-structures
and extend existing ones using the type system without disturbing the compiler at all. As illus-
trated above in Example 4, our type system also enables implementing functional computations
using imperative algorithms that can not otherwise be expressed in a functional style efficiently.

From a technical standpoint, we believe we have the first type system which directly models imper-
ative implementations of functional data-structures along with a complete proof of its soundness.
The main result of this paper is the soundness theorem shown in Section 4 which provides the
guarantee that well-typed terms in our system do not run into dynamic type-errors. This directly
implies that in a type-correct program, it is not possible to mutate an object once it is converted
into a functional type.

1.5 Related Work

The Closure Typing system proposed by Leroy [10] is the basis of our work. This powerful type
system was designed to determine when type-generalization was safe in the presence of side-effects.
Our contribution is adding regions to this type system and recognizing that such a system has
all the information needed to express and verify type-coercions between imperative and functional
data-structures.

Effect systems [12, 21, 24] are closely related to our work. Effects and regions in this type system
describe the side effects that expression can have. Effect systems are able to determine when
it is safe to evaluate expressions in parallel [12], and when to permit type-generalization [21, 24].
Although Talpin and Jouvelot [21] use regions to mask side-effects that are not visible from outside,
they do not convert imperative data-structures into functional ones. However, as it seems that their
system is at least as powerful as the closure typing system [10], we conjecture that our system can
be adapted to work in their framework. We have chosen to work with the closure typing system
because it provides a direct relationship between types and actual structure of objects and a simpler
theoretical framework to deal with.

A different approach to integrate imperative and (lazy) functional programming has been the focus
of many recent papers [5, 20, 23, 17, 3, 18, 7, 9]. These papers attempt to introduce assignments

into a functional language without destroying its strong functional properties (e.g., confluence and
referential transparency). To preserve these properties, they ensure that assignments in a program
are single-threaded [19] by means of type systems [5, 20, 23], reduction rules [17], dataflow analysis
[3, 18], or data abstraction and monadic function composition [7, 9]. Side-effect analysis using
regions, such as ours, is orthogonal to the techniques given in these papers and such analysis could be
used to make these languages or type systems more permissive. Our system inherits the properties
of the underlying imperative kernel and simply provides a sound mechanism to encapsulate and
convert mutable objects into functional abstractions rather than enforcing additional functional
properties (e.g., confluence) on the underlying kernel.

1.6 Outline

The rest of the paper is organized as follows. Section 2 describes a small expression language and
its operational semantics. Section 3 describes the type system proposed in this paper. Section 4
shows the soundness of the type system. Section 5 describes a few extensions to the basic type
system and Section 6 concludes.

2 Dynamic Semantics of a Mini-Language with “Close”

2.1 Syntax

The expression syntax of our mini-language is given below. For simplicity, the language provides
ML-like references [14] as the only means of creating mutable data structures. A brief description
of possible extensions to other data structures is given in a later section.

EXPRESSIONS: a = ¢ constant
| = identifier
| fwhere f(z)=a recursive function
| a1 ay application
| letz=ua; inay let binding
| closea close expression
The set of constants include the usual arithmetic primitive functions (4, —,...), and functions to

allocate, read and write locations (ref,!,:=). We define F(a) to be the set of free identifiers of
the expression a.

Entities used in the dynamic semantics are defined as follows:

VALUES: v = c constant
| (clsr f,z,a,€) function closure
| store location
ENVIRONMENTS: — IDENTIFIERS — VALUES
STORES: = LOCATIONS — VALUES X TAG

Each location in a store has a tag, rw or ro, indicating that the location has read /write or read-only
semantics. This is useful in modeling the dynamic semantics of the close operation where the tag
of a location is explicitly changed from rw to ro. We assume functions value(s,!) and tag(s,!) that
read the value and tag respectively from a location.

CONST: ekc/s=c/s

IDENT: z € Dom/e)
’ eba/s=e(x)/s
ABS: Y = F(f where f(z) = a)
’ e (f where f(z) =a)/s = (clst f,z,a,e|y)/s
et ay/s = (clsr f,z, a9, e0)/51
APP ek ay/sy = vy/s9
’ eo +{f = (clsr f 2, a0,€0),2 = va} - ag/s2 = v/s3
et (a1 az)/s= v/s3
el ay/s= v /s e+{z— v} Fay/s; = vy/s9
LET: .
et (let 2 = ay inag)/s = va/s9
) eFa/s=v/s I ¢ Dom(sy)
ALLOC: et ref(a)/s=1/(s1+ {l— v,rw})
— eFa/s=1/s l € Dom(sy) value(sy,l) = v
et la/s = v/s;
ASSIGN ela/s= (l,v)/s l € Dom(sy) tag(sy,l) = rw
elF :=(a)/s = O/(s1 +{l—= v,1w})
eta/s=1/5 s1(l) = v, 1w
CLOSE: L = Reachable(l, s1) U Reachable(e, s1) UUyc Dom(s) Reachable(l', s1)

et (closea)/s=1/(s1 | +{l — v,10})

Figure 1: The Dynamic Semantics of the Mini-Language.

For a value v, we define £(v) to be the set of locations directly contained in the value v. This
is defined structurally as follows: L(c) = ¢, L£(I) = {l}, and L((clsr f,z,a,e)) = L(e). For an
environment e = {1 = v1,..., 2, = v, }, we define L(e) = Uy<;<, £(v5).

We also define Reachable(v, s) to be the set of all locations within the domain of store s that are
either directly contained within the value v or transitively contained in a value stored at such a
location via the store s. This extends naturally (pointwise) to values present in an environment e.

2.2 Evaluation Rules

Figure 1 shows the axioms and inference rules for establishing EVALUATION JUDGMENTS of the form
et a/s= v/s'. We do not provide “error” rules explicitly; a dynamic type-error occurs when the
evaluation becomes “stuck”. Most of the rules are fairly standard and self-explanatory. The rules
for primitive reference operators are handled as special cases of the general App rule. The AssiGN
rule makes sure that the location being written carries a read/write tag.

The cLOSE rule is the only place where the read/write tag of a location is explicitly changed to a
read-only tag. This causes a dynamic “close-error” to be generated if that location is subsequently
assigned. Ultimately, we would like to detect such dynamic errors at compile-time using the type
system. We also restrict the domain of the final store in the CLOSE rule to the reachable locations
of the location being closed, the current environment and the locations of the initial store. This
operation “cleans” the store by removing spurious unreachable handles from its domain that point
to the location being closed.?

Although the rules given in Figure 1 provide a strict, sequential, call-by-value semantics for the
mini-language, our technique does not rely on preserving the sequentiality or the determinism of
evaluation. This is seen from the fact that even if we make the language non-deterministic by adding
an additional APP rule which interchanges the order in which the function and the argument are
evaluated, our results on close still hold.?

3 Static Semantics

Now we will briefly describe Xavier Leroy’s closure typing system [10] and our extensions to it. A
type T in our system is defined by:

TYPES: Tu=t|e| w7 | Tref(r)| T ref(e)

where t corresponds to an ordinary type variable and ¢ corresponds to a base type. Type schemes
(0 =Vaq...,.7) are quantified types.

Functions in Leroy’s system are decorated with a set of closure types (denoted by 7 = 01,09, ..., u),
which corresponds to the type schemes of the free identifiers of a function. The closure extension
variable (u) allows us to extend the set of closure types in a meaningful manner during type
unification. These closure types are useful in keeping track of the mutable objects hidden inside a
dynamic function closure.

We extend the closure typing system by parameterizing type constructors with regions. A region
variable parameter (r) on a reference type constructor serves two purposes. It identifies the reference
type as being mutable and it also serves as a static abstraction for all the mutable locations that have
that type. Non-mutable references are identified by a null region parameter (¢) which shows that
they have been closed. Note that ref(r) and ref(e) are considered to be distinct type constructors
for the purpose of type unification; they have a similar form only for syntactic uniformity.

For any type object T, where T may be a type, a closure type, a region, or a type scheme, we
can define its FREE VARIABLES F(T') as the set of all type, region, and closure extension variables
contained in 7. We also define the DANGEROUS VARIABLES D (1) as follows:

D) = ¢ D(u) = ¢
D) = ¢ D(o,7) = D(o)uD(m)
D(n ~Hm)=m) = D(r) D(r) = ¢
D(r ref(r)) = F(r ref(r)) DNVoy...an.7) = D(r)\{ar...a,}
D(r ref(e)) = D(r) D(e) = ¢

2This restriction is only necessary to simplify our soundness proof.
#Using a truly “parallel” semantics would be a more convincing argument, but we are not aware of a relational style
semantics which captures parallelism. Adapting our system to a “parallel” semantics is a topic for future research.

CONST:

IDENT:

{v1--.yn} = F(f where f(z) = a)
ABS: E+{f—n—Ey), .., Ey),m)—m,c—n}kFa:m
EF (f where f(z)=a) : 71 {(E(y1),..., E(yn), 7)=> T2

Eray:m—r)y>m Etas:m

APP: EFtayay:m
Fta :m E+{z— Gen(E, 1)} Fag:m
LET: -
EF(letz=a;inay) : 7
CLOSE: Etra:T1ref(r) r ¢ (F(E)UF(r))

E (closea) : 7 ref (¢)

Figure 2: The Static Semantics of the Mini-Language.

Finally, the DANGEROUS REGION VARIABLES R(7) are the region variables in D(7').

TYPE SUBSTITUTIONS (i) over this type algebra are finite mappings from regular type variables to
types, from closure extension variables to closure types, and from region variables to other region
variables. We do not allow substituting region variables with the null region (¢) because that would
convert a mutable reference type into a non-mutable reference type. This operation should only
be performed when it is determined to be safe and is explicitly done using the close construct.
Type substitutions extend naturally over types, closure types, and type schemes, being applied to
their free variables in each case. The instantiation of a type scheme o0 = Va; ...ay,.79 to a type 7,
written as o > 7, is defined if there exists a type substitution ¢ with Dom(¢) C {ay...a,} such
that 7 = ¢(79).

The basic idea of our type system is to use the type of a composite object as a clue to the reachable
mutable reference locations contained within it. Dangerous variables provide this clue directly from
the overall type of an object. Intuitively, dangerous lype variables model the polymorphic values
stored in mutable data-structures and the dangerous region variables model the locations of those
mutable data-structures.

3.1 Typing Rules

Figure 2 shows the axioms and inference rules for establishing ELABORATION JUDGMENTS of the
form F'F a: 7, where F is a type environment that maps identifiers to type schemes. The coNsT
rule establishes the type of a constant according to a predefined relation typeof that provides the
type scheme associated with it. Most constants and operators have the obvious type schemes. We

only show the predefined type schemes of the three reference operators below:

typeof (ref) = Vt,u,r.t —(uy—>t ref(r)
typeof(! mutabls) = Vt, u,r. t ref(r) —<’LL>—)t
typ€0f(! non-mutable) \V/t, u. t T@f(G) —<U>—>t
typeof (:=) = Vt,u,r. (Lt ref(r),t) <u)y— unit

The coNsT, IDENT, APP, and LET rules are standard Hindley/Milner typing rules [13]. The
generalization operation in the LET rule excludes the dangerous variables D(7) from being gen-
eralized:

Gen(E,7)=Vay...a,.7 where {oq...a,}=F(r)\D(r)\ F(F)

This ensures that the type variables corresponding to mutable objects are not generalized, making
our type-generalization sound.

The ABs rule shows how closure types are created in this system. The type schemes of all the free
identifiers of the function are stored in its closure type. This helps to expose the mutable locations
hidden inside the closure environment of a function so that closing such data-structures may be
caught as a compile-time close-error (Example 3).

Finally, the cLOSE rule converts a mutable reference type into a non-mutable reference type by
erasing its region variable r and replacing it with the null region (¢). By checking that r does not
occur free in the type environment F or in the exported type 7, we ensure that the corresponding
reference location [being closed is not escaping from the current scope. Informally, r ¢ F(FE)
implies that [is not reachable from the value environment (e) and r ¢ F(7) implies that [is not
recursively reachable from the value stored in the location /. Thus, no write handle to the location
[is escaping and it can be safely closed. A compile-time close-error is flagged if this check fails.

As an aside, we note that a type inference algorithm can be designed for this type system along
the lines of [10]. We do not discuss that here, the reader is referred to [10] for details.

4 Type Soundness

4.1 Semantic Consistency

In order to show the soundness of the typing judgments generated by the above type system with
respect to its evaluation rules, we must precisely characterize a “consistent” semantic relationship
between value-domain entities and their corresponding type-domain entities. Since values may
contain reference locations from the store, we introduce STORE TYPINGS (5) as finite mappings
from store locations to types. We also define that a store typing S’ extends another store typing
S if Dom(S) C Dom(S’) and S(I) = S'(I) for all I € Dom(S). Semantic consistency is now defined
below:

Definition 1 (Semantic Model) Let s be a store, S be a store typing, e be an environment, £
be a type environment, v be a value, T be a type, and o be a type scheme. Define the following
relations:
Case I: S = v : 17 — The value v belongs to the type T under the store typing S. The various
cases are as follows:
SubCase 1.1: S |= ¢ : typeof(c), where typeof is a predefined relation between predefined con-
stants and their types.

SubCase 1.2: S [(clsr f,z,a,€) : 7y <(7)—> T2, if there exists a type environment E such that
SEe:FE and EF (f where f(z) =a) : 1 —{7)>Ty.

SubCase 1.3: S =1:71ref(r), ifl € Dom(S) and S(I) = 7 ref(r).

SubCase 1.4: S |=1:7 ref(e), if l € Dom(S) and there exists a substitution ¢ with Dom(p) C
F(S()\D(S(l)) such that ¢(S(1)) =T ref(e).

Case 2: S = v : 0 — The value v belongs to the type scheme 0 = Yoy ...a,.T under the store
typing S, if none of a; belong to D(1) and if S = v : ¢(7) for all substitutions ¢ with Dom(p) C
{og ...}

Case 3: S | e: E — The values contained in the environment e belong to the corresponding type
schemes in the type environment E (pointwise) under the store typing S, if Dom(e) = Dom(F)
and for all € Dom(FE) we have S |=e(z) : E(z).

Case 4: = s : S — The values contained in the store s belong to the corresponding types in the
store typing S (pointwise), if Dom(s) = Dom(S) and for alll € Dom(S) we have,

SubCase 4.1: If S(I) = 7 ref(r) then s(I) =v,rtw and S = v : 7.
SubCase 4.2: If S(I) = 7 ref(¢) then s(l) =v,roand S = v : 7.

The above definition models the type polymorphism and the dynamic mutability of closed and
mutable locations in a consistent manner. SubCase 1.4 allows a closed location (typed using the
null-region €) to be typed polymorphically, while a mutable location in SubCase 1.3 (typed using
a region variable r) is allowed to have only a monomorphic type. Similarly, closed locations in a
consistent store are defined to possess the read-only tag (SubCase 4.2), while mutable locations
must have the read/write tag (SubCase 4.1).

4.2 Type Soundness and Non-Mutability

The following proposition establishes the essential correspondence between the dangerous regions
of a type and the mutable locations that are reachable from a value possessing that type. This
allows us to use dangerous regions as a safe static abstraction for mutable locations. The proof is
done using induction on the depth of reachability of a location [in the value v.

Proposition 2 (Region Abstraction) Lets be a store and S be a store typing such that |=s: S.
If S = wv:7, 1 € Reachable(v,s) and r € R(S(l)), then r € R(1). That is, the dangerous regions
contained in the types of reachable locations of a value are dangerous in the type of the value. This
proposition can be extended pointwise to environments.

The semantic consistency between the static and the dynamic semantics can now be stated in the
form of the soundness theorem given below. It is proved using induction on the size of evaluation
derivation, doing a case analysis on @ and hence on the last rule used in the typing derivation.

Theorem 3 (Type Soundness) Let a be an expression, T be a type, E be a type environment, e
be an evaluation environment, s be an initial store, and S be a store lyping such that:

Eta:t and SEe: F and Es:S

If there exists a result r such that e b a/s = r, then r # err, instead r = v/s' for some value v
and a resulting store s', and there exists a store typing S’ such that:

S" extends S and S'Ev:T and Es:s

10

The soundness of the close operation relies on the fact that it only closes fresh and non-escaping
locations, i.e., locations that are neither present in the initial store s nor are accessible from the
environment e or hidden inside the result v. The former is a property of the dynamic rules and the
latter is ensured by the side condition on the static CLOSE rule and Proposition 2. A proof sketch
for this case is provided in the appendix. The details appear in [4].

The soundness theorem immediately leads us to the following corollary that guarantees that objects
with a closed functional type can not be mutated at run-time.

Corollary 4 (Non-Mutability) Let a be an expression fragment within a type correct program p
such that E'+ a : 7 where R(T) = ¢ and e - a/s = v/s'. Then, no location | € Reachable(v,s') is
mutated during the evaluation of the rest of the program.

Proof: Using the soundness theorem we know that the evaluation of p (and hence a) does not lead
to error and there exists a store typing S’ = v : 7 and | s’ : §'. We claim that for all locations
! € Reachable(v, s') we must have tag(s',1) = ro. Otherwise, from Definition 1 Case 4 it follows
that there exists a region variable ry such that S’(I) = 7 ref(r1); then using Proposition 2 it
follows that r; € R(7), which contradicts the hypothesis R(7) = ¢.

Now, sound uses of the ASSIGN rule in Figure 1 require that the tag of the location being
assigned should be rw. Furthermore, there is no rule that converts the tag of a location from ro
to rw. Therefore, no assignments are possible on any location ! € Reachable(v,s’) in the rest of
the program. a

5 Extensions

In this section we describe how to extend the use of the close construct to mutable arrays and

arbitrary, multi-level data-structures involving a combination of references, tuples, functions and
4

arrays.

5.1 Arrays

The treatment of individual reference locations in Sections 2 and 3 directly extends to arrays of
locations. A 1-dimensional array value is modeled as a pair (vect /,n) which denotes n consecutive
array locations starting from [. Since arrays are considered to be homogeneous data-structures, a
single region variable suffices to represent the imperative properties of all the locations within an
array. For example, a mutable vector containing values of type 7 is typed as (7 vector(r)) (c.f.
mutable references with type (7 ref(r))).

The primitive dynamic rules for array allocation (alloc_vector (1,u)), array dereference (a[il)
and array assignment (a[i] :=b) follow the corresponding rules for references (see Figure 1). During
vector allocation, n fresh locations are added to the domain of the store all of which possess the
read /write tag. The dynamic CLOSE rule for a vector closes all its locations simultaneously. The
safety of this operation is ensured by the static cCLOSE rule (see Figure 2) that allows converting a
mutable vector type (7 vector(r)) into a non-mutable vector type (7 vector(e)) only if the region r
is not present in the enclosing type environment F and in the exported element type 7.

*Extensions to include general algebraic datatypes will be discussed in the full paper. We have dropped that
discussion from this technical summary due to lack of space.

11

The above machinery allows us to finally answer the problem in Section 1.1 regarding functional
arrays. The imperative implementations for functions make_vector (Example 2) and histogram
(Example 4) can now be verified and closed automatically.

5.2 Multi-level Data-Structures

In our system, for each primitive or user-defined mutable datatype we have specific rules regarding
which regions may be closed and how to verify the soundness of the closing operation. But in
general, the result of an arbitrary close expression may be a multi-level data-structure involving
a combination of references, arrays, tuples, and functions. The user may want all or some of the
locations present in the result to be closed. This can be specified in our type system using a type
annotation:

closea:: 7

The user annotates the expression to be closed with an appropriately decorated type 7 that shows
all qualified type constructors along with their region parameters. Mutable types that need to be
closed are annotated with the null region (e).

In order to verify the soundness of such arbitrary close expressions, the type system effectively
synthesizes specialized dynamic and static CLOSE rules on the lines of the semantics presented in
Sections 2 and 3. First, the annotation type is matched against the inferred type of the expression to
determine the exact set of region variables being closed. In order for the overall close operation to be
sound, none of the region variables being closed should be present in the current type environment
E or the annotation type 7 (c.f. CLOSE rule in Figure 2).

6 Conclusions

In this paper, we have presented a powerful type system which provides a general mechanism to
encapsulate low-level, imperative program fragments into sound, high-level, functional abstractions
without imposing any single-threadedness constraint. We achieved this by adding a new construct
to the kernel language called close, that changes the view of a mutable data-structure from imper-
ative to a functional one. The type system statically verifies the soundness of such a change and
guarantees dynamic functional behavior for the closed object.

We also briefly described how to extend the use of the close construct to arrays and general multi-
level data-structures. QOur proposal for syntactically specifying imperative expressions that may
be closed using type annotations provides complete flexibility to the user while enabling the type
system to automatically verify the soundness of this operation.

Our type system can be viewed as a safe trap-door to embedded imperative programming within
an overall functional setting. The user is allowed full flexibility in constructing arbitrary functional
abstractions using a controlled imperative approach. We believe that this is the best way to
obtain the potential benefits of imperative programming in a functional language without obscuring
parallelism and expressive power of the underlying imperative kernel.

7 Acknowledgments

The research described in this paper was funded in part by the Advanced Research Projects Agency
of the Department of Defense under Office of Naval Research contract N00014-89-J-1988.

12

The authors would like to thank Prof. Arvind, Xavier Leroy and Yuli Zhou for their helpful
comments and suggestions.

A Proof Sketch for the Soundness Theorem

First, we state some useful properties of the evaluation rules (Figure 1), static rules (Figure 2) and
the semantic model (Definition 1). The details of all these proofs appear in [4].

A.1 Properties of the Evaluation Rules

The following propositions are shown by induction on the length of the evaluation derivation for
the expression a, doing a case analysis on the last evaluation rule used in the derivation.

Proposition 5 (Fresh Locations) Let a be an expression, v be a value, e be an environment,
and sg, s1 be initial and final stores respectively such that e - a/sy = v/s;. Then,

I' € Reachable(v,s1) = I' ¢ Dom(so) \/l' € Reachable(e, sp)
and for all locations | € Dom(sy),
I' € [Reachable(l, s1) \ Reachable(l,so)] = I' ¢ Dom(so) \/l' € Reachable(e, sy)

That s, locations reachable from a value computed in an evaluation are reachable from the envi-
ronment or they are fresh locations.

Proposition 6 (Changed Locations) Leta be an expression, v be a value, e be an environment,
and sg, sy be initial and final stores respectively such that e - a/sqg = v/sy. Then for any location
l € Dom(sy),

value(sg, 1) # value(sy,l) = | € Reachable (e, sp)

That is, only the locations reachable from the environment may change their value during an eval-
uation.

A.2 Properties of the Typing Rules

The following proposition states that typing is stable under type substitution. The proof of this
proposition is done using structural induction over a, doing a case analysis on the last typing rule
used in the typing derivation of a.

Proposition 7 (Stability under Type Substitution) Let a be an expression, T be a type, E
be a type environment, and ¢ be a substitution. If E'F a: 7, then ¢(E)F a: ¢(T).

A.3 Properties of the Semantic Model

The following proposition shows that a semantic relation such as S |= v : 7 that holds true at some
point during evaluation, remains true under an extended store typing.

13

Proposition 8 (Store Typing Extension) If S’ extends S, then S |= v : 7 implies S" = v : 7.
Similarly, S = e : E implies S'"=e: E.

The following proposition establishes the fact that it is semantically safe to generalize the non-
dangerous variables of a type. It is proved using structural induction over v using the definition of

= (Definition 1).

Proposition 9 (Semantic Generalization) Let v be a value, T be a type and S be a store typing
such that S = v : 7. Let aq,..., 0, be type variables such that for all i, o; ¢ D(7). Then,
for all substitutions ¢ with Dom(p) C {a;...0,,}, we have S |= v : ¢(T). As a consequence,
SEv:VYar...apn.T.

A.4 The Soundness Theorem

Now, we sketch the proof of the CLOSE case of the soundness theorem.

Proof: The proof is by induction on the size of evaluation derivation. The argument is by case
analysis on a. Refer to the static (Figure 2) and dynamic (Figure 1) cLOSE rules. Using the
induction hypothesis on @, we obtain e - a/s = [/s; with the store typing S; such that S;
l:7 ref(r), E s1:51 and Sy extends S. From the first two clauses and the definition of = for
mutable locations, we obtain, [€ Dom(S1), S1(l) = 7 ref(r), s1(I) = v,rw and S; = v : 7. Thus,
the CLOSE evaluation rule applies. Define s’ = sy |, +{l — v,ro} and S' = Sy |1, +{l — 7 ref(€)}.
Now, we have to show the following:

S'El:T ref(e) and Es:S and S extends S (1)

The first clause follows directly from the definition of |= for non-mutable locations since we have

chosen [€ Dom(S’) and S’(1) = 7 ref(e).

Next, we show that [¢ Reachable(e,s). If not, r € R(S1(l)) = R(S(I)) (as S; extends)
C R(E) (by Proposition 2) C F(£), which contradicts the condition r ¢ F(E) of the typing
rule. Similarly, we can show that | ¢ Reachable(e, s1).

Now, we show that S’ extends S. Note that S extends S if and only if I ¢ Dom/(5), since that
is the only location at which Sy and S’ differ. As we know that ! ¢ Reachable(e, s), Proposition 5
on the evaluation e - a/s = [/s; implies that [€ Dom(s) = Dom/(S).

As the final step in proving Equation 1, we have to show |= s’ : S’. By construction of S’ the
tags of s" are consistent with S’. To show consistency for values in the store, consider a location !’
such that value(s',l') = v" and S'(I') = 7'. If v’ does not contain [/, we can show that S' =o' : 7/
by a simple structural induction on v’ (using the fact that Sy = v’ : 7/ and that [is the only
location in which Sy and S’ differ). To complete the proof, we show that [is not reachable from
any v’ (in s; and hence in s’) which implies the above property.

Assume that [€ Reachable(v’,s1). Looking at the components of Dom(s’), there are three
possibilities for {’:

1. I =1 — Then v = v. Given | € Reachable(v,s;), we apply Proposition 2 to [and v to
conclude that r € R(S1(l)) C R(r) C F(r) which contradicts the condition r ¢ F(7) in the
typing rule.

2. I' € Reachable(e, s;) — This implies [€ Reachable(e, s1), a contradiction.

14

3. I" € Reachable(Dom(s),s;) — We know that [was not reachable from any value present in
the domain s initially, i.e., [¢ Reachable(Dom(s),s) because we have already shown that
I ¢ Dom(s). Thus, the only way [could become reachable from Dom(s) after the evaluation
et a/s = v/s; is if some location in Dom(s) was assigned a new value from which [was
reachable. Without loss of generality, let us assume that location is I’ and the newly assigned
value is v/, i.e.,

31" € Dom(s): wvalue(s,l') # value(sy,I') =o' and [€ Reachable(v', s1) (2)

By Proposition 6, I’ € Reachable(e, s). Applying Proposition 2 to [and v’, we obtain r €
R(S1(1). Thus, r € R(S(I)). Applying Proposition 2 to I’ and e, we obtain r € R(FE) C
F(E), a contradiction.

References

[1] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-Structures: Data Structures for Parallel
Computing. ACM Transactions on Programming Languages and Systems, 11(4):598-632, 1989.

[2] Paul S. Barth. Atomic Data Structures for Parallel Computing. Technical Report
MIT/LCS/TR-532, Laboratory for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139, March 1992.

[3] A. Bloss. Update analysis and the efficient implementation of functional aggregates. In Pro-
ceedings of the ACM Conference on Functional Programming Languages and Computer Archi-
tecture, London, UK. ACM Press, September 1989.

[4] Shail Aditya Gupta. A Typed Approach to Layered Programming Language Design. PhD thesis,
Massachusetts Institute of Technology, December 1994. (In Preparation).

[5] J. Guzman and P. Hudak. Single-threaded polymorphic lambda calculus. In Proceedings of
Fifth Annual Symposium on Logic in Computer Science, pages 333-343. ACM Press, June
1990.

[6] My Hoang, John Mitchell, and Ramesh Viswanathan. Standard ML weak polymorphism and
imperative constructs. In Proceedings of the Fighth Annual Symposium on Logic in Computer
Science, pages 15-25. ACM Press, June 1993.

[7] P. Hudak and D. Rabin. Mutable abstract datatypes - or - how to have your state and munge
it too. Technical Report YALEU/DCS/RR-914, Yale University, Department of Computer
Science, July 1992.

[8] P. Hudak and P. Wadler (editors). Report on the programming language Haskell, a non-
strict purely functional language (Version 1.0). Technical Report YALEU/DCS/RR777, Yale
University, Department of Computer Science, April 1990.

[9] John Launchbury and Simon L. Peyton Jones. Lazy Functional State Threads. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation,
Orlando, Florida, USA. ACM Press, June 1994.

15

[10]

[11]

[14]

[15]

[16]

[17]

[18]

Xavier Leroy. Polymorphic Typing of an Algorithmic Language. Rapports de Recherche 1778,
INRIA, Rocquencourt, France, October 1992. English translation of the author’s Ph.D. thesis
originally in French.

Xavier Leroy and Pierre Weis. Polymorphic type inference and assignment. In Proceedings of
the ACM Symposium on Principles of Programming Languages, pages 291-302. ACM Press,
January 1991.

John M. Lucassen and David K. Gifford. Polymorphic Effect Systems. In Proceedings of
the Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
languages, San Diego, California, pages 47-57, January 1988.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348-375, 1978.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT
Press, Cambridge, Massachusetts, 1990.

Rishiyur S. Nikhil. Id Language Reference Manual Version 90.1. Technical Report CSG Memo
284-2, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139,
July 15 1991.

Rishiyur S. Nikhil, Arvind, and James Hicks. pH Language Proposal (Preliminary). Circulated
on the pH mailing list, September 1993.

M. Odersky, D. Rabin, and P. Hudak. Call by Name, Assignment, and the Lambda Calculus.
In Proceedings of the 1993 ACM Conference on Principles of Programming Languages, pages
43-56. ACM Press, 1993.

A.V.S. Sastry, William Clinger, and Zena Ariola. Order-of-evaluation Analysis for Destructive
Updates in Strict Functional Languages with Flat Aggregates. In Proceedings of the Conference
on Functional Programming Languages and Computer Architecture, Copenhagen, Denmark,
pages 266-275. ACM Press, June 1993.

D. Schmidt. Detecting global variables in denotational specifications. ACM Transactions on
Programming Languages and Systems, 5(2):299-310, 1985.

V. Swarup, U. S. Reddy, and E. Ireland. Assignments for applicative languages. In Func-
tional Programming Languages and Computer Archileclure, pages 192-214. Springer-Verlag,
February 1991. Lecture Notes in Computer Science, volume 523.

Jean-Pierre Talpin and Pierre Jouvelot. The Type and Effect Discipline. In Proceedings of the
ACM Symposium on Logic in Computer Science, pages 162-173. ACM Press, 1992.

Mads Tofte. Type Inference for Polymorphic References. Information and Computation, 89:1—
34, 1990.

Philip Wadler. Linear types can change the world! In Proceedings of the Working Conference
on Programming Concepts and Methods, Israel, pages 385-407. North-Holland, 1990.

Andrew K. Wright. Typing References by Effect Inference. In Proceedings of the jth European
Symposium on Programming, Rennes, France, pages 473-491. Springer-Verlag, February 1992.
Lecture Notes in Computer Science, volume 582.

16

