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Abstract

Execution of programs written in non-strict languages such as Haskell or Id/pH require the
ability to dynamically schedule multiple threads of computation. This is because the exact data
dependencies among the sub-expressions (and hence their ordering) cannot be completely de-
termined at compile-time. Synchronizing data structures such as I-structures and M-structures
also need a multithreaded execution model because a computation that gets blocked on a syn-
chronizing data structure can only be resumed if another computation produces that value.
However, there is considerable flexibility in choosing the granularity of threads and their dy-
namic scheduling strategy when implementing such a multithreaded model on existing sequential
and parallel platforms, leading to different trade-offs between the exposed parallelism and the
resource requirements.

This paper presents a formal framework for characterizing and exploring the spectrum of
such trade-off points — from purely eager, fine-grain dataflow execution to purely lazy, demand-
driven evaluation. We present a non-strict, kernel language and its multithreaded execution
model in the form of an abstract machine specification. The machine is capable of interpreting
non-strict programs using different normalizing strategies that expose different amounts of par-
allelism and resource requirements. In particular, we present a mized normalizing strategy for
interpreting kernel language programs which falls somewhere between purely eager and purely
lazy evaluation. We also present compilation rules for compiling kernel language programs into
a set of threads that may be executed on the abstract machine following the mixed evaluation
strategy.

1 Introduction

Non-strict functional languages such as Haskell [10] or Id/pH [12, 13] have the advantage of be-
ing non-procedural yet highly expressive: the user only specifies the relationships among sub-
computations in the form of data dependencies rather than the exact sequence of operations that
a machine must perform in order to obtain the desired answer. This leaves a lot of flexibility
to the compiler and the run-time system of a language in partitioning and scheduling the sub-
computations appropriately in order to expose the parallelism present within the computation and
to map it efficiently onto a target architecture.

Traditionally, non-strict language implementations have used one of the following two contrast-
ing execution strategies: a purely lazy, demand-driven strategy as used in lazy languages such as
Haskell [14], and a purely eager, data-driven strategy as used in dataflow languages such as I1d/pH



[4, 11]. The lazy strategy executes only those sub-computations that are absolutely necessary to
produce the final answer, while the eager strategy executes all spawned tasks in parallel, restricted
only by the data dependencies among them. The lazy strategy is geared towards reducing the
total number of steps required to compute the answer while the eager strategy is geared towards
exposing the maximum amount of parallelism within the computation. It is obvious that both these
objectives are desirable, although strictly adhering to either one may turn out to be quite expensive
in terms of the overall resource (memory and processor) requirements of the computation: a purely
lazy strategy delays every sub-computation in memory until its value is needed by the final answer
while a purely eager strategy may spawn many more tasks in parallel than are exploitable by the
available number of processors.

The eager evaluation strategy of Id/pH also successfully handles computations involving I-
structures [5] and M-structures [6]. I-structures are single-assignment data structures that allow
fine-grain, producer-consumer synchronization among various parallel activities while M-structures
are multiple-assignment data structures supporting fine-grain, mutual-exclusion synchronization.
I-structures and M-structures allow the creation of a data structure to be separated from the
definition of its components: attempts to use the value of a component are automatically delayed
until that component is defined. The computation producing the value of a component therefore
must be spawned independently in order to satisfy other computations that are waiting for that
value. Purely lazy evaluation would lead to deadlock in the presence of such constructs because
the waiting computations do not, in general, have a handle on the producing computations and
therefore cannot make progress unless those computations are spawned independently. However,
it is possible to design mixed eager and lazy evaluation strategies that can handle I-structures and
M-structures while keeping the resource requirements of the program under control [9, 8].

In this paper, we define a formal framework for exploring and evaluating such mixed strategies
for interpretation and compilation of non-strict programs from the standpoint of their efficient
implementation on standard sequential and parallel machines. Our starting point is a non-strict,
kernel language based on Id/pH with a graph rewriting semantics and a well-defined notion of
normal forms (answers) [3, 2]. Subsequently, we formalize our multithreaded execution model
in the form of an abstract machine which directly interprets kernel language programs. Different
thread spawning and scheduling strategies on this machine allow us to explore different normalizing
strategies for evaluating non-strict programs. In particular, we describe a mized evaluation strategy
for interpreting kernel language programs on our machine that lies between purely lazy and purely
eager evaluation. We also define a compilation scheme for non-strict programs that execute on our
machine using the mixed evaluation strategy.

The rest of the paper is organized as follows. In Section 2 we summarize the overall parallel
execution model used throughout in this paper. In Section 3 we describe the kernel language
and the general framework for our multithreaded abstract machine. In Section 4 we describe the
mixed interpreter for the kernel language. Section 5 defines the translation required to convert that
interpreter into a compiler. Finally, in Section 6 we present the conclusions.

2 Non-Strict, Fully Parallel Evaluation

Operationally, a strict computation of a function cannot return a result until the values of all
its arguments are available; an expression needs the results of all its sub-expressions; and a data
structure is not available until all its components are initialized. Non-strict computations, on the
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Figure 1: The Fully Parallel Execution Model of Id and pH.

other hand, relax these constraints (except when implied by data-dependencies): a function may
return a partial result before all its arguments are available, or parts of a data structure may be
read before it is fully computed. Id and pH languages follow an eager evaluation strategy for non-
strict computations: all tasks execute in parallel, restricted only by the data dependencies among
them. This strategy automatically exposes large amounts of parallelism both within and across
procedures. This is in contrast with a lazy evaluation strategy followed by the Haskell language:
only those tasks are evaluated which are required to produce the result. This strategy imposes
a strong sequential constraint on the overall computation, although the exact ordering of tasks is
decided dynamically.

We discuss the eager evaluation model of Id and pH in more detail below.

2.1 The Fully Parallel Execution Model

A program in Id consists of an expression to be evaluated within the scope of a set of top-level
function and type declarations. Each function is broken up into several threads of computation (the
length of the threads is determined in part by the compiler’s ability to identify strict regions and
in part by the ability of the run-time system and the hardware to exploit the exposed parallelism
efficiently).

The parallel execution model of Id and pH is shown pictorially in Figure 1. Each function



application executes within the context of an activation frame which records function arguments
and keeps temporary, local values. The program starts by allocating a root activation frame and
initiating the main thread in order to evaluate the top-level expression. Function applications
within a thread give rise to parallel child activations, while loop invocations give rise to multiple
parallel iterations. Threads belonging to a function share its activation frame and may be active
concurrently. A thread may enable other threads by sending data or synchronization information
to their associated activation frame: this characterizes the “data-driven” nature of this execution
model. Thus at any time the overall computation is represented by a tree of activation frames,
exploiting both intra-procedural and inter-procedural parallelism.

In contrast, under lazy evaluation parallel computation is spawned only if it is already known
to contribute towards the final result. Otherwise, every potentially concurrent task is suspended
in a thunk immediately upon creation. A “demand-driven” evaluation of the suspended thunks
exposes only a small part of the parallel execution tree at any given time. Of course, some of the
thunks may never get evaluated under demand-driven evaluation.

As shown in Figure 1, all threads participating in the parallel computation share a globally
addressable heap. An activation frame is deallocated when its associated function or the loop
terminates, but the data structures allocated on the heap may continue to exist even after the
function that allocated them has terminated. Such data structures either have to be explicitly
deallocated or are garbage-collected when no more references to them remain.

3 A Kernel Language

In this section we present a small parallel language and a general framework for its interpretation.

3.1 Language Syntax

Figure 2 shows the grammar of our kernel expression language. The grammar ensures that every in-
termediate result of a complex computation is explicitly named using an identifier. This is extremely
desirable in order to be able to express and preserve sharing constraints among computations.

Aside from the usual arithmetic primitives, the strict primitives hd and t1 are used to manipu-
late lists. Cons is a non-strict constructor: it returns the allocated Cons-cell before it is completely
filled. The unary primitive function Alloc is used to allocate either an I-structure or an M-structure
memory block of specified size. The type-checker ensures that this memory is used consistently.
The memory access primitives operate directly on heap addresses: the address arithmetic is carried
out separately.

There are several forms of application expressions in Figure 2. Ap is the general apply operation,
Fap” is a full application of a known function to all its arguments, and Pap’ denotes a partial
application of a function to i arguments accumulated within the closure!. The latter two forms are
generated during compiler optimizations.

The language also provides n-ary Case expressions that select one of the branches based on
the value of the dispatch identifier, nested A-expressions that may contain free identifiers, and a
block construct that controls lexical scoping and enables precise sharing of sub-expression values.

"We will omit the arity superscripts when they are obvious.



c € Constant
Ftoxyz... € Identifier
SE,X,Y,Z,... € Simple Expression
E € [Expression
S € Statement
PF” € Primitive Fn. with n arguments
Constant = Integer | Float | Boolean | () | Nil
SE = ldentifier | Constant
Pt = hd|tl]Alloc|I-fetch|M-take
Pr* = +|—|---|<|>|---]| Cons | I-store | M-put
E n= SE| PF*"(Xq,...,X,)
| Case(X, F1,...,En) | Azy- -2, E
| Ap(F, X) | Fap™ (F", X1, ..., Xp)
| PapZ(ann—_i7 X17 . 7X2) | Block
Block v= [{azi=FEn..qz,=E,in (X |y, -+, Ym) }
Program == Block

Figure 2: The Syntax of Kernel Expression Language.

The order of bindings in a block is not significant. The first object in the list following the in
keyword in a block expression denotes the result of the block. Subsequent objects in this list are
the identifiers bound to expressions with side-effects. These denote auxiliary roots of the block that
must be spawned eagerly in order to make progress.

3.2 Abstract Machine Framework

We would like model both direct interpretation and compiled execution of the above language
within the same computational framework so that the interpretation of a program may be iden-
tified with compilation followed by execution on the same target. In this section we present this
framework as an abstract machine that characterizes the book-keeping required for the evaluation
of a program. This framework defines the design space for the various scheduling and resource man-
agement strategies to be explored later that would lead to various parallelism /resource requirement
trade-offs.

Run-time Objects

First, we define what constitutes as an answer, or value of a computation (see Figure 3). Con-
stants like integers, floats, booleans and underlined expressions (e.g., n) constitute literal values.
Aggregate objects such as a Cons-cell or an Alloc memory block are allocated as a contiguous set
of locations within a shared store. Each such location is also considered as a value (even if its
contents are empty). A-expressions and partial applications give rise to closure values that point
to the function body and its lexical environment that keeps the values of the free identifiers of the
function body.

Figure 3 also shows other run-time objects used by our abstract machine. Environments map
program identifiers to values and stores map locations to values. However, in order to model various



t € Instruction

¢ € Location

v € Value = Constant | Location | {(clsr (z1...z,). E, ps)

p € Environment = Identifier — {(full v) | (empty E) | (thunk w) | (defer 6s)}
o € Store = Location — {(full ) | (empty) | (thunk w) | (defer és)}
6 € Suspension = Code x Environments x Status

w € Work = Value x Code x Environments x Status

6 € Status = main | apply-1 | apply-0

ts € Code = List(Instruction)

ps € Environments = List(Environment)

6s € Suspensions = List(Suspension)

ws € WorkQ = List(Work)

Given wg = (), [eval(F)],[], main

Machine State ‘ Value Code Environments WorkQ Store Status
Initial State - [sched] [ [wo) {} -
Final State v [] [] [] o main
Error State err Ls ps ws o 0

Figure 3: Run-time Objects and the Machine State.

forms of evaluation strategies, both environment slots and store locations may contain other objects
that need to be differentiated from values by means of various tags.

An unevaluated environment slot is either empty pointing to an expression to be evaluated
within the current environment (eager semantics), or it carries a thunk closure (lazy semantics).
Under eager semantics we need not create lexical closures for every bound identifier since each
bound identifier is guaranteed to be evaluated eagerly and therefore the free identifiers referenced
in their expressions would still be present in scope.

Similarly, a freshly allocated store location is either empty (I-structure semantics) or contains
a thunk closure (functional semantics). The tag is changed to defer during evaluation and any
read operations during this period are suspended. Once the evaluation completes, the value is
stored back reactivating any suspended read operations and the tag is changed to full. Reactivated
suspensions are collected into a queue of ready work.

Machine State

The state of the machine may be described by a 6-tuple (v,ts, ps,ws, o, 8) consisting of a single
accumulator register that carries the result value v of each evaluation step, a code sequence ts
denoting the sequence of interpreter instructions yet to be executed, a stack of linked environment
frames ps, a queue of ready work ws, the store o, and a status flag # denoting whether the current
computation is the main thread of the computation or not.

Figure 3 also shows the initial, the final and the error states of the machine. The machine
starts by scheduling an initial work wy to evaluate the entire program expression F with an empty
environment stack and an empty store. An underscore (_) denotes a “don’t care” situation.



sched ;2 Schedule the next work out of the work queue

eval(F) :t Evaluate E in the current environment and leave result into the
accumulator

update(z, p) ;2 Update z in environment p with the current accumulator value and
distribute the result to its pending suspensions

pushenv (ps) 2 Push the environment frames ps on the current stack

popenv(n) ;2 Pop m environment frames from the current stack

PF™(z1...2,) :: Apply strict primitive operator PF"™ to z1...x,

ap(f, z) :: Apply the closure f to z

pap(f,z1...z,) :: Partially apply the closure f to zy...x,

fap(f,z1...2,) :: Fully apply the closure f to z1 ...z,

switch(z,t81,...,t8,) = Switch to the instruction stream indexed by z

Figure 4: Interpreter Instructions.

At every step the machine executes the next instruction from the code sequence and it halts
when there are no more instructions to execute. Upon termination of the main thread, the final
value is left in the accumulator which may contain pointers into the final store. Note that if the
main thread terminates with an answer but the work queue is not yet empty, we have a choice
whether or not to run the remaining threads. The initial thread wg shown in Figure 3 would not
schedule the remaining threads, but we may choose to do so explicitly. This choice has implications
only for the termination behavior of the machine and not for producing the answer. In this sense,
our machine models non-strict execution: we may get a result from the main thread, but the
machine may continue executing. It is also possible to have a deadlock when there are suspended
computations in the environment or in the heap and there is no work to be done.

An error state may be reached at any point during execution due to exceptional conditions such
as a type mismatch, an arithmetic overflow, out of bounds access to data structures, or multiple
assignment to I-structure components.

Instruction Set

The instruction set used by our machine is shown in Figure 4. Most of the instructions are self-
explanatory. More detailed explanation follows in the next section.

4 A Mixed Interpreter for the Kernel Language

In this section we define a mixed interpreter for the fully parallel evaluation model shown in
Figure 1 based on the framework given above. The interpreter operates mostly in a sequential,
demand-driven style because it dynamically orders the various redexes of a partially-ordered parallel
computation into a total order respecting the data dependencies among them. The interpreter,
however, must still simulate parallel redex management because computations involving I-structures
require multiple threads of control: producers of a data structure may be completely independent
from its consumers and therefore must be spawned and executed independently?. Informally, our

20n the other hand, in a lazy functional language it is possible to maintain a single thread of control by performing
only demand-driven evaluation.



interpreter maintains a queue of ready redexes, one of which is reduced at each step and new
redexes are thrown back into the queue. A parallel implementation then simply becomes a matter
of distributing ready redexes across several such interpreters.

We will define the interpreter as a set of state transition rules based on the current instruction
at the head of the code sequence within the machine state.

4.1 Scheduling Work

We start with the sched instruction which schedules a new piece of work from the work queue.

sched:

_ sched :ts ps w:ws o 6
p

V' s’ ps ws o B)
where w = (V/, 15, ps', 8)
The accumulator value, the environment stack, the status flag, and the code sequence appearing

after the sched instruction are all thrown away and the corresponding new objects are loaded from
the scheduled work. The store and the remaining work queue remain unchanged as expected.

Although the rule suggests that the next task at the head of the work queue gets scheduled, it
is possible to schedule some tasks at a higher priority than others. In particular, we may want to
bias the execution of tasks present within the work queue so that those that are directly required
to produce the result along the main thread of execution have higher priority over other tasks.
The main point of doing so is to ensure that the interpreter is normalizing, i.e., if there exists an
answer then the interpreter is able to find it. However, due to the presence of I-structures, the
main thread may block on some heap location which may be filled by a side task. Therefore, the
side tasks should also be able to execute in a fair schedule without monopolizing the machine when
there is no other way of making progress. All we need to ensure is that, once the main thread is
reactivated, it does not wait indefinitely for being scheduled. This normalizing scheduling strategy
is enforced in our machine via the status flag # and will be described along with the evaluation rule
for function applications.

4.2 Expression Evaluation

The eval instruction is the core of the interpreter. It evaluates each kind of expression defined in
the language. We will describe them one by one.
Constants

eval constant:
(- eval(c):ts ps ws o 0)

(c ts ps ws o 0)

Evaluation of a constant simply loads that constant into the accumulator.



Identifiers

eval identifier (full):
(- eval(z) :s psfz— (fullv)] ws o 6)
(v s ps ws o 0)

eval identifier (empty):
(- eval(z):us po:...:pp[z— (empty E)]:ps ws o 6)
(- s’ pplz— (defer [ )] :ps ws o 6)
where vs’ = eval(F) : update(z, pi) : pushenv(pg...pr—1) : ts

eval identifier (thunk):
(- eval(z):us ps[z— (thunk w)] ws o @)
(v s’ ps' ws o 6)

where w = (v, ps, )
6 = (s, ps[xz — (defer [6])], 6)
eval identifier (defer):
(- eval(z) :ts ps[z— (defer 6s)] ws o 0)
(- [sched] ps[z — (defer 6:6s)] ws o 6)

where 6 = (¢s, ps, 0)

Evaluation of an identifier first searches for its slot in the current stack of environment frames
and then takes appropriate action according to its tag. If the slot is full, its contents are imme-
diately loaded into the accumulator. If the slot is empty pointing to an expression, it is prepared
for immediate evaluation under its definition environment along with subsequent updation of the
environment slot. The current environment is restored after the evaluation. If the environment
slot carries a thunk, then the current code sequence is suspended on the environment slot and the
thunk is immediately scheduled with the current machine status. Finally, if the slot is already being
evaluated (defer) then the current code sequence is simply suspended.

Since environments may be shared, the effect of tag or content manipulations on environment
slots should be visible globally. Practically, an environment may be implemented as an array of
frame slots whose tag and contents may be updated in place, or they may be implemented as a
mapping from identifiers to fixed store locations whose contents may be updated.

Strict Primitive Functions

eval strict PF:
(- eval(PF"(z1...2,)):ts ps ws o 0)
_ eval(zy):...:eval(z,) : PF™(x1...2,):ts ps ws o 0
p

The evaluation of strict primitive function applications proceeds a little differently from non-
strict ones. In the case of a strict primitive function, first we evaluate all its arguments and then
we execute the primitive application. The argument evaluations may also be done in parallel. The
evaluation of the various strict primitive functions is described below.
+:

(- H(z1,22) 1 s psjzy — (full m), 29 — (full n)] ws o 6)
(m4+mn s ps ws o 0)

Arithmetic functions simply perform the desired operation and leave the result in the accumu-
lator.



alloc:
(- alloc(z):is psfz— (fulln)] ws o 6)
!

(¢ s ps ws o B)
where 0’ = 0 + {¢ — (empty),...,({+n — 1) — (empty)}

The alloc function allocates n new locations in the store and initializes them to be empty.
These locations may be used as I-structures or M-structures.

I-fetch (full):
(. I-fetch(z):us pslz (fullf)] ws o[l (fullv)] 6)
(v s ps ws o )

I-fetch (empty):
(. I-fetch(z):ts ps[z+— (fullf)] ws o[l — (empty)] 6)
(- [sched] ps ws o[l — (defer [6])] 6)

where 6 = (¢s, ps, 6)
I-fetch (thunk):
(- I-fetch(z):ts pslz— (full£)] ws o[l +— (thunk w)] @)
(- [sched] ps w:ws o[l (defer [6])] @)

where 6 = (¢s, ps, 6)
I-fetch (defer):
(- I-fetch(z):us ps[z— (full£)] ws o[l (defer bs)] 6)
(- [sched] ps ws o[l (defer §:6s)] 0)

where 6 = (us, ps, 6)

The evaluation of I-fetch, hd, t1, and M-take is similar in nature. In each case, the course of
action is determined by the status of the store location being accessed. In the case of I-fetch, hd,
and tl operations, if the location is full, its contents are loaded into the accumulator immediately
without changing its status. If the location is empty or defer, the current code sequence is suspended.
If the location carries a thunk, it is pushed into the work queue. The evaluation of the M-take
operation is similar, except that it leaves the location empty after a successful M-take operation.

I-store (empty):
(- I-store(z,z):is ps[z— (fullf),z— (fullv)] ws o[l (empty)] 6)

() s ps ws ol (fullv)] 6)

I-store (defer):
(- I-store(z,z):is ps[z— (fullf),z— (fullv)] ws o[l (defer bs)] 6)

(O) s ps wsHws ol — (fullv)] 6)
where ws’ = [(v, s, ps,8) | (18, ps,8) + 6s]

The evaluation of I-store and M-put is similar. Both of them test the status of the store
location being updated. If the location is already full or carries a thunk, it leads to a run-time error
(not shown). If the location is empty, the argument value is stored into it and the status is changed
to full. If the location contains one or more suspensions (defer), the I-store operation reactivates
all of them and puts them into the work queue as shown, while the M-put operation reactivates
only one of them (not shown).

10



Non-Strict Primitive Functions

The only non-strict primitive function we have is the Cons constructor.
Cons:
(- eval(Cons(z1,z32)) :ts ps ws o #6)
(£ s ps wsH|wi,wy] o )

where o' =0 + {{ — (empty), ({+ 1) — (empty)}
w1 = (-, [eval(z1) : I-store(4, z1) : sched], ps, apply-1)
wy = (-, [eval(zy) : I-store(f + 1, z3) : sched], ps, apply-1)
The Cons constructor allocates a pair of empty locations in the store and immediately returns
the pointer to the first location as its value. It also pushes work into the work queue to evaluate

the arguments of Cons and fill these locations eagerly. Under lazy evaluation, on the other hand,
we would have stored thunks in the locations themselves that would be evaluated on demand.

A-abstraction

eval A-expression:
(- eval(Azq...2,.F):ts ps ws o )
({clsr (z1...2,). E,[p]) ts ps wsHws o 6)

where y1...yn = FV(Azy...2,.F)
p={y1+— (defer []),...,ym — (defer []) }
ws' = [(., [eval(y1) : update(y, p) : sched], ps, apply-1) :

(-, [eval(y,,) : update(y,,, p) : sched], ps, apply-1)]

A-expressions are evaluated into a closure value. A new lexical environment is allocated that
contains slots for the free identifiers of the A-body. Separate tasks are added to the work queue to
fill these new environment slots. Under lazy evaluation, we would have stored thunks into the new
slots that would copy the values on demand.

An interesting aspect of eager evaluation is that we may spawn the evaluation of the free
identifiers of a A-expression without having demanded their value. This allows us to ensure that
free identifiers of a function closure never refer directly to their original definition environments as
shown above. We give each closure its own environment into which the values of its free identifiers
are copied. This property clearly separates the lifetime of the original environments of the free
identifiers from the lifetime of the environment captured within the closure allowing us to deallocate
the original environments when all the spawned tasks associated with them have terminated. In
[1] we shows a systematic way of generating termination signals from every spawned task so that
such resource management may be scheduled by the compiler.

Function Application

Evaluation of function applications is the most interesting and the most complex part of the inter-
preter. First, the function is evaluated to a closure. Then depending on whether or not its arity
is satisfied, either a new closure is built or a function application is performed. We only show the
rules for the general application; the rules for partial application and full application are similar.

11



eval Ap:
(- eval(Ap(f,z)):ts ps ws o 0)
(- eval(f) :ap(f,z):ts ps ws o 0)

ap unsatisfied:
(- ap(f,z) :ues ps[f (full (clsr (z1...2,). E,ps))] ws o 0)
({clsr (zg...2,). E,p i ps'y 1s ps wsH[w] o 6)
where p' = {21 — (defer[]) }
w = (., [eval(z) : update(zy, p’) : sched], ps, apply-1)

ap satisfied (main):
(- ap(f,z) :es ps[f— (full {clsr (z,). E,ps))] ws o main)
(- eval(F):popenv(m):ts (p':ps')Hps ws+H[w] o main)
where p' = {z, — (defer []) }
w = (, [eval(z) : update(z,, p’) : sched], ps, apply-1)
m = length(p' : ps’)

ap satisfied (apply-1):
(- ap(f,z) :es ps[f— (full (clsr (z,). E, ps'))] ws o apply-1)
(. eval(E):popenv(m):is (p':ps’)+Hps ws+[w] o apply-0)
where p' = { z, — (defer []) }
w = (., [eval(z) : update(z,, p’) : sched], ps, apply-1)
m = length(p' : ps')

ap satisfied (apply-0):
(v ap(f,z) s ps[f— {ull (clsr (2,). E,ps))] ws o apply-0)
(v [sched] ps ws+[w] o apply-0)
where w = (v, ap(f, z) : ts, ps, apply-1)

If the arity of the closure is not satisfied, then a new closure needs to be built. This operation is
similar to the evaluation of a A-expression. A new environment slot is allocated that would receive
the value of the supplied argument and a task is spawned to fill this slot. A new closure is built
using this environment.

If the arity of the closure is satisfied, then the course of action depends on the status flag of
the machine #. The status flag denotes how many function applications are allowed for the current
thread. If the status is main, then an arbitrary number of function applications are allowed. In
case of apply-1 status, only one (current) application is allowed: the function body is evaluated
under the reduced status apply-0. An application with the status apply-0 is not expanded, instead
the current task is descheduled and is thrown back into the work queue with the increased status
apply-1. This ensures that if the main thread gets blocked, then all other tasks get a fair chance
to execute. Once the main thread is rescheduled, it executes to completion or until it gets blocked
again.

If an application is allowed to proceed then it executes as follows. A new environment slot is
allocated for the argument and a task is spawned to fill it. Next, the body expression is setup for
evaluation under the appropriate environment chain obtained from the closure. Finally, the original
caller environment is restored by popping the additional environment frames.

12



Case Expression

eval Case:
(- eval(Case(z, Eq,...,E,)) s ps ws o 0)
(- eval(z) : switch(z, [eval(F4)],...,[eval(E,)]) s ps ws o 6)

switch (1 <m < n):
(- switch(z,t51,...,t8,) :ts psjz— (fullm)] ws o 6)
(- tSmtHris ps ws o 6)

The evaluation of the Case expression proceeds by first evaluating the dispatch expression.
This must yield an integer within the range of the dispatch which is used to select the appropriate
branch. We also allow a boolean switch instruction that selects one of two instruction streams based
on the boolean value of the first argument.

Block Expression

eval block:
(- eval{z1=Fy;..;zpn=Fpoin(z |y1...Ym) }) 1ts ps ws o 6)

(- eval(z):popenv(l) :ts p:ps wsHws o 6)

where p={ 21— (empty F4),...,z, — (empty ) }
ws' = [(., [eval(y1) : sched], p : ps, apply-1) :

(-, [eval(y.,) : sched], p : ps,apply-1)]

Finally, the evaluation of a block expression creates a new environment frame with a slot for
each block binding. The main result expression is set for subsequent evaluation. Auxiliary tasks
are added to the work queue to evaluate the other roots. These would be scheduled when the main
thread cannot make any progress. Note that each environment slot is initialized directly with the
expression that would compute its value. This is much simpler than creating a thunk for each slot
since all the free identifiers of the expression are guaranteed to be accessible through the enclosing
lexical environment stack.

4.3 Book-keeping Instructions

A few other instructions are used by the interpreter for book-keeping.

update identifier:

(v update(z,pr):ts po:...:pglz— (empty )] :ps ws o )
(v s poi...ippfe— (fullv)]ips ws o 6)
(v update(z,pg):ts po:...:pglz > (defer bs)]:ps ws o 0)
(v s po:...ipglz— (fullv)]:ps wsHws o 6)

where ws’ = [(v, s, ps,0) | (1s,ps,8) < 65]
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pushenv :
(- pushenv(ps’):us ps ws o 6)
(- s ps'+ps ws o 6)

popenv :
(- popenv(n):ts poi...:pp_1:ps ws o B)
(- s ps ws o 0)

The update operation is usually performed immediately after the evaluation of an identifier. It
updates the environment slot of the identifier with the value computed in the accumulator. It also
distributes that value to all the waiting suspensions in that slot (if any) and adds them to the work
queue. The pushenv and popenv operations manipulate the environment stack as shown. Popping
an environment frame from the environment stack does not deallocate that frame. As discussed
earlier, frame deallocation must be performed independently after all the spawned tasks that refer
to that frame have terminated.

5 A Compiler for the Mixed Evaluation Model

In this section we will define a compiler for the mixed evaluation model based on the same machinery
as described in Section 3. The compiler is defined in three phases: first, we describe the extensions
to the abstract machine and its instruction set; next, we describe the compilation scheme for the
source program transforming them into a collection of code sequences called threads; and finally,
we describe how these code sequences are executed on the abstract machine by giving additional
execution rules for the new instructions.

5.1 Compilation Machinery

The compilation process involves a systematic separation of control and data of a program. We
transform a program that is dynamically interpreted along with its data into a fixed sequence of
instructions that may be repeatedly executed with different sets of data. Essentially, this involves a
systematic elimination of all eval instructions while interpreting the program, replacing them with
compiled sequences of low-level instructions, or threads, that compute the values of the original
expressions.

Compilation also involves a precise specification and management of processor and memory
resources: layout of environments and heap data structures, a mapping for all program identifiers
to their corresponding environment slots, and scheduling of parallel tasks to fill these slots. We
may also need additional instructions that address and manipulate the machine state.

The semantic categories and translation functions used during compilation are shown in Figure 5
and are discussed below.

Threaded Compilation
Every program expression bound to an identifier is compiled into a single primary thread that

computes the value of that identifier. Other identifiers bound within that computation give rise to
their own threads that are collected into a compile-time mapping from identifiers to threads (7).
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o € Identmap = Identifier — (Integer x Integer)

T € Threadmap = Identifier — Code

TId[ ] it Identifier — Threadmap — Identmap — Instruction

TExp[] : Expression — Threadmap — Identmap — (Code x Threadmap)
Compilation: (vs,7) = TExp[Program]{}{}
Initial Work: wo = ,es,[], main

Figure 5: Compile-time Objects.

The precise compilation rule for each source language construct appear in Section 5.2. The threads
are allowed to block and get rescheduled. No attempt is made to combine several threads into
larger ones at this stage. Partitioning techniques [15, 7] may be used to create longer threads that
are deadlock-free.

Environments and Identifiers

All bound identifiers within a block or a function are assigned a slot within an environment frame
that is allocated at run-time. An identifier reference is compiled into a pair of index offsets (i, 7)
into the current environment stack. The first index ¢ refers to the position of the environment
frame from the top of the stack (zero based). The second index j gives the offset of the identifier
slot within that frame (zero based). A mapping from identifier names to index-offset pairs («) is
maintained during compilation. It is also possible to use a different scheme where we preallocate the
environment storage required by all blocks in a given procedure within a single flat environment
that is allocated at the time of function application. Under this scheme, an identifier reference
becomes a single offset into the current procedure frame. We do not use this scheme here for
simplicity?>.

Machine State

We refer to components of the current machine state at compile-time using the following notation:
the accumulator by <, the code sequence by code, the environment stack by stack, the work queue by
workq, the global heap by heap, and the machine status by status. The top of the stack environment
frame would be denoted by stack[0].

Additional Machine Instructions

The additional machine instructions are shown in Figure 6. The detailed explanations appear along
with the execution rules given in Section 5.3.

5.2 Compilation Rules

In this section we describe the compilation process of kernel language expressions into a collection
of threads.

9However, the actual Id compiler uses this scheme by computing the total number of slots needed by a function.
It may also share slots between mutually exclusive sets of identifiers such as the branches of a Case expression.
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load(c | ) :t Load a constant or the value of an environment slot into the accu-
mulator (the slot must be full)

enter(z, ts) 2 Check status of the environment slot z and execute thread :s if
necessary

makeclsr(n, ts., 154, ps) = Make a closure for the pair of threads ts.,tsq with arity n and the
environment stack ps

apply ;2 Test arity of the closure in the accumulator, applying it to the argu-
ment environment on stack, otherwise make a new closure

fapply ;2 Apply the closure in the accumulator to the full argument environ-
ment on stack

pushwork (s, ps) ;2 Make and push work with the thread ¢s, the environment chain ps,
the current accumulator and apply-1 status

allocletenv(n) it Allocate a new block environment with 0...(n — 1) empty slots

alloclamenv(n) 0 Allocate a new function environment with 0...(n — 1) defer slots

Figure 6: Additional Compiler Instructions.

Constants

An immediate constant is simply loaded into the accumulator.

TExp[e] 7 o = [load(c)], ¢

Identifiers

An identifier reference compiles into an enter instruction that accesses the right environment slot
and computes its value.
TExp[z] 7 a = [TId[z] 7 o], ¢
where
Block-bound Identifier: TId[z] 7« = enter(a(z),7(z))
A-bound Identifier: TId[z] 7 o« = enter(a(z),[])

The threads corresponding to identifiers bound in a block would be known at compile time while
the threads corresponding to function parameters must be dynamically linked. The two different
compilations above reflect this difference.

Primitive Functions

For strict primitives, we first evaluate their arguments and then apply the primitive function. The
identifier translation gives the precise coordinates of each argument being applied to the primitive
function.

TExp[PF"(z1...2z,)] T a=
(TId[z:] 7 @) ¢ ...: (TId[z,] T @) : PF"(a(z1),...,0(z,))], ¢}

Non-strict primitives, such as Cons are compiled directly, without first evaluating their argu-
ments. The run-time evaluation rule shown in Section 4 takes care of spawning the appropriate
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tasks to fill the allocated heap locations.
TExp[Cons(zy,z2)] 7 a = [Cons(a(z1), a(z2))], ¢

A-abstraction

The compilation of a function is the most complex part of the compiler. In addition to having
the caller-callee linkage setup properly, we also wish to be able to optimize for full arity function
applications as opposed to higher-order application. Therefore, we use two separate entry points
into the function body: one direct entry point (vsg) for full arity applications, and another chained
entry point (¢s.) for higher-order applications.

TExp[Azy...2,. F] T a=
{ tsp, 7 = TExp[E] T ow;
1S4 = tSp H [update(0, stack[0]) : popenv(2) : sched];
1Sz, = [(TId[z1] T o) : update(1, stack[0]) : sched];

1Sz, = [(TId[z,] T o) : update(n, stack[0]) : sched];

ts. = pushwork(¢s;, , stack) : ... : pushwork(ss,,, , stack) :
popenv(n + 1) : pushenv (<) usy;

1Sy, = [(TId[y1] 7 ) : update(0, stack[0]) : sched];

tSy,, = [(TId[y,] 7 o') : update(m — 1, stack[0]) : sched];

makeclsr(n, ts., tsq4, [C])], 7 }
where
Y- Ym = FV(Azy .. 2, F)
ap :{$1 — <071>7"'7'rn'_> <07ﬂ>7y1 = <17Q>77ym'_> <17m—_1>}
a.={z1—(n0),...,2,—(1,0)}
)

o/ () = (fst(a(z) + 1), snd(a(z))

Figure 7 shows the environment setup for the chained and direct points. The direct entry point
1S4 is setup under the assumption that all arguments to the function are in one flat environment
frame and all its free identifiers are in another flat environment frame. This arrangement is reflected
in the identifier map «p which is used during the compilation of the function body. The first slot in
the argument environment is reserved for storing the return continuation of the caller function at
the time of function application. This return continuation is reactivated at the end of the function
body by updating this slot with the final result.

For higher-order applications, the arguments present in the closure chain must be explicitly
copied into the flat argument environment which is present at the top of the stack as well as in the
accumulator. The chained entry point spawns off tasks to copy the arguments from the environment
stack using a chain-destructuring identifier map «a.. Then it adjusts the environment stack and
jumps to the direct entry point which executes the body of the function under the flat argument
environment.

The A-abstraction itself compiles to produce a closure which requires an environment frame to
store its free identifiers. Following eager semantics, we arrange to push parallel tasks that would
fill the values of the free identifiers into their appropriate slot in this frame.
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0 1 n n+1

Environment
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Figure 7: Environment setup for chained and direct entry points of a function.

Function Application

In a non-strict, eager function application we evaluate the function and the argument in parallel. A
new l-element environment is allocated for the argument and is filled in parallel. This is similar to
the case of the free identifiers of a A-abstraction. The function is then evaluated to a closure whose
arity determines whether the application scheme would evaluate the body thread (arity satisfied)
or build a new closure (arity unsatisfied). This is described in the evaluation rule for application

given in Section 5.3.

TExp[Ap(f, 2)] 7 o =
{ ts. =[(TId[z] 7 ') : update (0, stack[0]) : sched];
in [alloclamenv(1) : pushenv(<{) @ pushwork(cs,, stack) : (TId[f] 7 &) : apply], ¢ }

where

o (z) = (fst(a(z) + 1), snd(a(z)))

The full application scheme is similar, except that it builds the final argument environment
in a single shot instead of argument by argument. It also reserves the first slot in the argument
environment to store the return continuation of the caller.

TExp[Fap"(f, z1,...,2n)] T a0 =
{ ts;; =[(TId[z1] 7 &) : update (1, stack[0]) : sched];

185, = [(TId[z,] 7 &) : update(n, stack[0]) : sched];
in [alloclamenv(n 4 1) : pushenv(<$) : pushwork (s, , stack) @ ... :
pushwork (s, ,stack) : (TId[f] 7 &) : fapply], ¢}

where

o/ () = (fst(a(z) + 1), snd(a(z)))
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Case Expression

For Case expressions, we simply compile threads for each branch and generate a switch instruction

to select the appropriate one.

TExp[Case(z, F1,...,E,)] T a=
{ 181,71 = TExp[F{] T o

tSp, Tn = TExp[E,] T o
in [(TId[z] 7 «) : switch(a(z),t51,...,t8,)], 714+ 7, }

Block Expression

For a block, first we need to allocate an environment to hold all the bound identifiers. Each of
the right-hand sides are then compiled into threads that update the appropriate environment slots
with their respective values. The “letrec” semantics of the block are maintained by allowing the
new threads being compiled to refer to themselves via an extended thread map. The identifier map
is also adjusted to reflect the new environment frame being pushed onto the environment stack.

Some (or all) of the bound identifiers of a block may be designated as roots that are eagerly
spawned by creating parallel tasks for them. The result of the block is computed by its primary

root.

TExp[{ z1=F1;- -5z, =F,in(z | y1...ym) ] T =
{ 181,71 = TExp[F4] 7 o;
tst = 151 + [update (0, stack[0]) : sched];

tSp, Tn = TExp[FE,] ' o/;
18, = 18, H [update(n — 1, stack[0]) : sched];
in [allocletenv(n) : pushenv (<) : pushwork(7/(y;), stack) : ... :
pushwork (7' (y. ), stack) : (TId[z] 7" ') : popenv(1)], 7+ 71+ -+ 7u }

where
T ={z1 s, ..z, 8]}
=14
o (z) =ifz =21 (1 <k <n)then (0,k) else (fst(a(z)+ 1), snd(a(z)))

5.3 Execution Rules for Additional Instructions

In this section we provide the execution rules for the additional instructions given in Figure 6. Note
that identifier names are now translated into index-offset pairs (i, ) pointing into the environment

stack.

Loading Accumulator

The load instruction is used to load an immediate constant or a previously computed value into

the accumulator.
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load constant:
(- load(c):ts ps ws o 0)

(c ts ps ws o 0)

load identifier:

(- load((i,7)) :ts po:...ipf...(fullv);..]ips ws o 6)
(v 1s poi...:piips ws o 0)

Evaluating Identifiers

The enter instruction checks and loads the value of an identifier into the accumulator, computing
its value if necessary. If the identifier is block-bound then the enter instruction directly points to
thread to compute its value. If the identifier is currently unevaluated, then the current instruction
stream is temporarily suspended (on the identifier slot) and the evaluation is carried out inline.
The final updation of the slot with the identifier’s value would reactivate the suspension.

For A-bound identifiers, the function application is responsible for spawning a separate task to
compute the value and fill the identifier slot, therefore the slot would be marked as defer. In this
case, the current thread is simply suspended.

enter identifier (full):

(- enter((1,7),-) tts po:...ipf...(fullv);..]:ps ws o 0)
(v ts po:...ipiips ws o 0)
enter identifier (empty):
(- enter((7,7),t5;):ts po:...:pl...(empty);...]:ps ws o 6)
(- sy pif...(defer [6]);...]:ps ws o 6)
where ps'=po:...:p;:ps
6= (1s,ps,0)

enter identifier (thunk):
(- enter((Z,7),-) :ts po:...:pf...(thunk w);...]:ps ws o 6)

where w = (v,18, ps’, )
6= 1(t5,p0:...:pi[...(defer [8]);...] : ps,6)

enter identifier (defer):

(- enter((1,7),-) :ts po:...:pi[...(deferbs);..]:ps ws o 6)
(- [sched] po:...:p;[...(defer6:6s);...]:ps ws o 6)
where 6 = (t5,pg:...: p;i[...(defer 6 : 6s);...] : ps,6)

Closure Creation

The makeclsr instruction simply creates a new closure from the given thread, arity, and the envi-
ronment stack.

makeclsr:
(- makeclsr(n, ts., tsq4,ps') 1 ts ps ws o 6)

((clsr (n). (n,tsc,t84),ps") s ps ws o 0)
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Function Application

There are two forms of function applications: general application (apply) and full arity application
(fapply). In each case, the application is allowed to proceed only if the machine has either main
or apply-1 status flag, otherwise the current thread is descheduled. This is in accordance with the
normalization scheduling strategy discussed earlier.

General function application must test the arity on the closure (in the accumulator) and con-
struct another closure with one less remaining arity or expand the function application. In the
latter case, first a flat argument environment is allocated for the function call, saving the return
continuation of the caller in its first slot. This would enable the callee to resume the caller after
the function call has completed. Then the chain destructuring entry point present within the clo-
sure is scheduled which is responsible for destructuring the closure chain into the flat argument
environment.

apply unsatisfied (m > 1):

clsr (m). (n,ts.,t54),ps’y apply:ts p':ips ws o 6
p pip

clsr (m —1). (n,tS.,189),p : ps’y s ps ws o 6
pip p

apply satisfied (main):
({clsr (1). (n,t8¢,t84),ps’) apply:es p':ps ws o main)
(pr 8. prip'ips ws o main)
where p, = [(defer [6])¢ (defer [ ]); ... (defer []),,]

6 = (1s, ps, main)

apply satisfied (apply-1):
({clsr (1). (n,t8c,t84),ps’) apply:es p':ips ws o apply-1)
(pr tsc prip ips’ ws o apply-0)
where p, = [(defer [6])¢ (defer [ ]); ... (defer []),,]
6 = (vs, ps, apply-0)

apply satisfied (apply-0):
((clsr (1). (m,tScyt84),ps’) apply:is ps ws o apply-0)
(- [sched] ps ws+[w] o apply-0)
where w = ({clsr (1). (n, 5., t84), ps’), apply : ¢s, ps, apply-1)

Full arity application simply schedules the direct entry point of the closure. It also saves the
return continuation into the first slot of the flat argument environment which would enable the
callee to resume the caller at the end of the functional call.

fapply (main):
((clsr (n). (n,tSc,t8q4), ps’)y fapply:es p':ps ws o main)
(- tsq p'[(defer [6])g...] : ps' ws o main)

where 6 = (vs, ps, main)

fapply (apply-1):
((clsr (n). (n,tSc,t84), ps’) fapply:es p':ips ws o apply-1)
(- tsq p'[(defer [6])g...]:ps’ ws o apply-0)
where 6 = (vs, ps, apply-0)
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fapply (apply-0):
((clsr (n). (n,tSc,t84), ps’) fapply:ts ps ws o apply-0)
(- [sched] ps ws+[w] o apply-0)
where w = ({clsr (n). (n,ts.,t84), ps'), fapply : ¢s, ps, apply-1)

Resource Management

The pushwork instruction creates a task with the given instruction thread and the environment
chain along with the current contents of the accumulator and the apply-1 flag.

pushwork:
(v pushwork(ss’,ps’) :ts ps ws o 6)
(v 1s ps ws+w] o 6)

where w = (v, 15, ps’, apply-1)

The allocletenv and alloclamenv instructions allocate environments for blocks and functions
respectively. The block environment slots are initialized to be empty and would be filled when the
corresponding enter instruction is executed. The function environment slots are initialized to be in
the defer state since separate tasks are spawned to fill them.

allocletenv:
(- allocletenv(n) :ts ps ws o 6)

(p s ps ws o 6)
where p = [(empty)¢ ... (empty),_1]

alloclamenv:
(- alloclamenv(n) :ts ps ws o #6)

(p s ps ws o 6)
where p = [(defer [])g ... (defer [ ]),—1]

6 Conclusions

In this paper we have presented a framework for compiling and interpreting non-strict, implicitly
parallel languages using a multithreaded execution model on sequential or parallel targets. We
started with a kernel language and a multithreaded abstract machine specification. Then we defined
a mixed evaluation interpreter for the kernel language that embodies the notion of multithreading at
an abstract level, separates the environment and the heap storage, and performs mostly demand-
driven evaluation of multiple threads of control. Finally, we defined a compiler for the mixed
evaluation strategy that converts the kernel language into a fixed set of threads taking position on
environment allocation and data representations. Both the interpreter and the compiler are defined
at a sufficiently high-level of abstraction so as to allow ample room for experiment with various
compilation and scheduling strategies.

This work grew out of the need to reorganize the compilation strategy for the Id/pH compiler
from a dataflow graph based approach to a kernel language based approach, both from the per-
spective of exploring more efficient execution strategies for non-strict programs on a multithreaded
substrate and from the perspective of clearly specifying the compilation and execution rules in a
formally defined abstract machine framework. The current scheme of mixing lazy and eager evalu-
ation strategies was inspired by our earlier work on defining the semantics of barriers for non-strict,
implicitly parallel languages [1].
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