CSAIL

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Static Mapping of Functional Programs:
An Example in Signal Processing

Jack B Dennis

19935, June

Computation Structures Group
Memo 376

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4 A

Static Mapping of Functional Programs

An Example in Signal Processing

Computation Structures Group Memo 376
March 3, 1995

Jack B. Dennis

This memo is a paper presented at the conference on High Performance Functional
Computing, Denver, April 1995

The research reported in this docment was performed, in part, using facilities of
the Laboratory for Computer Science of the Massachusetts Institute of Technology.
Funding for the Laboratory is provided in part by the Advanced Research Projects
Agency of the Department of Defense under the Office of Naval Research contract

\ N00014-92-J-1310. /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Static Mapping of Functional Programs:
An Example in Signal Processing

Jack B. Dennis
MIT Laboratory for Computer Science
Cambridge, MA, 02139

Abstract

Complex signal processing problems are naturally
described by compositions of program modules that
process streams of data. In this paper we discuss
how such compositions may be analyzed and mapped
onto multiprocessor computers to effectively exploit the
massive parallelism of these applications. The meth-
ods are illustrated with an example of signal processing
for an optical surveillance problem.

The method illustrated involves program transfor-
mation and analysis to construct a program descrip-
tion tree that represents the given computation as an
acyclic interconnection of stream-processing modules.
FEach module may be mapped to a set of threads run on
a group of processing elements of a target multiproces-
sor. We estimate the parameters of performance that
could be realized for two forms of multiprocessor ar-
chitecture, one based on conventional DSP technology
and one based on a multithreaded processing element
architecture. For our erample, we conclude that the
multithreaded architecture offers advantages in latency
of results and in memory requirements, as well as in
throughput.

1 Introduction

An important goal toward making parallel com-
puters more useable for practical computations is to
provide compiling technology that is able to convert
algorithms expressed directly and simply in a high
level language into efficient machine code. The par-
allelism implicit in the expression of the algorithm
must be identified and exploited by the compiler.
Complex signal processing problems are naturally de-
scribed by compositions of program modules that pro-
cess streams of data. We use an example to illus-
trate how such compositions may be analyzed and
mapped onto multiprocessor computers using exten-

sions of methods used in the Paradigm compiler de-
signed and implemented by the author [Dennis 1989).

We begin by discussing how the mapping of compo-
sitions of stream-processing modules differs from the
application of data parallel principles in mapping sci-
entific computations onto massively parallel comput-
ers. In the domain of high performance signal and im-
age processing, applications can exploit massively par-
allel computation, but the form of parallelism present
is not the data parallel form encountered in scientific
computations: (1) Program modules often work to-
gether in producer/consumer relationships, allowing
concurrent operation; and (2) All modules of the pro-
gram are continuously active processing streams of
data. The use of stream data types plays a central role
in expressing such computation in a high level form
that permits automatic analysis. We illustrate an ap-
proach to mapping such computation by analyzing a
typical processing computation for image data arriv-
ing from a sensor array. We indicate how the computa-
tion (when expressed in the Sisal functional program-
ming language) may be analyzed and its structure rep-
resented 1n a program description tree, and used to
guide the construction of code for a target multipro-
cessor. We discuss the problem of finding an optimal
mapping, and discuss the structure and performance
of constructed code for two choices of multiprocessor
architecture.

2 Static Mapping

The problem of implementing programs written in
high level languages on parallel computers may be ap-
proached in two fundamental ways according to the
philosophy of managing processing and memory re-
sources. One may strive to implement a very general
model of parallel computing and implement it by a
suitable combination of architectural features and run-
time services so that all scheduling and memory allo-
cation decisions are performed during program execu-

tion. This general approach is exemplified by the Mon-
soon mutiprocessor [Papadopoulos/Culler 1990], but
the mechanisms have not evolved to the level of effi-
ciency required to attract practical usage. The second
approach is based on making most memory manage-
ment decisions at compile time. This can yield very ef-
ficient exploitation of multiprocessors built of conven-
tional processors for computations having a suitable
regular structure. This second approach has been the
basis for the development of the data parallel model
and its implementation in such work as the Thinking
Machines Fortran compiler, [Sabot 1992] the defini-
tion of High Performance Fortran and advanced work
in Prof. Kennedy’s group at Rice University.

The data parallel approach can also be followed
for programs expressed in functional programming
languages with significant advantages. It is simpler
to identify the program blocks that are suitable for
data parallel implementation, and the global program
analysis needed to determine optimum alignment and
mapping for the arrays of a program is more read-
ily accomplished. This is because functional language
programs do not make use of side effects, and each use
of any data definition is readily identified. This has
been done in the Paradigm compiler [Dennis 1989] de-
signed and built by the author for the Sisal language
and targeted for the CM-2 Connection Machine.

2.1 Compiler Structure

The Paradigm compiler was designed to identify
the principal data structures constructed by a pro-
gram through global compile-time analysis, and to
map these structures onto the processing elements of
the target machine. The structure of the compiler is
shown in Figure 1. It consists of a conventional Front
End that parses and checks source language mod-
ules, an Analyze module that identifies code blocks
in the program, and a Code Constructor that imple-
ments each code block on the basis of mapping spec-
ifications derived with optional advice from the user
[Dennis 1988, Dennis 1989].

Our goal requires some departure from the typical
structure of programming language support systems.
Efficient machine code programs for large-scale paral-
lel computers can be generated only if the compiler is
able to consider the entire collection of program mod-
ules involved in a job in making decisions regarding
how the computation should be mapped onto the tar-
get machine. This implies that the linking of pro-
gram modules should be accomplished prior to the
compiler’s analysis and optimization decisions. A sec-
ond change is more fundamental: instead of carrying

AST PDT

Code >

—p| Front | Analyze
Constructor

End

Sisal Maps

v Threads

Figure 1: Structure of the Paradigm compiler.

out optimization as a sequence of independent steps,
each of which supposedly leads to an “improvement”
of the code, we perform an analysis of the given code,
determine the best mapping strategy, then synthesize
machine code according to the specified mapping.

The Sisal functional
programming language [McGraw 1985] is particularly
attractive for implementing this approach. The ab-
sence of global variables and the clear differentiation
of arguments and results of function modules in the
Sisal language make it easy for a compiler to analyze
source programs and identify the parts of the code
that define the major data structures. We call these
parts of the source language program code blocks.

The data structures appropriate for scientific com-
putation are large multi-dimensional arrays of numer-
ical data. Each code block defines an array value and
represents a computation that may be spread over the
processing elements of the machine according to a cho-
sen assignment (or mapping) of array elements to pro-
cessing elements. This is the essence of data parallel
computation. The parallel iteration expression of the
Sisal language provides a convenient high level nota-
tion for writing data parallel algorithms.

2.2 Application to High Performance Sig-
nal/Image Processing

Another area that can exploit massively parallel
computation 1s high performance signal and image
processing. In these applications large amounts of
parallelism exist, but it takes different forms: (1) pro-
ducer/consumer concurrency: the possibility of exe-
cuting two program modules concurrently when one
(the consumer) processes a stream of data generated
by the other (the producer); and (2) Simultaneous ap-
plication of several instances of functions. The use of
stream data types plays a central role in expressing
such computations in a high level form that permits
automatic analysis. The rest of the paper is devoted

to describing this process, illustrating its application
to a practical signal processing problem, and study-
ing the performance achievable for two multiprocessor
architectures.

3 An Example: Optical Surveillance

The computation we have chosen to illustrate the
proposed mapping strategy is derived from a collec-
tion of procedures for processing information from a
sky-scanning optical surveillance device and detecting
objects in its field of view. The application has sim-
ilarities to radar signal processing. There are many
sensors, several for each line of the scanned image.
These signals are conditioned, smoothed and down-
sampled before a two-dimensional filter is used to sup-
press unimportant detail. A peak detection algorithm
identifies points in the image that should be analyzed
further as potential objects to be reported. A bock
diagram of the computation is shown in Figure 2.

Each module in the diagram may be characterized
as a function that transforms a stream of input data
into a stream of output data. Hence it is natural to
specify them using a language (Sisal) that includes
streams as standard data types and supports analytic
and constructive operations on streams.

In Sisal a stream is a sequence of values which may
be infinite (unending). A stream of integers is a natu-
ral representation for a signal that has been converted
into digital form. Interconnecting modules that pro-
cess streams of data is a powerful means for combin-
ing program parts to build larger modules and is well
matched to the needs of signal processing tasks. Thus
the combination of processing modules shown in Fig-
ure 2 may be expressed in Sisal as the composition
of functions in Figure 3. The Sisal code for the five
component functions is given in the appendix of this
paper.

This use of function composition for signal pro-
cessing has been discussed in [Dennis 1995], where
we showed how to transform tail-recursive functions
on streams into non-recursive dataflow graphs that
may be executed efficiently by suitable fine-grain
parallel computers [Dennis/Gao 1994, Dennis 1991]
The use of dataflow graphs as a natural means
for specifying signal processing applications has
also been studied in [Ho/Lee/Messerschmitt 1988],
and the idea of compiling signal processing pro-
grams from block diagrams was described as early
as [Kelly/Lochbaum/Vyssotsky 1961].

From this example we see that complete signal pro-
cessing tasks may take the form of a set of processing

%Type Declarations

type Signal = stream [integer];

type ImageStream = array [stream [integer]];
type DataStream = stream [array [integer] 1;
type MarkStream = array [stream [boolean]];

%The Top-Level Function

function Process (
D: DataStream;
w: integer;
n: integer
returns MarkStream)

let
R :=for i in 1, w
returns array of
let 8 := for j in 1,n
returns array of
BaseRemove (D[i,j])
Nyquist (SpikeAdapt (S[il, n))
end for
in
PeakDetect (TwoDimFilter (R, w))
end let

end function

Figure 3: Type declarations and the principal func-
tion Process for the optical surveillance computation,
written in Sisal as a composition of stream-processing
functions.

modules, each generating a stream of values that is
passed to other modules for further processing. Thus
the overall computation may be described by a di-
rected acyclic graph in which the nodes are stream
processing modules such as those we have presented,
and each link indicates a producer/consumer relation-
ship between a pair of modules. It is well-known that
such interconnections of modules may lead to dead-
lock if the graph contains (undirected) cycles, and the
temporary storage for stream elements in each link is
bounded in capacity. Given the structure of stream
processing programs expressible in Sisal, a compiler
can detect these situations and warn the user of the
deadlock possibility.

— |
BaseRemove

—___ +—

Y
Y

SpikeAdapt Nyquist

—
BaseRemove

— }—

Y
Y

| TwoDimFilter »| PeakDetect [—®

Figure 2: Structure of the optical surveillance data processing algorithms.

4 Program Analysis

In this paper we consider only programs having an
overall structure that supports the continuous process-
ing of streams of data. In these programs each mod-
ule operates on data streams, produces a data stream,
and runs continuously during program execution. The
overall structure of such programs is an acyclic in-
terconnection of such modules. This is in contrast
to data parallel scientific codes for which the original
Paradigm compiler was designed. There the top level
program structure is a main loop in which the loop
body is an acyclic combination of code blocks that de-
fine array values, as in the following program segment

Z: array [reall
for i in 1, n
Y: real :=

if i = 1]i
then X[i]
else 0.5 * (X[i-1] + X[1+1])
end if

returns array of Y

end for

n

This parallel expression in Sisal defines an array value
Z, each (internal) element of which is the average of
the two adjacent elements of a given vector X. The con-
ditional expression provides special treatment of the
end elements of Z. All instances of the body expres-
sion may be evaluated concurrently. In general, data
parallel code blocks may be nested “for” expressions
that define multidimensional arrays, and may include
reduction operations that apply associative operators
over specified dimensions of the defined array. In the
Paradigm Compiler [Dennis 1989], programs having
this structure are analyzed and transformed into data
parallel programs for the CM-2 Connection Machine.

4.1 Stream-Processing Programs

The present study explores the prospects for static
analysis and mapping of continuous stream-processing
computations such as the optical surveillance problem.
Thus we envision a new version of the Paradigm Com-
piler that will transform, and analyze such programs
and generate machine code for multiprocessor com-
puters. Given a program that is amenable to static re-
source management, the Analyze module of the rebuilt
Paradigm Compiler will provide program descriptions
that may be used to plan the mapping of the program
onto a parallel computer and to construct code in the
target machine language.

The job of program analysis has several parts:

1. Identify the program modules (code blocks)

2. Check the conditions that permit static mapping
to be used

3. Extract parameters for each program module for
use in performance estimation

4. Determine the relative computation rate for each
module

5. Construct a program description tree containing
the results of analysis

4.2 Program Transformation

The identification step includes examining recur-
sive function definitions to determine whether they are
tail-recursions and have equivalent iterative dataflow
graphs. A method for doing this has been given in
[Dennis 1995].

In the absence of conditional expressions in their
bodies, the tail-recursive function definitions express

functions that process input streams into output
streams where the numbers of output elements emit-
ted is related to the number of input elements ab-
sorbed as a ratio of integers, a rational number. If
the bodies of these function definitions contain con-
ditional expressions, it may be that the module does
not have a fixed ratio of output elements emitted to in-
put elements absorbed, and only a range of values for
the ratio can be determined through static analysis.
Such situations appear to be rare in practical signal
processing computations, for their existence would im-
ply a non-uniform sampling rate. In our example, the
BaseRemove function contains a conditional, but yet
has a fixed input/output ratio of unity. Given these
ratios (or bounds on relative rates) a rate (or range of
rates) can be calculated for every module.

Figure 4 illustrates the results of program trans-
formation performed by the compiler. It is a dataflow
graph that represents the continuous iterative process-
ing of a stream of data arrays by the TwoDimFilter
module. The Group operator at the top of the fig-
ure extracts successive groups of three elements from
the input stream. FEach of these elements is a w-
element array. On the next cycle of operation, the
selected group starts with the element one position
later in the input stream. Between the square brack-
ets is the conventional dataflow graph of body of the
ArrayProducer code block. It is not presented in
fine-grain form to avoid confusing detail. The brack-
ets themselves represent the ForAll code block that
defines each array element of the output stream. The
opening (top) bracket is labeled with the range of in-
dices for elements in the generated array. The Emit-
StreamElement operator simply appends its input
array onto the output stream.

We assume that the usual architecture-independent
optimization steps—constant folding, common subex-
pression elimination,etc.—have been performed. Also,
and this is especially important in signal processing
applications, shift operations are used to implement
multiplication by known constants whenever this is
more efficient (although this depends on the detailed
design of the arithmetic units of the processor).

4.3 The Program Description Tree

The objective of program transformation and anal-
ysis is to provide information on which the choice of
a good mapping of program modules and data struc-
tures onto a target multiprocessor may be made. We
represent the results of analysis as a program de-
seription tree or PDT. Each node of the PDT cor-
responds to a syntactic element of the program an-

D: array[stream[int]]

—> Group (3,1)
v v v iin2,w-1
| B[i,-1] B[i,0] B[i,+1] |
Y VvV v
t1:= B[i,-1] + B[i-1,0] +
B[i+1,0] + BJi,+1]
\ A

t2:=B[i-1,-1] + B[i-1,+1] +
B[i+1,-1] + B[i+1,+1]

Y 4
[Pn:=a*B[i,0] +b*tl=c*t2 |
L Dn J
L/ array[stream[int]]

EmitStreamElement —>

Figure 4: Transformed program module for the
TwoDimFilter function.

alyzed. The node types include Graph nodes that
represent acyclic interconnections of primitive opera-
tors and code blocks, and node types that represent
the several kinds of code blocks. A ForAll node de-
scribes a code block that determines an array value
each time it is executed. A StreamProducer node
describes a code block that produces an endless stream
of simple scalar elements, and an ArrayProducer
node describes a code block that produces an end-
less stream of array values. The nodes of the PDT
contain data type information and the index ranges
for constructed arrays. Graph nodes contain counts
of operators of various kinds, and could also contain
information about degree of parallelism such as the
critical path length of the graph.

4.4 Analysis of the Example

The optical surveillance program satisfies the con-
ditions for static mapping. Each recursive function
definition is tail-recursive and may be transformed
into an iterative dataflow graph with a fixed memory
requirement for each top-level invocation. Moreover,

each of the resulting transformed modules maps one or
more input streams into an output data stream, and
the program in entirety is an acyclic composition of
these modules, as specified by the top-level function
Process. The program description tree for the optical
surveillance example is shown in Figure 5.

4.5 Computation Rate and Load Esti-
mate

The program description tree contains sufficient in-
formation to determine the relative computation rate
for each program module, and the approximate frac-
tion of the total computation load each module is re-
sponsible for. These data are calculated for the optical
surveillance problem in Table 1. We (arbitrarily) take
the processing of one array of data by TwoDimFilter
(or by PeakDetect) as the basic compute cycle of the
computation. For each program module, the table
shows the number of operations performed in each ex-
ecution of a module, the width of the data stream pro-
cessed by the module, and the number of instances of
execution of the module for one compute cycle. These
yield the operation count per cycle and the load frac-
tion for each module. These data are used in Section 6
to estimate the computation rate and latency for se-
lected mappings of the example.

5 Mapping Plans and Strategies

In this section we discuss reasonable choices for
mapping continuous processing applications to multi-
processor computers, and discuss the problem of find-
ing the best mapping plan.

5.1 Mapping Plans

In contrast to data parallel scientific computing,
the strategy of letting one program code block at a
time utilize the whole machine appears to be a poor
choice for continuous processing applications. Rather,
in many cases the best approach is to structure the
machine code so all program modules are executing
concurrently at a rate the meets exactly the compu-
tation requirement!.

In current practice, a single processor is often multiplexed
among program modules for different stages of processing, but
because coarse-grain processing must be used to attain econom-
ical performance with conventional processors, large buffers for
intermediate data must be used and high latency of results oc-
curs. With multiprocessing, assigning different modules to dis-
tinct processors will usually yield better resource utilization.

Given an estimate of the load to be handled by each
code module, we must decide how many processing
elements should be actively executing each module.
For each program module, two reasonable mapping
possibilities are apparent:

1. Allocate: Assign to the program module the
exact number of processing elements needed to
achieve the overall computation rate the module
requires.

2. Distribute: Spread the computation load of the
module uniformly over all processing elements

The choice between the allocate and distribute
strategies may be made independently for each mod-
ule, but those processing elements dedicated to pro-
gram modules for which the allocate strategy is cho-
sen are not in the set over which the work of the
remaining modules may be spread. Which choices
lead to better performance depends on the relative
amounts of inter-module communication and intra-
module communication, and on how well the loads
match up with processing element capacities.

Note that if the computation rate demanded by
some program module requires the performance of sev-
eral processing elements, then the program module
must offer sufficient opportunities for concurrency that
the processing elements can be fully utilized. Oth-
erwise the computation is not feasible on the target
multiprocessor.

Where the input of a module is an array of streams,
a plan in which the modules producing the individ-
ual streams are executed by the same processing ele-
ment as that assigned to the corresponding part of the
array-processing module 1s likely to perform better by
avoiding some communication cost.

An advantage of assigning a limited number of pro-
cessors to chosen modules is that it is then not neces-
sary to load all program modules into (or make them
accessible from) every processor.

In data parallel scientific computation, a major is-
sue 1s aligning the distribution of various data arrays
S0 as to minimize communication. In continuous pro-
cessing computations, this issue has less impact. On
the other hand, it is beneficial to distribute the work
of the TwoDimFilter and PeakDetect modules over
processing elements in aligned fashion.

5.2 Mapping Plans

On the basis of the above considerations we propose
the following class of mapping plans for continuous

Process

Graph
ti . .
Operations TwoDimFilter Peak Detect
) ? o
[o ArrayProducer __ ArrayProducer
Range 2,w-1 Range 3w-2
» FOrAll Elements: int Elementsbool
Range 1w Inputs Inputs
Type streamlint] name D name D
Body ? type array[stream[int]] type array[stream[int]]
ratio 1 ratio 1
,—l Body e Body e
. Graph
Operations _ Graph _ Graph
. 2 . Operations Operations
il Gl add 8 add 8
[shift 3 shift 1
ForAll compare 10
> logic 7
Range 1,n
Type streamlint]
Body ?
. StreamProducer _ StreamProducer _ StreamProducer
Elements int Elements int Elements int
Inputs Inputs Inputs
name D name D name D
type streamlint] type array[streamlint] type stream[int]
ratio 1 range 1,n ratio 4
Body e ratio 1 Body e
Body ?
_ Graph ,_] =Graph
Operations » Craph Op%rgtlons ,
add 2 Operations Eslhift]
shift 1 add 30
compare 2 test 8
test 1 divide 1
BaseRemove SpikeAdapt Nyquist

Figure 5: Program description tree for the signal processing example.

processing programs: A mapping plan is a specifica-
tion for each node of the program description tree as
to whether execution of the program section described
by the subtree is to be evenly distributed over all pro-
cessing elements (distribute), or is to be executed by
a group of dedicated processing elements (allocate)
sized to accommodate the estimated load of that pro-
gram section.

Table 2 gives three reasonable proposals for map-
ping the optical surveillance computation. Under Plan
A, the work of each of the five modules is distributed
over all processing elements. This choice is attractive
because it eliminates all inter-processor communica-
tion except that due to boundary exchange in algo-
rithms TwoDimFilter and PeakDetect. In Plan B, a
group of processors is dedicated to the work of algo-

rithms TwoDimFilter and PeakDetect, but these are
both distributed across the group to avoid communi-
cation costs for passing data from TwoDimFilter to
PeakDetect. The relative merits of these plans are
discussed in the following section.

5.3 Finding the Optimal Mapping Plan

Given a mapping plan and characteristics of the
target multiprocessor including the number of pro-
cessing elements, it is straightforward to estimate per-
formance parameters for a mapping plan. Given the
total operation count, the number of processors, and
their speed, the rate of computation may be estimated.
The costs of process synchronization may be approx-
imated from characteristics of the target architecture

| Module Rate Operations Width Count Total Fraction |
BaseRemove 4 6 1 nw 49152 0.353
SpikeAdapt 1 39 n W 79872 0.574
Nyquist 1 3 0 w 768 0.006
TwoDimPFilter 1 11 w-2 1 2794 0.020
PeakDetect 1 26 w-4 1 6552 0.047

| Total 139138 1.000 |

Table 1: Calculation of load fraction for each program module from data in the program description tree. The
total operations and load fractions are calculated for w = 256 and n = 8.

and program structure information in the description
tree. The mapping plan induces a communication load
from which it can be estimated whether the computa-
tion is compute bound or communication bound.

Thus the following approach should help find the
optimum mapping plan:

1. Determine computation rates and load parame-
ters for each node of the graph.

2. Generate several plausible mapping plans based
on the given program description tree and esti-
mates of performance parameters.

3. Evaluate each proposed mapping plan by con-
structing target machine code and determining
accurate processor and communication loads

4. Select the best mapping plan for the user’s objec-
tive.

5. Construct the final machine code.

6 Multiprocessor Performance

Given the three mapping plans proposed above, let
us consider their use in code construction for mul-
tiprocessor computers. First we introduce the two
processor architectures we use as contrasting targets
for parallel computing. Then we discuss the machine
code structures appropriate to implementing continu-
ous processing applcations such as the optical surveil-
lance computation. We discuss the performance differ-
ences among the three plans and point out the trade-
offs possible among throughput, memory, and latency
of output data.

6.1 Architectures

We consider two contrasting multiprocessor archi-
tectures. One uses processing elements of conventional

architecture with features intended to support efficient
multiprocessor computation. We designate this the
CVA (ConVentional Architecture) machine. A com-
mercial example of such a processing element is the
Texas Instruments TMS320C3x digital signal proces-
sor. This machine has high single-thread performance,
but makes only modest concessions to supporting fine-
grain synchronization and communication for efficient
parallel computing. In this architecture, a thread is
created by a fork command or a parallel function call
interpreted by run-time software, and may terminate
at a join command or by execution of a quit com-
mand. A thread may be suspended to wait for some
event to occur, and it may be preempted to allow the
processor to handle interrupt events or to schedule a
thread having a higher priority.

The second architecture uses a hypothetical pro-
cessing element having an interleaved multithread-
ing architecture, as proposed in [Dennis/Gao 1994,
Dennis 1989]. We designate this one the MTA (Mul-
tiThreaded Architecture) machine. In this processor
there may be four active threads that share resources
(functional units, registers, and access to local mem-
ory). Threads are non-preemptible, so execution of a
ready thread is delayed until one of the four pipeline
slots is released by termination of an active thread.
A thread becomes ready for execution when it is sig-
naled from other threads, or when a message arrives
from another processor. A thread uses a small number
of registers to pass results from one instruction to a
later instruction of the thread; registers are undefined
when a thread becomes active and are not saved at
thread termination. A typical thread will either send
signals to activate other threads, or send an interpro-
cessor message just before terminating by executing a
quit instruction. In the MTA a thread is a sequence of
instructions fixed at compile time and is short enough
that other threads may be executed soon enough to
meet performance requirements.

| Module | BaseRemove | SpikeAdapt | Nyquist | TwoDimFilter | PeakDetect |

| Plan A | distribute |
Plan B allocate
distribute | distribute
Plan C allocate
distribute | distribute | distribute

Table 2: Three mapping plans for the optical surveillance problem.

Other multithreaded architectures have supported
eight active threads to allow tolerance of long memory
accesses. For the present discussion we assume that
multiplexing four threads in the computation pipeline
is sufficient to tolerate the latency of accesses to local
memory and to fill pipeline gaps due to intra-thread
dependences.

To compare the two architectures for our example,
we will assume that both are able to achieve the same
total instruction processing rate. This means that one
thread on the MTA will run one fourth as fast as a
single thread on the CVA. (This is unfair to the MTA
because the CVA will be slowed more by pipeline haz-
ards.)

With respect to implementing the mapping plans
for the optical surveillance problem, the differences
that affect the code structure needed to get best per-
formance are the following:

1. A CVA processor can be fully utilized by a sin-
gle thread. For the proposed MTA machine, four
threads are needed to fully utilize the processor.

2. Switching between threads is more expensive for
the CVA, so long threads are favored. The
fast switching of the MTA processor allows short
threads to be used, permitting more parallelism
to be exploited.

3. Sending and receiving overhead is very low in the
MTA machine, so very short messages may be

handled efficiently.
6.2 Machine Code Structure

In the MTA the low cost of threads allows the
machine-level program structure to reflect the concur-
rency structure of the algorithm being implemented.
In the case of the CVA | it will be advantageous for high
throughput to unroll loops to obtain long threads, and
to block data into long messages to amortize message-
passing overhead.

For both architectures, it better to run long threads
because starting and terminating threads has a non-
zero cost in both processors. Since we are assuming
that local memory accesses do not cause pipeline gaps,
the only events that benefit from thread switching are
synchronizations with data arriving in messages from
other processors, and to provide sufficient multiplex-
ing of module operation to meet latency and through-
put requirements of the application.

6.3 The Example

First we determine the number of processors needed
to perform the computation at the desired rate. To do
this we estimate the number of instructions needed to
perform one compute cycle, multiply by the desired
rate and divide by the performance of the processing
element.

From Table 1 we see that 139,138 operations per
compute cycle are needed. Allowing an equal num-
ber of data movement and miscellaneous instructions,
and allowing and additional 25 percent for overhead of
scheduling and communication, we find that the total
instructions per cycle will be about?.

Toyere = 139138 x 2 x 1.25 = 347,845

using the desired rate of 2.5 kHz., we find that the
total instruction rate must be at least

Rinstr = 869 MIPS

This rate could be met by 18 processors at 50 MIPS
each, so to be generous, let us assume a machine with
20 processors.

Of the proposed mapping plans, Plan C has the
greatest communication load because communication
is needed to pass the entire data stream between each
of two pairs of program modules (as well as a small

2These are estimates made without careful analysis. We plan
to carry out a more detailed evaluation.

amount of intra-module communication). The com-
munication rate required will be 2w = 512 words per
compute cycle, or 1.28 million words per second. This
is less than 0.2 percent of the required instruction rate
and is far below the capacity of typical interconnec-
tion networks. This is indeed an embarrassingly par-
allel computation, and is compute bound for all three
mapping plans.

There is one more issue to discuss before we con-
sider the mapping plans separately. A major challenge
for this computation is handling the large number of
high volume input data streams. In each case we as-
sume that input data from the sensors is made avail-
able to the multiprocessor in blocks of eight values
for each “channel” of data processing. This means
processing one interrupt by the CVA or one synchro-
nization event for the MTA for each channel on every
minor cycle of operation. Similarly, the results of pro-
cessing are delivered to the user as blocks of 16 16-
bit words containing the (Boolean) peak data for one
cycle of processing. Handling the output stream is a
very minor problem, but the rate of input data stream
events is

Rinp =4xwx25=256 MHz

or 128,000 input event per second for each processing
element. If each input event is handled in the CVA
machine by processing and interrupt and scheduling a
thread, the overhead cost will be high. In the MTA
machine, the corresponding cost is that of synchro-
nizing thread initiation with an input event, which
amounts to just a few processor cycles.

Plan A:

Under Plan A, computation by each of the five pro-
gram modules is distributed over all 20 processing ele-
ments. If each processor performs the work associated
with 256/20 = 13 channels of data, the only interpro-
cessor communication will be to support the boundary
references in the TwoDimFilter and PeakDetect mod-
ules. As we have already noted, this communication
load is very small.

In the CVA machine, a single high-priority thread
may perform the 32 executions of BaseRemove, four
executions of SpikeAdapt, and one execution of
NyquistFilter for each data stream in each compute
cycle. There will be a substantial cost associated with
synchronizing the start of this thread with the arrival
of 4 x 13 = 52 blocks of sensor data for each compute
cycle. Separate lower priority threads may be used to
perform the TwoDimFilter and PeakDetect computa-

tions when signaled by arrival of messages containing
boundary data.

In the MTA machine, many threads may be em-
ployed without thread switching overhead becoming
significant. One attractive structure is to use a sep-
arate thread to perform the work of the three front-
end modules for each data channel. Each of these
threads would contain 351 operations, which is suffi-
ciently short that responsiveness of processing will not
be affected. One thread apiece will serve to perform
the TwoDimFilter and PeakDetect computations af-
ter synchronizing with interprocessor messages.

The latency of processing is the time interval be-
tween arrival of input data and the availability of out-
put data that depends on it. Some of the process-
ing steps of the optical surveillance example have a
built-in delay of from one to three operation cycles.
Additional latency is introduced in the machine pro-
gram by overhead costs and because once operations
are performed additional work is done before the con-
sumer of results is scheduled or signaled to begin op-
eration. In this respect, the MTA machine has the
advantage because its finer granularity of processing
allows successor threads to be signaled sooner than is
feasible to schedule them in the CVA machine. This
is partially compensated by the property that threads
execute four times faster in the CVA.

Plan B:

In Plan B a two processors would perform all com-
putation for TwoDimFilter and PeakDetect. Be-
cause there would be only two sections of the data
stream, message traffic for intra-module communica-
tion would be smaller. Instead, the entire data stream
passing from Nyquist to TwoDimFilter would have to
be carried in interprocessor messages. Handling this
data stream on a word by word basis would involve
a large overhead for the CVA machine (more cycles
than needed to execute the TwoDimFilter algorithm),
but would be a relatively minor amount for the MTA
(ten percent or less). Although the higher communi-
cation load for this plan would not overload a typical
network, there is no compensating saving because the
intra-module communication need is so low, and the
plan has the disadvantage of introducing unbalanced
use of parts of the network. Under this mapping plan,
there would be good opportunity to improve perfor-
mance of the CVA by passing data in large blocks be-
tween stages of the computation, however this would
increase the latency of results and require large data

buffers.

Plan C:

Plan C takes the further step of executing
TwoDimFilter and PeakDetect algorithms on sepa-
rate groups of processors, further increasing the com-
munication load without compensating benefits.

6.4 Discussion

The principal difference between the two architec-
tures is in the cost of synchronization, which also re-
flects a difference in the handling of global memory ac-
cess. (One may regard the communication performed
to 1mplement access to boundary values of the data ar-
ray in TwoDimFilter and PeakDetect as instances of
a general mechanism for global memory access.) The
effect is greater in computations that can benefit from
short threads.

The impact of this cost on performance of the CVA
may be mitigated by several standard techniques,
namely breaking the data stream up into blocks of
sufficient length that the start-up cost for sending and
receiving messages is acceptably small. The penalty
is longer latency of results and increased amounts of
memory needed to buffer blocks of data between pro-
cessing stages.

In the calculation of performance it is also necessary
to check that the performance is actually achievable,
that is, that there 1s sufficient parallelism that no pro-
cessing element is ever starved for work. This may
be done using Petri nets to represent the dynamic be-
havior of the scheduling of threads, but is beyond the
scope of this paper.

7 Conclusion

We have discussed how signal/image processing
programs written in the Sisal functional programming
language can be transformed and mapped onto multi-
processor computers. Qur approach to program anal-
ysis and mapping involves the following steps:

1. Transform the program into an acyclic graph of
stream-processing program modules

2. Determine relative computation rates and load
parameters for each program module.

3. Choose plausible mapping plans

4. Determine performance characteristics for each
mapping plan and select the best for the user’s
objective.

5. Construct the machine code.

We have discussed application of the method to an
optical surveillance problem, and discussed program
mapping plans suitable for two target multiproces-
sor architectures: a multiprocessor built of conven-
tional processing elements and a hypothetical multi-
processor built of multithreaded processing elements.
We suggest that, by offering lower scheduling and
synchronization costs, the multithreaded architecture
has the ability to support efficient fine-grain compu-
tation, leading to lower end-to-end latency and de-
creased memory requirement for intermediate data for
the studied application. Another architectural variant
that offers an intermediate choice for multiprocessing
between conventional processors and the MTA ma-
chine discussed here is the threaded abstract machine
[Culler 1991].

In the computation studied in this paper, there is
plenty of parallelism to be exploited. Hence there
would be no benefit to increase processing element cost
by adding features designed only to increase single-
thread performance.

Writing a program as a collection of stream pro-
cessing functions permits easy characterization of the
modules and exploration of a variety of choices for
mapping the modules onto a parallel processing com-
puter. Other work relating to static mapping of
programs for multiprocessor execution includes many
published results on resource management for real-
time computation. A summary of work in that area
appears in [Chaudhary/Aggarwal 1993]. Others have
also noted the tradeoff between throughput and la-
tency. The work presented here is distinctive in relat-
ing the mapping problem to program structure charac-
teristic within a functional programming framework,
and 1n dealing with multi-rate signal processing prob-
lems. The work closest in spirit to ours is the Ptolemy
Project of Prof. Lee at Berkeley.

Our work indicates that the combination of func-
tional programming with multithreaded processing el-
ements can lead to significantly easier programming of
applications in the domains of signal/image process-
ing. Similar results are anticipated for other appli-
cation areas that can benefit from use of stream data
types, such as real-time embedded systems and certain
industrial process control problems. For applications
that require dynamic management of resources during
program execution, further development of methods
of scheduling and load balancing are needed together
with architectural features that permit their efficient
implementation. We look forward to further develop-
ments in this exciting area.

Acknowledgments

The work reported here applies the results of
research conducted by the Computation Structures
Group of the MIT Laboratory for Computer Science
to practical signal processing algorithms. The work
is an extension of work done for the Paradigm com-
piler. The initial version of the Paradigm Compiler
was developed by the author during his appointment
as Visiting Scientist at RTACS from May 1988 through
April 1989.

The optical surveillance example is based on sim-
plified algorithms taken from a large-scale defense ap-
plication studied by the Boeing Company. The com-
plete original algorithms were expressed in a vari-
ant of the Val language [Ackerman/Dennis 1979] in a
study performed by Dataflow Computer Corporation
under contract to Boeing. The report of this work
[Dataflow 1990] included a suggested multithreaded
processor design, manually derived machine code, and
performance calculations for the Boeing application.

Sisal is a functional programming language de-
veloped at the Lawrence Livermore Laboratory
for use in high performance scientific applications
[McGraw 1985]. Sisal evolved from the Val lan-
guage developed by the Computation Structures
Group at the M.I.T. Laboratory for Computer Science
[Ackerman/Dennis 1979].

This paper has been prepared using facilities of the
M.I.T. Laboratory for Computer Science.

A Appendix: Sisal Functions for the
Optical Surveillance Example

As presented in the text, the overall computation
of this illustration is structured as the composition of
functions given in Figure 6. The overall computation
processes signals from a collection of sensors that are
swept over the region under surveillance. These signal
are conditioned, averaged, and filtered before a peak
detection criterion is applied.

A.1 Baseline Removal

The first step is a procedure designed to ignore a
slowly-varying base component of the signal from each
sensor. This is defined by the program BaseRemove
shown in Figure 7.

type Signal = stream [integer];

type ImageStream = array [Signal];

type DataStream = array [array [Signall];
type MarkStream = array [stream [boolean]];

function Process (
D: DataStream;
w: integer;
n: integer
returns MarkStream)

let
R :=foriin 1, w
returns array of
let § := for j in 1,n
returns array of
BaseRemove (D[i,j])
Nyquist (SpikeAdapt (S[il, n))
end for
in
PeakDetect (TwoDimFilter (R, w))
end let

end function

Figure 6: The surveillance process as a composition of
stream processing functions in Sisal.

A.2 Spike Adaptive Averaging

The second module (Figure 8) combines signals
from groups of n sensors, rejecting data that exceeds

a threshhold.
A.3 Nyquist Filter

This module (Figure 9) reduces the sampling rate of
the data stream by combining groups of four samples
using weights designed to provide a good approxima-
tion to the input.

A.4 Two-Dimension Filter

The function TwoDimFilter shown in Figure 10
represents a two-dimension filter by a single Sisal func-
tion. The filter is defined by the three coefficients, a,
b, and ¢, which are the center, side and corner ele-
ments of a three-by-three array. The filter is applied
at each position in the image data for which an output
value is desired. The input is an array of streams in-
dexed from 1 to w. The output is an array of streams
indexed from 2 to w — 1. (The boundary elements are

function BaseRemove (
D: stream [integer]
returns stream [integer])

AdaptiveBase (
D, stream_first(D), false, stream_first(D))

end function

function AdaptiveBase (
D: stream [integer];
Th: integer;
Sw: boolean;
B: integer
returns stream [integer])

let
ThO := 32;
Df := stream_first(D);
Dr := stream_rest(D);
B_new :=
if Sw then Df else B end if;
Th_new := max (ThO, Th +
if Sw then (Th / 4)
else - (Th / 16)
end if);
Sw_new := (Df - B_new > ThO);
in

stream [Df - B_new] ||
AdaptiveBase (Dr, Th_new, Sw_new, B_new)
end let
end function

Figure 7: The BaseRemove function.

omitted from the result data to avoid applying the
filter function to non-existing array positions.)

A.5 A Peak Detector Algorithm

Figure 11 shows a PeakDetect function that identi-
fies all elements of the (image) data that have a value
that is at least equal to the values of all immediate
neighbors and exceeds their average by a given thresh-
hold Th. The two conditions are tested separately and
combined to determine the result. The input is an ar-
ray of integer streams indexed from 2 to w — 1. The
output stream is an array of boolean streams indexed
from 3 to w—2. The peak detection function is similar
in structure to the filter function; each element of the
result is true if and only if the data surrounding the
corresponding input pixel satisfies the specified condi-
tions.

function SpikeAdapt (
D: stream [array [integer] 1;
n: integer
returns stream [integer])

let
Th2 := 24;

E :

stream_first(D);

L :=foriinil, n
returns value of least (E[i])
end for;

Sm := for i in 1, n
returns value of sum
if E[i] < (L + Th2) then E[i]
else O
end if

end for;

Nc := for i in 1, n
returns value of sum
if E[i] < (L + Th2) then 1
else O
end if

end for;

in
stream [Sm / Nc] ||
SpikeAdapt (stream_rest(D), n)

end let
end function

Figure 8: The SpikeAdapt function.

References

[Ackerman/Dennis 1979] W. B. Ackerman and J. B.
Dennis. VAL—A Value-Oriented Algorithmic
Language. Technical Report 218, Laboratory for
Computer Science, MIT, 1979.

[Chaudhary/Aggarwal 1993] Vipin Chaudhary and J.
K. Aggarwal. A generalized scheme for mapping
parallel algorithms. [Ieee Trans on Parallel and
Dustributed Systems, Vol. 4, No. 3, pages 328-346.
March 1993.

[Culler 1991] David E. Culler, Anurag Sah, Klaus Eric
Schauser, Thorsten von FEicken, and John
Wawrzynek. Fine-grain parallelism with minimal
hardware support: A compiler-controlled threaded

function
NyquistFilter (D: stream [integer]
returns stream [integer])

let
Df, Dfr, Dfrr, Drrrr :=
stream_first (D),
stream_first(stream_rest(D)),
stream_first(stream_rest
(stream_rest(D))),
stream_rest(stream_rest
(stream_rest(stream_rest(D))));
D_new :=
(2 x Dfr + Df + Dfrr);
in
stream [D_new] ||
NyquistFilter (Drrrr)
end let
end function

Figure 9: The Nyquist function.

abstract machine. In Proc. of the Fourth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
Santa Clara, California, pages 164-175, April
1991.

[Dataflow 1990]
Dataflow Computer Corporation. Time Dependent
Signal Processing Algorithms for Optical Surveil-
lance. Final Report for Contract HA4176 to Boe-
ing Aerospace, Dataflow Computer Corporation,

Belmont, MA 02178, November 1988.

[Dennis 1987] Jack B. Dennis. Dataflow Computa-
tion: A Case Study. In V. Milutinovic, editor,
Computer Architecture: Concepts and Systems,
chapter 9. New York: Elsevier, 1987.

[Dennis 1988] Jack B. Dennis. Mapping array compu-
tations for a dataflow multiprocessor. In Proceed-
ings of Mapcon IV: Multiprocessor and Array Pro-
cessor Conference, pages T71-76, Society for Com-
puter Simulation, 1988.

[Dennis 1989] Jack B. Dennis The Paradigm Com-
piler: Mapping a Functional Language for the Con-
nection Machine. In Scientific Applications of the
Connection Machine, Horst Simon, editor, pages
301-315, Singapore: World Scientific Publishing
Company, 1989.

[Dennis 1991] Jack B. Dennis. The evolution of
‘static’ data-flow architecture. In J.-L. Gaudiot

function TwoDimFilter (
D: ImageStream; w: integer
returns ImageStream)

Bf := for i in 1, w
returns array of array [-1:
stream_first (D[i]),
stream_first (stream_rest (D[i])),
stream_first (stream_rest
(stream_rest(D[i])))]
end for;

Dt := for i in 1, w
returns array of
stream_rest (D[i])
end for;

Dn := for i in 2, w-1
returns array of
a * Bf[i, 0] +
b * (Bf[i, -1] + Bf[i-1, 0] +
Bf[i+1, 0] + Bf[i, +1]1) +
c * (Bf[i-1, -1] + Bf[i-1, +1] +
Bf[i+1, -1] + Bf[i+1, +1]1)
end for;

Dr := TwoDimFilter (Dt, w)

in
for i in 2, w-1
returns array of
stream [Dn[i] 1 || Dr[il
end for
end let

end function

Figure 10: The TwoDimFilter function.

and L. Bic, editors, Advanced Topics in Data-Flow
Computing, chapter 2. Prentice-Hall, 1991.

[Dennis 1994] Jack B. Dennis. Machines and models
for parallel computing. International Journal of
Parallel Programming, Vol. 22, No. 1, pages 47—
77, February 1994.

[Dennis 1995] Jack B. Dennis. Stream Data Types for
Signal Processing. In Advances in Dataflow Archi-
tecture and Multithreading, J.-L. Gaudiot and L.
Bic, editors. IEEE Computer Society Press. To be
published.

[Dennis/Gao 1994] Jack B. Dennis and Guang R.
Gao. Multithreaded architectures: principles,
projects, and issues. In Robert A. Tanucci, editor,
Advances in Multithreaded Computer Archtecture.
Kluwer, 1994.

[Sabot 1992] Gary Sabot. A compiler for a massively
parallel distributed memory MIMD computer. In
Proceedings of the Fourth Symp. on the Frontiers
of Masswely Parallel Computation, pages 4-11.
ACM and TEEE, 1992.

[Ho/Lee/Messerschmitt 1988] W. H. Ho, Edward A.
Lee, and D. G. Messerschmitt. High level data
flow programming for signal processing. In R. W.
Broderson and H. S. Muscovitz, editors, VLSI
Signal Processing, 111, pages 385-395, New York:
TEEE Press, 1988.

[Kelly/Lochbaum/Vyssotsky 1961]
John Kelly, C. Lochbaum, and Victor Vyssotsky.
A block diagram compiler. Bell System Technical
Journal, 40(3), May 1961.

[Lee 1991] Edward A. Lee. Consistency in dataflow
graphs. IEEFE Transactions on Parallel and Dis-
tributed Systems, 2(2):223-235, April 1991.

[McGraw 1985] J. McGraw, S. Skedzielewski, S. Al-
lan, R. Oldehoeft, J. Glauert, C. Kirkham,
B. Noyce, and R. Thomas. SISAL: Streams and
Iteration in a Single Assignment Language: Refer-
ence Manual Version 1.2. Technical Report M-146,
Rev. 1, Lawrence Livermore National Laboratory,

1985.

[Oldehoeft /Bohm /Feo 1992)
R. R. Oldehoeft, A. P. W. Bohm, D. C. Cann, and
John T. Feo. SISAL Reference Manual: Language
Version 2.0. Technical report, Lawrence Livermore

National Laboratory and Colorado State Univer-
sity, 1992.

[Papadopoulos/Culler 1990] Gregory M. Papadopou-
los and David E. Culler. Monsoon: an explicit
token-store architecture. In Proceedings of the 17th
Annual International Symposium on Computer
Architecture, Seattle, Washington, pages 82-91,
May 1990.

function PeakDetect (
D: ImageStream; w: integer
returns MarkStream)

let
Th := 0;
B := for i in 2, w-1

returns array of array [-1:
stream_first(D[i]),
stream_first (stream_rest(D[i])),
stream_first (stream_rest
(stream_rest (D[i])))]
end for;

Dt := for i in 2, w-1
returns array of
stream_rest(D[i])
end for;

Pk := for i in 3, w-2

P := B[i, 0];

C := B[i-1, -1] <= P &
B[i-1, 0] <= P &
B[i-1, +1] <= P &
B[i, -1] <= P &
B[i, +1] <= P &
B[i+1, -1] <= P &

B[i+1, 0] <= P &
B[i+1, +1] <= P;

S := B[i-1, -1] + B[i-1, 0] + B[i-1, +1] +
B[i, -1] + B[i, +1] +
B[i+1, -1] + B[i+1, 0] + B[i+1, +1];

returns array of C & (8 x P > S + 8 x Th)
end for;

Dr := PeakDetect (Dt, w);
in
for i in 3, w-2
returns array of
stream [Pk[i] 1 || Dr[il
end for

end let

end function

Figure 11: The PeakDetect algorithm.

