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Object-oriented methodology has become an important approach to improving the quality
of software and increasing the efficiency of its development. In this paper our aim is to
show how the benefits of object-oriented methodologies can be realized within the framework
of functional programming, achieving a more powerful level of modular program structure
and avoiding introduction of the possibility of nondeterminate program behavior except when
demanded by an application. We show how inheritance can be supported by an extension
of the Sisal language, namely ObjectSisal, to include a natural class mechanism with im-
mutable abstract data types, and how uses of “state” may be handled by means of stream
data types and the nondeterminate merge operation. These principles are illustrated using
examples from simulation and real-time systems. We believe that efficient distributed im-
plementation of such an object-oriented methodology can be achieved through compile-time
program transformation and execution platforms that implement fine-grain threads.
Keywords: object modeling technique, object-oriented programming, functional program-
ming, nondeterminacy, distributed computing, real-time systems

1 Introduction

Object-oriented methodology has become an important approach to improving the qual-
ity of software and increasing the efficiency of its development. However, the evolution of
distributed systems in the practice of software engineering has introduced chaos into object-
oriented methods: When a typical object-oriented programming language is extended to
support distributed applications, the semantic concepts based on abstract data types that
have been useful for characterizing object models in sequential computation lose their va-
lidity, and reliance is palced on ad hoc operational models that fail to meet requirements
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of encapsulation for the support of modular software construction. In particular, the ac-
knowledged difficulties of programming using traditional primitives for coordinated multi-
processing reappear in most object-oriented languages that support concurrency.

Our objective in this paper is to show how the benefits of object-oriented methodologies
can be realized in distributed computing within the framework of functional programming,
achieving a more powerful form of modular program structure and avoiding introduction of
the possibility of nondeterminate program behavior except when demanded by an applica-
tion.

The presentation starts with some background observations regarding object-oriented
methodology and problems in practicing object-oriented software engineering for a dis-
tributed or shared-memory multiprocessing computing environment. We take the object
modeling technique (OMT) of Rumbaugh and his colleagues [24] as the point of depar-
ture for this discussion. In Section 3 we introduce ObjectSisal, a simple extension of the
Sisal 2 functional programming language [21] to incorporate a class construct that supports
user-defined immutable types, and we illustrate how concepts of object and inheritance are
supported. We show how state machines can be implemented as stream-processing func-
tions using the stream data types of Sisal, yielding functional, history-sensitive program
modules. The requirement to support nondeterminate computation, in many real-time ap-
plications, for example, is met by introducing the nondeterminate merge operation [9] for
data streams.

These ideas are illustrated by means of examples taken from real-world applications
for which object-oriented methods are attractive: a logic simulation example in Section 4,
and a telephone switching system in Section 5. In Section 6, we compare ObjectSisal with
related programming languages and systems. We conclude in Section 7 with a summary
and some remarks regarding the implementation of ObjectSisal.

2 Background

A usable approach to software engineering must cover the entire software life cycle from
requirements analysis through design, implementation, maintenance, and extension. As
with older approaches to software construction, object-oriented methods may be applied
in all phases of software work. As often stated, one role of a programming language in
object-oriented methodology is as a tool for carrying out the implementation phase. Of
course, the closer the language is to reflecting concepts of the methodology, the easier it
will be to implement a design.

The most fundamental concept in object-oriented software methodology seems to be its
focus on data objects and their encapsulation together with the sets of operations to be
used in connection with the role of the objects in the application program. This notion of
data abstraction is in contrast to the emphasis on process and procedure in other software
engineering approaches that appear to lack a structured way of dealing with data objects.

Although the concepts of abstract data types, which provide a precise formal foundation
for the encapsulation of object classes, is a well-understood area in sequential programming



languages [16], there is no agreement about how the abstraction should be carried over
to parallel and distributed systems. The most common approach is simply to allow inde-
pendent processes to have free use of access and update operations on arbitrary objects.
This leads to the possibility of nondeterminate behavior of computations, whether or not
repeatable behavior is desired by the programmer. Qur view is that this is an unacceptable
approach. Programmers should not have to expose themselves to unrepeatable behavior
when that is not a requirement of the application!

There is nothing in the rationale for object-oriented software methodology, as stated by
Blooch [6] and by Rumbaugh [24], that demands that objects have mutable state. Thus a
real-world object that progresses through a significant sequence of states may be modeled
by a sequence of state values, together with static data that describes fixed attributes of
the object. Stream data types provide this capability, and our examples show how this
approach may be practiced using ObjectSisal.

Inheritanceis another aspect of object-oriented methodology that is held to be character-
istic of the field. There seem to be two principal sorts of inheritance: The first corresponds
to a subtype hierarchy generated by the “is-a” relation among object types. This form of in-
heritance may be added to a functional programming language by a simple extension of the
syntax for defining abstract data types, as we illustrate in Section 3 for the Sisal language.
The second object-oriented use of inheritance concerns aggregates, the “part-of” hierarchy.
This concept can be applied simply by nesting (binding) type definitions as required by the
structural relationships of data objects.

The motivation for inheritance appears to be the savings in program text and compiled
code for operations that have similar effects for several specializations of a superclass of
objects. This appears to be a valid argument where the operation does not apply to all
subtypes of objects; when an operation applies to all subtypes (even if there are different
effects for differing types of objects), it seems to be more efficient to apply the operation
to the common superclass and use case analysis to determine the effect according to kind
of object as given by an attribute of the superclass. These aspects of hierarchy will be
illustrated in the examples of the next section.

We do not consider the topic of multiple inheritance because its semantics and utility are
being questioned, even within the community of conventional objected-oriented advocates.

3 Principles

We have found the treatment of object-oriented methodology given by Rumbaugh and
his colleagues [24] to be a solid exposition of the concepts and how they apply to real
problems of software engineering. Rumbaugh considers three models for use in formulating
the requirements of an application: the object model, the dynamic model, and the functional
model. Here and in the examples given in later sections of this paper, we show how systems
described in terms of these models may be implemented using ObjectSisal.

We have chosen Sisal 2 [21] as the functional programming language for expressing
our examples because it includes stream data types that are important for our treatment



class Object is
% Attributes

attribute_1: type_1;
attribute_2: type_2;

% Operations

function Operation_1

end function Operation_1

function Operation_2

end class Object;

Figure 1: The class construct in ObjectSisal.

of state machines and nondeterminate computation. ObjectSisal includes extensions to
provide for the encapsulation of sets of operations in classes, and to support inheritance
through subtypes. The nondeterminate merge operation [9] is provided as the sole means
for expressing nondeterminacy.

In ObjectSisal, an object model of the OMT takes the form of a static hierarchy of class
definitions that define a root type and a collection of subtypes, in which each type or subtype
is, formally, a set of immutable objects together with fixed operations, as explained below.
A dynamic model of the OMT takes the form of a Sisal function (usually an operation of
the class of the object supposed to have “state”) that processes a stream of events to yield
a stream of responses. This is illustrated by the phone line unit discussed in Section 5.

We limit our treatment of the OMT functional model to pure functions, which are
invoked by class operations as required to handle events. Thus we omit treatment of asso-
ctations of OMT and databases, which will be the subject of future work.

3.1 Objects, Classes, and Inheritance

In ObjectSisal a class of objects is denoted as shown in Figure 1. A class consists of
a set of attributes and a set of operations. In consonance with principles of functional



function Create ( null returns Object )

object Object [
attribute_1: value_1;
attribute_2: value_2 ]

end function Create

Figure 2: An operation of the Object class.

programming, a class represents an (immutable) abstract data type; each object of type
Object has fixed attribute values.

Figure 2 shows a typical operation, in this case a Create operation that creates a new
object of type Object. The keyword object begins a phrase having syntax similar to that
of the Sisal record constructor; its value is an object of the class with specified attribute
values. The keyword private may preceed function to indicate that the operation is only
accessible to other operations of the class, and is invisible outside.

No means is provided for modifying an attribute value of an existing object. The
consequence of insisting on this purity is that parallelism is exposed without needlessly
introducing unrepeatable behavior, as our examples will illustrate.

Subtype declarations are permitted in ObjectSisal by an alternate header for a class:

class Object is SuperClass with

end class Object;

In this case, attributes and operations of the class SuperClass may be referenced by imple-
mentations of operations of the subclass Object. Of course, reuse of the names of attributes
and operations in a subtype hierarchy is not permitted. A subtype is simply the immutable
supertype, extended with additional data components and operations, and is itself a (im-
mutable) derived abstract data type. (It is not a subtype in the sense of set membership,
even though we may regard objects of the subtype as “elements” of the supertype class.)
The immutable property of ObjectSisal objects avoids the reputed problems of “subtyping”
in object-oriented languages.

A nice example of a subtype hierarchy in an application is the weather monitoring station
example presented in [6], pages 293-326. The weather station reads data periodically from
weather instruments, and keeps track of daily maximum and minimum values. It normally
displays the current values reported by its sensors, but it also accepts interactive commands
from a keypad that request display of historical (max/min) readings and support additional
weather station functions.

The weather station has sensors for temperature, humidity, pressure, wind speed, and
wind direction in the complete example. Here we omit humidity and wind speed for sim-
plicity. The three remaining sensors generate the subtype hierarchy drawn in Figure 3
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Figure 3: Portion of the object model for the weather monitoring station.

using the OMT diagramming notation. The class HistoricalSensor is a supertype of the
TemperatureSensor and PressureSensor classes, and includes attributes for daily max
and min values. It also has the operation NewExtremes which may be invoked by subtype
operations to yield new Sensor instances with freshly calculated extreme values. The code
to do this is illustrated in Figure 4.

3.2 Streams and State Machines

The Sisal language includes stream data types and the operations
stream first and stream rest that yield the initial element of the given stream of values,
and the stream consisting of the remaining elements, respectively. Figure 5 illustrates how a
simple stream-processing computation may be expressed in Sisal as a tail-recursive function.

In [11] we have shown how such tail-recursive functions may be automatically trans-
formed into iterative processes for efficient code construction. Several stream-processing
modules may be combined to express a processing system in which pairs of modules are
in producer/consumer relationships that permit all modules to be executing simultane-
ously [12].

This facility permits distributed simulation to be implemented in a programming style
that does not allow non-repeatable (nondeterminate) behavior (to an observer). The logic
simulation program discussed in Section 4 is an example.

A stream-processing function provides a natural style for expressing a dynamic model
of the OMT. The set of states may be an enumeration type

type State = union [ q0, gqi1, ... gn: null J;

and the sequences of input and output events may be elements of data streams



class Sensor is
value: real;
end class Sensor

class HistoricalSensor is Sensor with

daily_high: real;
daily_low: real;
time_stamp: integer;

function NewExtremes (
S: HistoricalSensor;
time: integer;
temp: Temperature;
returns HistoricalSensor )
let
v := S.value;
dh, dl := if NewDay (time, time_stamp)
then v, v
else (
if v > S.daily_high then v else S.daily_high end if
if v < S.daily_low then v else S.daily_low end if )
end if
in
S [ daily_high: dh; daily_low: dl; time_stamp: time ]
end let
end function NewExtremes;
end class HistoricalSensor

class TemperatureSensor is HistoricalSensor with

function SampleTemperature (
TS: TemperatureSensor;
time: integer;
returns TemperatureSensor)

let

temp := ReadAirTemperature ();

new_TS := NewExtremes (TS [value: temp], time, temp);
in

new_TS
end let

end function SampleTemperature
end class TemperatureSensor

Figure 4: Sensor classes for the weather station example.



function Streamidd (
D: stream of integer;
returns stream of integer )
Accumulate ( D, 0 )

end function StreamAdd

function Accumulate (
D: stream of integer;
S: integer
returns stream of integer )

let

sum := S + stream_first (D);
in

[ sum ] || Accumulate ( stream_rest (D), sum )
end let

end function Accumulate

Figure 5: A simple stream-processing function written in Sisal.

type InEvent = union [ sO: in_info_0; .. sm: in_info_m ]
type InStream = stream of InEvent;
type OutEvent = union [ yO: info_0; .. ym: info_m ]

type OutStream = stream of OutEvent;

where the type of each alternative in the unions is chosen to represent the information con-
veyed by each kind of input or output event. Then the function representing the state ma-
chine may be written as shown in Figure 6. In this code the functions TransitionFunction
and OutputFunction are the usual functions specifying state transitions and output sym-
bols of a Mealy-type finite state machine. The coding of the phone line unit given in the
appendix follows this scheme.

In some situations it is necessary to combine two stream-processing functions £ and g
as shown in Figure 7. This might be written as

let
out_stream, y_stream := f (in_stream, x_stream );
x_stream := g ( y_stream );

in
out_stream

end let

However, this is not permitted in Sisal because the value name x_stream is used before it
has been defined. This design decision was made so that Sisal could have strict semantics,
that is, all arguments of any operation are completely evaluated before the operation may
be applied. Because we wish a stream in ObjectSisal to have the properties of a non-strict
list thereby permitting concurrent operation of producer and consumer modules, we include



function StateMachine (
S: stream of InEvent;
returns stream of OutEvent )

MachineStep ( S, union State [ q0 ] )
end function StateMachine
function MachineStep (
S: stream of InEvent;

Q: State;
returns stream of OutEvent )

let

first := stream_first ( S );

rest := stream_rest ( S );

new_q := TransitionFunction ( first, Q );

new_y := OutputFunction ( first, Q );
in

stream [ new_y ] || MachineStep ( rest, new_q )
end let

end function StateMachine

Figure 6: Expressing a dynamic (state-machine) model of the OMT in ObjectSisal.

in_stream out_stream
—> ¢ —
X_stream y_stream
g

Figure 7: A combination of stream-processing functions.
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Figure 8: Flow of events in the weather monitoring station.

in ObjectSisal a feature that permits the value name of a stream argument to be introduced
and referenced earlier in the program text than its “left-hand-side” appearance. Thus the
above example may be written in ObjectSisal as

let
out_stream, y_stream := f (in_stream, future_stream x_stream );
x = g ( y_stream );

in
out_stream

end let

In this, the key word future_stream asserts that the function argument x_stream denotes
a stream of values and should be treated non-strictly. Illustrations of use of this feature
occur in the weather station and telephone exchange examples that follow.

3.3 Nondeterminate Computation

While the logic simulation example has repeatable behavior and can benefit from being
written using inherently repeatable programming methods, other computations cannot be-
cause they are inherently nondeterminate. The weather station with its asynchronous input
from the keypad is an example. The local telephone switching system discussed in Section 5
is a more elaborate example.

The state of the weather station will be represented by a collection of attributes of
a WeatherStation class in ObjectSisal. The set of attributes includes the set of Sensor
objects. Two kinds of events call for two kinds of transactions to be performed by the
weather station. A sample transaction is initiated by a clock tick and selected sensors
are sampled according to the granularity of current time. A keypad transaction causes a
temporary change in the display to present a user with certain derived measurement data,
the dew point temperature, or max and min values, for example.
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Figure 8 shows how the Process operation of the WeatherStation class is constructed
using the merge operator to combine the two streams of transaction requests. The func-
tion ExecuteTransaction processes the resulting stream of requests. The ObjectSisal code
corresponding to the diagram is given in Figure 9. This code would have repeatable (de-
terminate) behavior except for its use of the merge operation.

In the telephone exchange we need a means of merging a number of streams unknown
at compile time. To support this requirement in ObjectSisal, we extend the set of reduction
operators that may be used in a Sisal for construct to include the merge operation. Thus
the expression

for i in [1..n]

S : stream of T := ... ;
returns merge of S[i]
end for

yields the stream resulting from merging the n streams defined in the body of the for loop.
These principles, and the examples that follow, show that the notion of “object with
state” is not an essential element of an object-oriented software engineering methodology.

4 A Simulation Example

Synchronous logic simulation is a challenging problem for distributed computation. There is
much potential parallelism, but it is difficult to exploit because the simulation process must
behave as if a barrier synchronization were enforced between each pair of successive clock
ticks. If this is actually done, then there is no possibility that any processing of later events
may proceed while any work for the present clock tick remains incomplete. If, however, the
action of any gate can be enabled by the availability of defined input logic levels, then no
barrier synchronization is needed and much greater concurrency of simulation is possible
(using a fine-grain parallel computer).

Synchronous logic simulation can be written in ObjectSisal in an elegant form. The logic
simulation is performed by the Simulate operation of the Circuit class given in Figure 10.
Two integer attributes tell the number of logic devices and the number of output signals
of the circuit. The logic devices of the circuit are represented by an array of objects from
the Device class (Figure 11) which is limited to “and” and “not” gates for simplicity. The
network topology of the circuit is represented by objects in a Connection class (Figure 12)
which are associated with each gate and map the inputs of each gate to outputs of other
gates. The out array tells which gates produce the output signals of the circuit. The
Simulate operation works by generating the sequence of State and Output arrays. Highly
concurrent execution of the simulation process is possible if several generations of the state
and output arrays are simultaneously live, and elements (logic values) are made accessible as
soon as they become defined. For this example, we have assumed that a circuit exists, and
have not shown any operations of the classes that would facilitate construction of circuits.
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class WeatherStation is

sensors: record [
T_sensor: TemperatureSensor;
P_sensor: PressureSensor;
WD_sensor: WindDirectionSensor J;

clock: Clock;
keypad: KeyPad;

function Create ( null returns WeatherStation )

end function Create

function Process ( WS: WeatherStation returns null )
let
command_stream := ParseInput (keypad);
sample_stream :=
GenerateSampleRequests (sensors, clock);
transaction_stream :=
merge (command_stream, sample_stream);
in
ProcessTransactions ( WS, transaction_stream )
end let
end function Process

function ProcessTransactions (
WS: WeatherStation;
Ts: stream of Transaction;
returns WeatherStation )

let

Tf := stream_first (tr_strm);

WS_new := ExecuteTransaction ( WS, Tf )
in

ProcessTransactions ( WS_new, stream_rest (Ts) )
end let
end function ProcessTransactions

end class WeatherStation

Figure 9: The weather station program.
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class Circuit is

type State = array of boolean;
type Output = array of boolean;

node_cnt: integer;

out_cnt: integer;

nodes: array of Device;
net: array of Connection;
out: array of integer;

function Simulate ( C: Circuit; S: State;
returns stream of State, stream of Output )

let
S_next := for device at i in C.nodes do
s := Device.Operate (
device,

Connection.Select ( S, C.net [i]) );
returns array of s;

end for;

O_next := for i in 1, out_cnt
returns array of s [ C.out [i] ];
end for;

S_rest, O_rest := Simulate (C, S_next);
in [ S_next ] || S_rest, [ O_next ] || O_rest
end let
end function Simulate;
end class Circuit;

Figure 10: The simulation process written as a Circuit class in ObjectSisal.
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class Device is
kind: union [ AndGate, NotGate: null 1;

function Operate ( D: Device; L: array of boolean;
returns boolean )

case Device.kind of
AndGate: L [1] & L [2];
NotGate: "L [1];

end case

end function Operate;
end class Device;

Figure 11: The Device class for the logic simulation example.

class Connection is

input_cnt: integer;
links: array of integer;

function Select ( C: Connection; L: array of boolean;
returns boolean )

for i in 1, C.input_cnt
returns array of L [ C.links [i] ]
end for

end function;

end class Connection;

Figure 12: The Connection class for the logic simulation example.
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Figure 13: Generic structure of a telephone switching exchange.

5 Telephone Exchange

The simple telephone exchange allows any subscriber to request that a speech connection
be set up to any other subscriber. As shown in Figure 13 the exchange has three kinds of
components: phone line units (PLUs), the switch unit (SWU), and the common control unit
(CCU). For simplicity, we assume that each phone line unit handles just one subscriber.
The state of a PLU notes whether the phone’s handset is off hook or on_hook, and also
makes the phone sound signals: ring, busy_tone, ring tone. The switch unit provides
circuits for connecting any pair of subscribers. The common control unit receives request
and status messages from the other units and issues control messages to them. Here and in
the appendix we present an executable specification of the telephone exchange, written as
an Exchange class in ObjectSisal. Figure 14 shows the relations among the objects of an
instance of the Exchange class. The components interact via several event streams conveyed
between pairs of objects. The elements of these streams have type definitions in ObjectSisal
as given in Figure 15; the names are chosen from the viewpoint of the common control unit.

Figures 16 and 17 present the Exchange class which amounts to a formal (but neverthe-
less executable) specification of the interconnections shown in Figure 14. It is the top level
of the telephone exchange implementation. Its Create operation builds an Exchange object
containing a SWU, a CCU, and the specified number of PLUs. In the Run operation, the
streams of events from the PLLUs and the SWU are merged into a single input stream for
the Process function of the CCU object. Because the interconnection of units is cyclic, the
future_stream keyword is used to declare references to stream values yet to be defined.

The phone line unit has a significant dynamic model represented by the state diagram
in Figure 18. The states are used for noting the progress of making a connection on behalf
of a calling subscriber, acknowledging the off-hook response of the called subscriber, and
clearing the connection on completion of the call (on-hook condition of either subscriber).
The ObjectSisal implementation of the PLU given in the appendix merges the streams of ex-
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Figure 14: Inter-object streams in the local telephone exchange.

ternal and command events, and uses a tail-recursive state-transition function ProcessStep
exactly as discussed in Section 3.

The CCU responds to signals from the PLUs by asking the SWU to make and clear
paths in the switching network of the exchange, and the SWU maintains the connections
and informs the CCU of its success or failure to create a path. The details of the ObjectSisal
specifications of these units are given in the appendix.

6 Related Work

The design of ObjectSisal has roots in earlier research efforts, including Clu’s abstract data
type mechanism [16], Dennis and Weng’s work on tail-recusive computing with streams [8,
10], proposals for structuring nondeterminate computations [9], and the common under-
standings of inheritance and encapsulation as these notions have evolved in object-oriented
programming paradigms.

Here we compare ObjectSisal with other advanced languages and systems devised for
programming distributed systems, both object-oriented and others that offer the benefits of
high-level structured programming in real-time applications. Our discussion considers how
well each programming environment supports principles of modular software construction.!

"Modularity mechanisms for concurrent, object-oriented programming are discussed in [2], but no defini-
tion of modularity is given and the sort of program modularity described apprears to be quite limited. For
example, no properties corresponding to our Recursive Construction and Secure Arguments principles are

16



% Subscriber phone numbers
type Number = integer;
% External input events to the PLUs

type LineExtEvent =
union [ off_hook, on_hook: null; digits: integer ];

% Status Signals from the PLUs
type PhoneState = union [
idle, dialing, connect, busy_tone,
ring_tone, ring, speech: null];
% Input events for CCU from the PLUs
type LineInEvent = union [
seize: record [called: Number];
clear, answer: null 1;
% Input events for CCU from the SWU
type SwitchInEvent = union [
success: recordl[ calling, called: Number 1;
failure: record[ calling: Number ] ];

% Output events for PLUs from the CCU

type LineOutEvent =
union [ sound_ring_tone, start_ring, sound_busy_tone, stop_ring: null ];

% Output events for the SWU from the CCU
type SwitchOutEvent = union [
connect: record[ calling, called: Number ];

disconnect: record[ line: Number ] ];

Figure 15: Global event types for the telephone exchange.
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class Exchange is

line_cnt: integer;
line_units: array of PLU;
switch_unit: SWU;
control_unit: CCU;

function Create (n: integer returns Exchange )

let
swu := SWU.Create (n);
ccu := CCU.Create (n);
plus := for line in [1..n] do
returns array of PLU.Create ()
end for;
in

object Exchange [line_cnt: n;
line_units: plus; switch_unit: swu; control_unit: ccu ]
end let
end function Create;

function Run (
exchange: Exchange;
ext_events: array of stream of LineExtEvent;
returns array of stream of PhoneState )
end function Run
end class Exchange

Figure 16: The class Exchange specifying a simple telephone exchange.

18



function Run (
exchange: Exchange;
ext_events: array of stream of LineExtEvent;
returns array of stream of PhoneState )
let
plu_status_streams, plu_in_streams :=
for line in [1..line_cnt] do
line_unit := line_units[linel;
status_stream, in_stream := line_unit.Process (
ext_events [line],
stream plu_out_streams [line] );
returns
array of status_stream,
array of in_stream

end for;
merged_plu_inputs := for line in [1..line_cnt] do
returns merge of TagStream (line, plu_in_streams [line])
end for;
swu_in_stream := switch_unit.Process (future_stream swu_out_stream);
in_stream := merge ( merged_plu_inputs, swu_in_stream);
plu_out_streams, swu_out_stream := control_unit.Process (in_stream);
in plu_status_streams
end let

end function Run

Figure 17: The Run operation of the Exchange class.
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Figure 18: Dynamic model (state diagram) for the phone line unit.
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In [10] we listed six principles of modular software construction:

1. Information Hiding Principle: The user of a module must not need to know anything
about the internal mechanism of the module to make effective use of it.

2. Invariant Behavior Principle: The functional behavior of a module must be indepen-
dent of the site and context from which it is invoked.

3. Data Generality Principle: The interface to a module must be capable of passing any
data object an application may require.

4. Secure Arguments Principle: A module must not be able to affect the behavior of
another module through a shared argument.

5. Recursive Construction Principle: A program constructed from modules must be
usable as a component in building larger programs or modules.

6. System Resource Management Principle: Resource management for data objects must
be performed by the computer system, not by program modules.

We believe that the ObjectSisal Language provides a programming framework that
satisfies all six of these principles. Most other approaches to distributed object-oriented
computation do not.

Some tools for concurrent object-oriented programming make explicit use of sequential
processes. The Ada language uses tasking to spawn concurrent processes that can operate on
objects using methods encaspsulated in packages. ConcurrentSmalltalk [15] uses processes
so that the concurrent version can be made compatible with its sequential parent, Smalltalk
80. In the “composable” lanaguage CC++ [7], C++ is augmented with processes and a
synchronizing mechanism to coordinate operations on objects.

Orca [5], is intended to support concurrent applications on a network of machines that
does not support a common address space. An Orca program consists of processes that
execute operations on objects. By using relatively coarse grain operations, operations on
objects at remote sites can be executed efficiently in comparison to the fine-grain read
and write primitives used in other approaches to distributed computing. However, nested
objects (objects that are components of other objects), lead to inefficiencies due to the
complexity of ensuring atomicity of operations.

These tools all view objects in the traditional object-oriented manner—as entities having
“state”—which leads to all of the difficulties concerning coordination of actions and conflicts
with principles of modularity discussed above. They fail to satisfy the principles Data
Generality and Recursive Construction, and most of them also fail to support the Resource
Management Principle. Data Generality is violated because it is normally not possible to
pass an arbitrary data value (object) in a message sent from one process to another. (A
general mechanism must be able to pass addresses of component objects, and these addresses

discussed.
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must have the same meaning in the context of any process, a property not usually satisfied.)
The principle of Recursive Program Construction is usually violated because there is no
syntactic construct that permits encapsulation of a set of processes to present the same
form of interface to users as the class construct provides for object types. The Resource
Management principle is violated when processes are statically bound to processors, and
cannot be migrated by the system to balance resource usage; memory management is limited
by the binding of allocation actions to processes.

Several approaches to distributed object-oriented programming do not have the problems
of explicit processes. The most studied and developed of these are the actor-based paradigms
developed by Agha and Hewitt [1], the work of Yonezawa and his assocites on ABCL [29],
and others, for example POOL-T [3]. In these systems, a computation is performed by a
collection of actors that respond to messages containing data (argument values and objects)
and the name of a method to be executed on the object. Sending a message corresponds to
performing a function or procedure call in a conventional language, but the method defines
an operation characteristic of the object, and is encapsulated with object data in a class
definition.

Because the methods of a class may alter values of object attributes, undisciplined
behavior would occur if concurrent execution of methods for the same object were per-
mitted. Therefore, actor languages provide synchronization mechanisms that may be used
to ensure that the effect of operations is as if they have been strictly interleaved. Many
different schemes have been described in the literature; however they all have the property
of permitting accesses and updates of objects to be arbitrarily interleaved, therby permit-
ting nondeterminate (nonrepeatable) behavior. Because actor languages permit messages
to contain objects that may be updated by methods, they also do not satisfy the Secure
Arguments Principle.

The actor-based systems generally satisfy Data Generality and Resource Mangement
principles of software modularity. They satisfy the Data Generality principle by permitting
any object to be sent in a message, and the Resource Mangement Principle through use of
system memory management (including automatic garbage collection). They also support
the Information Hiding principle through the class encapsulation facility.

Support of the Recursive Construction Principle demands a means for combining mod-
ules (class definitions) into new modules that can be reused in different contexts with
invariant behavior. This principle is supported by mechanisms for importing class defini-
tions into other classes and for binding methods to operation calls. Dynamic binding that
supports type polymorphism is good; however, dynamic binding mechanisms that lead to
context-dependent behavior are in violation of the Invariant Behavior principle. In Object-
Sisal, static binding of methods (functions) to function invocations is employed, so recursive
construction is supported with a guarantee of invariant behavior.

UFO (United Functions and Objects) [27] is perhaps the best-known work attempting
to combine the features of object-oriented and functional programming styles. Besides
a purely functional subset, UFO supports “stateful” objects in the same way as other
concurrent object-oriented languages, supporting the view that objects may be updated by
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concurrent operations. Calls upon the functions and procedures of a class of stateful objects
are handled as messages, using mechanisms similar to those of the actor-based languages.

It is asserted in [27] that functions in UFO are not permitted to modify their arguments,
as demanded by our Secure Arguments Principle. It appears that this is to be implemented
by compile-time determination of whether any argument to a function can contain a stateful
object to which a procedural method could be applied. In ObjectSisal we expect the Secure
Arguments Principle to be met because most data are values. However, it is conceivable
that use of the nondeterminate merge operator can lead to the creation of data objects
that can exhibit changing behavior. We must be certain that such data objects cannot be
made components of function arguments, but we have not yet done a careful study of this
question.

Although UFO and ObjectSisal share the common motivation of realizing the benefits of
the functional programming style in distributed computing applications, two very different
approaches to the problem of state are used. In using stateful objects, we believe UFO
imports weaknesses of concurrent object-oriented programming, including, in particular, the
property that programs that utilize “objects” are susceptible to nondeterminate behavior,
whether or not intended.

In ObjectSisal, we insist that all objects are immutable and that those situations that
appear to require “state” can be supported using history-sensitive functions on data streams
to build state machines, and by using the merge of streams when nondeterminate behavior is
required. One property of this design is that ObjectSisal programs cannot deadlock except
in case of memory exhaustion, a property not achieved by other programming tools for
object-oriented software engineering.

In [28], Shapiro and Takeuchi have shown how object-oriented programming may be
done using Concurrent Prolog. Shared logic variables are used to implement streams of
events flowing between objects, which are processes executing self-recursive functions. Be-
cause Concurrent Prolog allows nondeterminacy in the way subgoals are selected, programs
written in Concurrent Prolog are subject to the same hazards as in other object-oriented
styles. Indeed, the nondeterminate merge has a simple implementation in Concurrent Pro-
log.

Many object-oriented languages are typeless or rely on runtime detection of some kinds
of type errors. ObjectSisal does not utilize dynamic binding, so every function interface
can be fully type-checked before program execution; no type errors should show up during
program execution. Sisal types are sets of immutable data objects with operations forming
abstract heterogeneous algebras; hence the type system is not burdened with duties relating
to protection or concurrency control, as is done in some object-oriented languages.

Before leaving object-oriented programming systems, we note that there is an acknowl-
edged interference between the goals of inheritance (making the methods of one class avail-
able to other classes that define subtypes) and mechanisms designed to support coordination
between access and update operations. A thorough analysis of this problem has been done
by Matsuoka and Yonezawa [19], yielding no completely satisfactory solution. As a conse-
quence, the designers of many concurrent object-oriented languages have elected to forgo
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implementing inheritance. In ObjectSisal the problem may not arise because “messages”
(function calls in ObjectSisal) are never selected or queued. The Maude language [20] also
appears to avoid the anomaly by adopting a “declarative” semantics based on a formal
rewriting logic.

Erlang [4] is a “declarative” programming langauge that has been used experimentally
to implement a prototype telephone switching system [23]. In a distributed context, an
Erlang program creates explicit processes, and uses message passing for interprocess com-
munication. The use and benefit of functional programming lies in the construction of the
individual proocess code. There appears to be no means in Erlang for encapsulating a group
of processes into a higher level program module.

These features of Erlang are at odds with the principles of Data Generality, Secure
Arguments, Recursive Construction, and Resource Management. If a system to be built is
amenable to static resource management, that is, compile-time partitioning and scheduling
is feasible, then Erlang provides support for writing the application as a single layer of
concurrent modules that coordinate through message-passing. However there is no way
to group sets of these modules into larger system components that may be used similarly.
Furthremore, Data Generality is limited by the data types that may be packed into messages.

In this paper we have not addressed the question of applying functional programming
principles and software modularity principles to the issues of database systems. Most object-
oriented database systems are based on a transaction-oriented view [22]. A particularly
sophisticated design is Thor [17]. As in actor-based object-oriented languages, consistency
of the set of stored objects is maintained by imposing mutual exclusion on calls to methods
of object classes. This is done either by some atomicity scheme using two-phase commit, or
by means of locks. Thor supports applications written in Theta [18], a sequential object-
oriented language evolved from Clu.

It seems that ObjectSisal would work well for object-oriented databases. An implemen-
tation would treat all objects as persistent and use a garbage collector to reclaim memory
of abandoned objects. The “associations” of the Rumbaugh OMT method can be built
using standard classes (of immutable objects); “stores” may be realized as state machines,
if determinate, and using the nondeterminate merge of transaction streams otherwise.

7 Conclusion

In this paper we have demonstrated, using several programming examples adapted from
real-world applications, that significant benefits of object-oriented software methodology
can be achieved through simple extension of a purely functional programming language.
Our approach using ObjectSisal also provides a more effective way of addressing issues
arising in programming for parallel and distributed systems. In ObjectSisal, parallelism is
exposed naturally and without introduction of mechanisms that interfere with support for
the principles of modular software construction. Objects having “state” are represented
using functions that process streams of values, and nondeterminate behavior is limited to
programs that use the nondeterminate merge operation to assign an order to transaction

24



requests.

We have noted in the course of this presentation that the full benefit of using ObjectSisal

in software engineering depends on the exploitation of fine-grain concurrency by a target
distributed computing system. The characteristics of such multithreaded computer systems
have been discussed by Dennis and Gao [13, 14] and a process for static analysis and mapping
of stream-based programs has been discussed in [12].
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Appendix: ObjectSisal Specifications

In this appendix we give ObjectSisal programs that are executable specifications of the
three object modules of the illustrative telephone exchange. The top-level specification has
already been given as the Exchange class in Figure 16. The program for each component
module is a class definition that includes a tail-recursive Process operation that acts on
successive elements (events) of an input stream. In each case, the Process operation may
be regarded as a state machine; it is a trivial state machine (one state) in the cases of the
CCU and the SWU, where the action taken is determined by the next input event and is
selected by a simple case expression. In the case of the PLU a two-level case expression
is used because the action taken is determined by the combination of phone line state and
input event. We have extended Sisal here by allowing the tags of a nested union type to
be combined by a dot, thereby avoiding a nested case expression. Each class has a Create
operation for use in creating an instance (object) of its principal type.

The common control unit is specified by the CCU class in Figure 19. Its ProcessStep
operation (Figures 20 and 21) generates the streams of command events sent to the SWU
and the response signals to the PLUs. A special private function EnterLineEvent (Fig-
ure 22) is used to construct an array of prefix streams (most of them empty) containing any
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output events to be sent to PLUs. It serves as a distributor of output events to the various
PLUs. It is a pure function, as are all operations of the three classes defined here, with the
exception of the Process operation of the PLU class which combines input streams using
the nondeterminate merge operator.

The phone line unit is specified by the PLU class shown in Figure 23. Asin the Exchange
class, the two input streams are merged and presented to the ProcessStep function with
the initial state Idle. The coding of the ProcessStep function (Figures 24 and 25) is
straightforward. The specification of the switch unit, given in Figure 27, involves no new
features. However, we have not indicated a representation for the SWU state, but use the
unelaborated functions FreePath, AddPath, and DeletePath to test and modify connections
made through the switch.

For completeness we also give (Figure 28) the coding of the TagStream function used in
the Run operation of the Exchange class.
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class CCU is
line_cnt: integer;
function Create (n: integer returns CCU )
object CCU [line_cnt: n]
end function Create;

function Process (
in_stream: stream of InEvent;
returns
array of stream of LineOutEvent,
stream of SwitchOutEvent )

let origin := array_£fill (1, line_cnt, 0);
in
ProcessStep ( origin, in_stream )
end let
end function Process

private function ProcessStep (
origin: array of Number;
in_stream: stream of InEvent;
returns
array of stream of LineOutEvent,
stream of SwitchOutEvent )

end class CCU

Figure 19: The class CCU, specifying the common control unit.
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private function ProcessStep (
origin: array of Number;
in_stream: stream of InEvent;
returns
array of stream of LineOutEvent,
stream of SwitchOutEvent )

let
in_tail := stream_rest (in_stream);
in_event := stream_first (in_stream);

new_origin, plu_events, swu_events :=
case in_event of

line:
let
line := in_event.tag;
event := in_event.event;

in case event of
seize:

origin,

stream [],

stream [union SwitchOutEvent [

connect: record [

calling: line;
called: event.called ] ];

answer:
let
calling_line := origin [line];
line_event := union LineOutEvent [
command.stop_ring ];
in
origin,

EnterLineEvent (plu_events, calling_line, line_event),
stream [union SwitchOutEvent [
connect: record [
calling: line;
called: event.called ] ]
end let;
clear:
origin [line: 0],
stream [],
stream [union SwitchOutEvent [
disconnect: record [line: line] ];
end case
end let;

Figure 20: Specification of the Common Control Unit. Part 1: Line events.
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switch.success:

let
calling_line := in_event.calling;
called_line := in_event.called;
line_event_a := union LineQOutEvent
[command.ring_tonel;
line_event_b := union LineQOutEvent

[command.ring];
in
origin [called_line: calling_line],
EnterLineEvent (
EnterLineEvent (
plu_events, calling line, line_event_a),
called_line, line_event_b),
stream []
end let;
switch.fail:
let
calling_line := in_event.calling;
line_event_a := union LineOutEvent [
command . busy_tone] ;

in
origin,
EnterLineEvent (plu_tail, A, line_event_a),
stream []
end let;
end case
plu_tail, swu_tail := Process (new_origin, in_tail);

plu_out_streams :=
for line in 1..line_cnt do
plu_out_stream := plu_events [line] || plu_tail [line];
returns array of plu_out_stream
end for
swu_out_stream := swu_events || swu_tail;
in
plu_out_streams,
swu_out_stream
end let
end function ProcessStep

Figure 21: Specification of the Common Control Unit. Part 2: Switch events.
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private function EnterLineEvent (
plu_events: array of stream of LineOutEvent;
line: Number;
event: LineOutEvent;
returns array of stream of LineOutEvent )
for i in [1..line_cnt] do
line_events :=
if i = line
then stream [ event ] || plu_events [il
else plu_events [il
end if;
returns array of line_events
end for;
end function EnterLineEvent

Figure 22: The auxiliary function EnterLineEvent for the CCU class.
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class PLU is

type LineEvent = union [
external: LineExtEvent;
command: LineOutEvent ];

type LineState = union [
Idle, Dialing, Connect, RingTone, BusyTone, Ring, Speech];

function Create ( returns PLU )
object PLU
end function Create;

function Process (
Ex: stream of LineExtEvent;
Eo: stream of LineOutEvent;
returns
stream of PhoneState,
stream of LineInEvent )
let
El := merge ( Ex, Eo );
SO := union LineState [Idle];
in ProcessStep (E1l, SO)
end let
end function Process;

private function ProcessStep

end function ProcessStep
end class PLU

Figure 23: The class PLU, specifying the phone line unit.
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private function ProcessStep (
in_stream: stream of LineEvent;
S: LineUnitState;
returns
stream of LinelInEvent,
stream of PhoneState )

let
in_event := stream_first ( in_stream );
in_tail := stream_rest ( in_stream );

out_flag, out_event, status, new_state :=
case S of
Idle: case in_event of
external.off_hook:
false, record [],
union PhoneState [dialing],
union LineState [Dialing];
command.ring:
false, record [],
union PhoneState [ring],
union LineState [Ring];
otherwise:
false, record [],
union PhoneState [idle] ),
union LineState [Idle] );
end case
Dialing: case in_event of
external.on_hook:
false, record [],
union PhoneState [idlel],
union LineState [Idle];
external.digits:
let
dialed := digits;
in true,
union LineInEvent [seize: record [
called: dialed] 1,
union PhoneState [connect],
union LineState [Connect]
end let;
otherwise: false, record [],
union PhoneState [dialing]
union LineState [Dialing];
end case

Figure 24: State transition function of the phone line unit. Part 1.
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Ring: case in_event of

external.off_hook: true,
union LineInEvent [answer],
union PhoneState [speech],
union LineState [Speech];

otherwise: false, record [],
union PhoneState [ring];
union LineState [Ring];

end case
Connect: case in_event of

external.on_hook: true,
union LineInEvent [clear],
union PhoneState [idlel],
union LineState [Idle];

command.ring_tone: false, record [],
union PhoneState [ring_tone],
union LineState [RingTone];

command.busy_tone: false, record [],
union PhoneState [busy_tonel,
union LineState [Busy];

otherwise: false, record [],
union PhoneState [connect],
union LineState [Connect];

end case

Figure 25: State transition function of the phone line unit. Part 2.
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RingTone: case in_event of
external.on_hook: true,
union LineInEvent [ clear: record [calling: self]],
union PhoneState [idlel],
union LineState [Idle];
command.stop_ring: false, record [],
union PhoneState [speech],
union LineState [Speech];
otherwise:
false, record [],
union PhoneState [ring_tomne],
union LineState [RingTone];
end case
Busy: case in_event of
external.on_hook: true,
union LineInEvent [ clear: record [calling: self] ],
union PhoneState [idlel],
union LineState [Idle];
otherwise: false, record [],
union LineUnitState [busy];
end case
Speech: case in_event of
external.on_hook: true,
union LineInEvent [clear: record [calling: self] 1],
union PhoneState [idle],
union LineState [Idle];
otherwise: false, record [],
union PhoneState [speech],
union LineState [Speech];

end case
end case
out_tail, status_tail := Process ( in_tail, new_state );
in if out_flag then
stream [out_event] || out_tail,
stream [status] || status_tail,
else
out_tail,
stream [status] || status_tail,
end if
end let

end function ProcessStep

Figure 26: Transition function for the phone line unit. Part 3.
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class SWU is
type SwitchState = ... ;

function Create (stateQ: State;
returns SWU )
object SWU [];

end function Create;

function Process (
in_stream: stream of SwitchOutEvent;
returns stream of SwitchInEvent )
ProcessStep (in_stream, switch_initial_state);
end function Process;

prviate function ProcessStep (
in_stream: stream of SwitchOutEvent;
state: SwitchState
returns stream of SwitchInEvent )

let
in_event := stream_first (in_stream);
in_tail := stream_rest (in_stream);

switch_events, new_state :=
case event of
seize: if FreePath ( state, in_event.calling, in_event.called )
then
stream [ union SwitchInEvent [ success: record [
calling: in_event.calling;
called: in_event.called 1 ] ],
AddPath ( state, in_event.calling, in_event.called )
else stream [ union SwitchInEvent [ fail: record [
calling: in_event.calling ] ] 1],
state
end if
clear: stream [],
DeletePath ( state, in_event.line );
end case
in
switch_events || ProcessStep (in_tail, new_state)
end let
end function ProcessStep
end class SWU

Figure 27: Executable specification of the switch unit.
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private function TagStream (
line: integer;
strm: stream of LineEvent;
returns stream of TaggedLine Event )

stream [ record [
tag: line;
event: stream_first (strm) 1 ||
TagStream (line, stream_rest (strm)
end function TagStream

Figure 28: The TagStream function for tagging phone line events with the line number.
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