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Abstract

Performance tuning programs for dataflow execution in-
volves tradeoffs and optimizations which may be signif-
icantly different than for execution on conventional ma-
chines. We examine some tuning techniques for scientific
programs with regular control but irregular geometry. We
use as an example the core of an ocean modeling code
developed in the implicitly parallel language Id for the
Monsoon dataflow machine. Dataflow implementations of
loops, in particular, require careful examination by the com-
piler or programmer to attain high performance because of
overheads due to fine-grained synchronization, control, and
operand distribution.

1. Introduction

Dataflow machines have two basic types of overheads
which do not exist in sequential machines: synchroniza-
tion and control overheads. Synchronization overheads are
primarily encountered within basic blocks, and control over-
heads are encountered between basic blocks (on conditional,
loop, and procedure call boundaries). These overheads are
the cost of exploiting fine-grained parallelism. In this paper
we consider tuning techniques to alleviate these overheads
for regular, scientific applications on a dataflow computer.
These tuning techniques apply to both compiler-directed op-
timizations as well as programmer-directed optimizations.

Many scientific applications spend much of their time in
loops traversing over large arrays which represent physical
characteristics distributed over the geometry of the prob-
lem. One such application is the MIT ocean circulation
model GCM [11] [2] whose data parallel implementation on
the CM-5 has shown very good performance. While devel-
oping GCM for the CM-5, we also wrote a version of it in
Id [13] for the Monsoon dataflow machine [14] [7]. Id is an
implicitly parallel language with a multithreaded implemen-
tation model, and the GCM code allowed us to compare the

Figure 1. In an ocean modeling code,
the ocean is represented by multiple three-
dimensional arrays holding values for dif-
ferent physical characteristics of the ocean.
Typically, a large percentage of the geometry
represents land, which is not of interest.

execution overheads for the multithreaded and data parallel
models on an application which was extremely well-suited
for data parallel execution. A more in-depth study of the
data parallel and multithreaded implementations of GCM is
presented in [2], where we compare program styles, ease
of programming, and algorithmic issues, while in this pa-
per, we primarily discuss performance and tuning on the
dataflow platform.

Figure 1 shows a typical problem geometry – the Pacific
ocean basin – used in the circulation model. A Pacific
ocean state array would typically contain 168 � 90 � 10
elements, 40% of which represent land,and do not contribute
to the simulation. However, unlike some physical models,



input 1

fork

input 0

floatplus

output 0 output 1

const=a[]

i-fetch

const=b[]

i-fetch

1

intplus

const=kdiff

intplus

fork

floattimes
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geometries used in ocean modeling are usually not irregular
enough to warrant repartitioning to eliminate land elements.

The core of GCM code is a preconditioned conjugate gra-
dient (PCG) solver which takes 80% or more of the compu-
tational time of the application. The PCG consists of simple
operations over entire state arrays which can be described as
triply-nested loops with relatively small loop bodies. In or-
der to attain high performance for this application, we must
execute these loops efficiently while also distributing the
work among the processors. Dataflow architectures differ
significantly from conventional sequential microprocessors
or vector processors, so the process of tuning these loops
to obtain high performance is also quite different than tun-
ing loops written in conventional languages for conventional
architectures.

1.1. Id: an implicitly parallel language

Id is an implicitly parallel language which can express
parallelism at the instruction-, procedure-, and loop-level.
Id programs are compiled into dataflow graphs, which are
optimized, and then executed directly by the Monsoon ar-
chitecture.

Instruction-level parallelism. Dataflow graphs such as
in Figure 2 directly represent instruction-level parallelism
– in the Monsoon architecture, such instruction-level par-

allelism is only exploited within a processor. Basic blocks
are represented by acyclic graphs such as in Figure 2. The
fork operator in the figure is necessary for sending values
to more than two instruction at a time – because of opcode
encoding limitations, most Monsoon instructions can send a
value to two destination instructions, and some instructions
can send a value to only one instruction.

Memory operations such as i-fetch are split-phase – the
initiation and response are separate, and the latency of the
response may be very long. Each memory operation has
an implicit synchronization associated with it so that reads
which are executed before the write to the same memory
location wait for the write to occur before responding.

Compile-time constants (i.e. literals) and run-time con-
stants (such as loop constants) are represented in Figure 2
in light gray. Run-time constants must be stored into lo-
cal memory at run-time using the constant-store instruction,
and literals are stored into local memory at load-time by
the loader. Both types of constants can be accessed without
synchronization overhead.

Control is implemented by using the switch operator
which steers an input value to one of two locations depend-
ing upon the value of an input predicate. Switch operators
can be used to build conditionals or loops, but incur high
overhead because a different switch operator is needed for
each loop or conditional variable.

Procedure-level parallelism. Procedure-level par-
allelism is expressed by implicitly forking every procedure
call and joining on the return value of the procedure. Each
procedure requires an activation frame, which is used to
store intermediate results and as a synchronization names-
pace for instructions in the procedure. An activation frame is
roughly analagous to a stack frame in a sequential processor.

Each procedure call requires a frame allocation and deal-
location. A frame may be allocated on the local processor
or on a remote processor to expoit inter-processor paral-
lelism, and frame allocation and deallocation is handled by
the run-time system. Care has been taken to eliminate run-
time system costs, to the point where much of the run-time
system is written in assembly, and supported by special “mi-
crocoded” machine instructions [5]. In the default run-time
system, frame memory on each processor is divided equally
among all processors, so that each processor manages part of
the frame space of every other processor. Frame allocation
requests are then handled locally in a round-robin fashion
across all of the processors in an attempt to provide some
form of load balancing.

Despite the care taken in designing the run-time system,
frame management in this parallel environment is still more
expensive than in a sequential environment, where a simple
pointer-bump can allocate or deallocate a stack frame. Fur-
thermore, every argument is sent as a separate message, and
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Figure 3. Schema for “sequential” dataflow
loops, which incur high fine-grained synchro-
nization costs because of the need for switch
and fork operators.

although the composition, sending and receiving of these
messages are well supported in hardware, argument-passing
is still relatively more expensive than register-style argument
passing in sequential processors. In general, the program-
mer should inline most non-recursive procedures to avoid
these twin overheads of procedure calls.

Loop-level parallelism. Loop-level parallelism can be ex-
ploited in several ways. A direct tail-recursive implemen-
tation of loops will use too many frame resources, so most
loops are either “sequential” loops or k-bounded loops [6].
Sequential loops execute on one processor, and only ex-
ploit instruction-level parallelism; k-bounded loops execute
k consecutive iterations worth of parallelism either within
or across processors.

Figure 3 shows the schema for a sequential loop for Mon-
soon. A number of input variables and loop constants are
initially fed to the loop body. Their values for the next itera-
tion are either fed back into the top of the loop body, or else
output to the final values. The values are steered to their
appropriate destination through the switch dataflow instruc-
tion. Since the switch instruction can only steer one value to
one destination at a time, an additional fork may be required
to distribute the loop test predicate value for each additional
loop variable. Loop constants are stored into the frame
before loop execution and extracted after loop completion.

The k-bounded loop schema is more complicated than
the sequential schema, and employs a ring of k activation
frames which are allocated and linked at the beginning of the
loop and deallocated at the end of the loop. Loop constants
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Figure 4. Monsoon consists of processing el-
ements (PE’s) connected to I-structure mem-
ory modules (IS’s) through a multi-stage net-
work. Each PE is an eight-stage pipelined
dataflow processor.

must be stored into and extracted from each frame in a k-
bounded loop. Induction variables are passed from iteration
to iteration like arguments are passed for procedure calls.

Standard loop optimizations such as unrolling, peeling,
strip-mining, and interchange can have a larger impact on
performance than for conventional architectures because
of the overhead of parallel asynchronous execution of loop
iterations in the dataflow model.

High loop overhead for dataflow execution is exacerbated
in Id because array extents in Id, unlike Fortran, can be
computed at run-time. Consequently, to perform many loop
optimizations important for performance on scientific codes,
one would need pragmas in Id to indicate static array extents.
However, this type of overhead is due to the language, and
not dataflow execution.

1.2. The Monsoon dataflow machine

Figure 4 (taken from [9]) shows a high-level view of
the Monsoon multiprocessor. Monsoon [14] consists of
eight 64-bit processing elements (PE’s) and eight I-structure
memory modules (or IS’s) connected via a multistage packet
switch network. Each PE is an eight-stage pipelined proces-
sor. On each processor cycle, a token enters the pipeline and
its result is available eight cycles later. Keeping an eight pro-
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def ip_3d a b =
{ s = 0.0 ;
in
{for i <- 1 to imax BOUND ib do

s_jk = 0.0;
next s = s +
{for j <- 1 to jmax BOUND jb do

s_k = 0.0;
next s_jk = s_jk +
{for k <- 1 to kmax do

next s_k =
s_k + a[i,j,k]*b[i,j,k];
finally s_k};

finally s_jk};
finally s} };

Figure 5. 3D inner product written in Id, outer
two loops k-bounded, inner loop sequential.
imax, jmax, and kmax are compile-time con-
stants.

cessor Monsoon busy requires at least 64-fold parallelism
because each stage of the pipeline executes a different thread.
Each PE can process ten million tokens per second and has
256K 64-bit words of local memory on which frames are al-
located. In the memory module where heap objects reside,
word-level presence bits are implemented in hardware to
support fine-grain synchronizing data structures for global
heap. Each IS has 4M 64-bit words of heap memory. Mon-
soon’s network interface with bandwidth of 100M bytes per
second can deliver a token to the network every cycle.

Each instruction executes in one or two cycles, includ-
ing floating point, integer, memory, control, and message
instructions. Any instruction which has two non-constant
inputs must synchronize on the arrival of its two inputs, and
requires two cycles to execute, one of which is counted as a
bubble.

Every global memory access goes over the network, and
all locations in the global memory are equidistant. The
mapping of work to processors is governed by the frame
allocation policy. Heap objects are interleaved by hard-
ware across the IS’s and in general, data mapping has no
effect on performance. Monsoon accesses global memory
in a split-phase manner, and can do useful work during the
long-latency of a memory access. However, this requires
additional instruction-level parallelism to keep the proces-
sor fully utilized. Each Monsoon processor has 16 counters
which can keep accurate counts of various types of instruc-
tions executed.

2. Performance tuning on Monsoon

The performance of Id on Monsoon is largely determined
by two factors:
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Figure 6. Pattern of frame usage for nested
k-bounded loops for the 3D inner product.

� The total number of instructions executed, which deter-
mines the amount of computation and communication
necessary.

� The CPU utilization, which is affected by the loop
bounds and the frame allocation policy. Idle cycles
are caused by lack of parallelism, load imbalance, and
some hardware “hazards”.

To the first order, the number of instructions executed de-
pends only on the program and its pragmas, and not the
machine configuration – i.e. the same program will execute
about the same total number of instructions for a 1- or 8-
processor Monsoon. CPU utilization does depend on the
machine configuration and attaining high CPU utilization
requires setting the loop bounds and in some cases, source
code modification.

Id provides pragmas for inlining functions, unrolling
loops, or declaring loops to be sequential or k-bounded,
all of which can have a dramatic impact on the instruction
count. Id users almost always inline (defsubst) small,
non-recursive functions. In the following Sections, we de-
scribe how these other pragmas and program modifications
can be used to tune PCG.

We will illustrate how to tune nested loops for perfor-
mance using the three-dimensional inner product function
ip 3d shown in Figure 5. The outer and middle loops are
annotated to be k-bounded, and k-bounds are ib and jb,
respectively. Figure 6 shows the pattern of frame usage for
the k-bounded loops for this code when ib is 3 and jb is 4.

2.1. Choosing loop schemas

Consider three different cases for implementing the inner-
most loop: k-bounded, sequential, and completely unrolled.
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Cycles/iteration of 3d ip inner loop
completely

Opcode unrolled sequential k-bounded
fork 2 3 6
intplus 2 2 2
i-fetch 2 2 3
floattimes 2 (1) 2 (1) 2 (1)
floatplus 1 (.5) 1 (.5) 2 (1)
switch 4 (2) 1
intle 1 1
message 4 (2)
i-take 1
i-put 2 (1)
sync 3 (1)
Total 9 (1.5) 15 (3.5) 27 (6)

Figure 7. Completely unrolled loops require
the minimal cycles per iteration. Sequential
and k-bounded implementations of the same
loop require more cycles. In parentheses are
the number of bubbles incurred by each op-
eration per iteration.

Given the same loop body, these three implementations of
the same loop will require a significantly different number
of instructions to execute per iteration.

Loop schema cycle counts. A completely unrolled loop
is most efficient implementation of a dataflow loop. Com-
plete unrolling is done by inserting the pragma @unfold
completely inside the innermost loop. This is possible
only if the number of iterations a loop executes is fixed and
known at compile time.

Figure 7 shows the differences in the cycle counts for
one iteration of three implementations of the inner loop of
ip 3d. Figure 2 is the loop body for the sequential version
of the inner loop of ip 3d. There are two circulating or
induction variables in the loop: the running sum (called
“input 0” in Figure 2), which is a floating point value and
the index variable (called “input 1” in Figure 2), which is
either k or a linear offset from k. The i-fetch instruction is
not associative with addition, so the base of the array and an
integer offset are necessary to perform a memory reference.

The completely unrolled version uses the minimum num-
ber of instructions to implement one iteration of the inner
loop – the two fork instructions are used to distribute the
index k to each intplus, which feeds the i-fetch instructions.
The intplus instructions cannot be eliminated because the
i-fetch is not associative with addition. The values returned
from the i-fetch are multiplied together, also incurring a bub-
ble. The result of the multiplication is added to the running

sum, and only half of the cost of the addition is incurred
by each additional iteration, including half of the bubble.
There is no loop test in the completely unrolled version.

The sequential implementation of the loop uses two
switches to steer the two induction variables around the
loop, and each switch incurs a bubble. An additional loop
test (intle) is also performed, and an additional fork is nec-
essary to feed the loop test.

The k-bounded implementation of the loop uses two mes-
sage instructions to send the induction variables to the next
iteration and associated frame. The i-take and i-put instruc-
tions are used as semaphores to synchronize between loop
iterations to assure when a frame may be reused for a new
iteration. The sync instructions gather signals from work
being performed in the current iteration to insure that all
work is completed in the current iteration. Additional fork
instructions are used to distribute values to the new instruc-
tions.

Some traditional loop optimizations for conventional pro-
cessors introduce new induction variables. For dataflow
loops, such optimizations may actually decrease perfor-
mance even if fewer instructions are executed in the loop
body, because of additional switch and fork overheads,
or from additional overheads from message-passing for k-
bounded loops.

Loop startup and shutdown costs. In addition to the per
iteration costs, loops have startup and shutdown costs which
may be significant, depending upon the loop schema. Com-
pletely unrolled loops have the minimum amount of startup
cost – the storing of loop constants into the frame will be
lifted to the next outer loop level or else transformed into
forks. For sequential loops, constants must be stored into
the frame before the loop executes, and then extracted from
the frame after they are executed. k-bounded loops incur
the highest startup and shutdown costs. At startup for a k-
bounded loop, k frames are allocated and then pointers are
set in each frame to point to the previous and next frame.
Loop constants are stored into each frame, and at shutdown,
the loop constants must be extracted and the frames deal-
located. Allocating and deallocating a frame takes about
60-70 cycles. The startup/shutdown cost of a k-bounded
loop can be from about 100 to several hundred cycles per k,
depending on the number of loop constants.

Nesting of loops can exacerbate the number of loop con-
stants which must be stored and extracted. A loop constant
in an inner loop becomes a loop constant for every loop
nesting out to the loop which may change the value of the
loop constant. Therefore, that constant must be stored and
extracted even though its value may not change between
stores and extractions if the middle loop does not change the
value of the loop constant.

Loop startup overhead can have a significant effect on
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performance when the number of loop iterations is few.
In those cases, complete unrolling should be considered
when possible, even if slight algorithmic restructuring is
necessary.

2.2. Loop striding

In vector and cache-based machines, the loop stride over
array elements can have a significant effect on performance
because of memory interleaving, cache associativity or line
size. For slightly different reasons, loop stride makes a
difference in Id also. For example, in Id there is a significant
advantage in having an inner loop which has a constant
stride known at compile-time. Because array extents are not
known at compile time, the innermost loop should iterate
over the stride-1 dimension of the array so that the compiler
knows the stride of the loop at compile time. If the compiler
doesn’t know the stride at compile-time, the stride becomes
a loop constant, which is more expensive than a literal.

For the completely unrolled case of ip 3d, if the array
is not aligned with the loop along the stride-1 dimension,
an additional 6 cycles per iteration are necessary because
of two additional multiplications and two additional loop
constant-store instructions to save the loop constants into
the frame. If we didn’t know the array extents at compile-
time, but did know that the arrays were of the same extents,
then only one additional multiplication and constant-store
would be necessary per iteration.

Loop interchange is the standard optimization to achieve
loop/array stride alignment [20]. This optimization is not
implemented in the Id compiler: for this study, we per-
formed this optimization by hand by making certain that the
innermost loop iterated over the 1-stride dimension of the
arrays.

2.3. Choosing k for k-bounded loops

In a triply nested loop such as ip 3d, suppose that the
k-bound for the outermost bounded loop is ib and for the
middle bounded loop is jb. The amount of interprocessor
parallelism exposed is then on the order of ib � jb. Given
a certain machine configuration, we are interested in setting
the product ib� jb such that it will keep the entire machine
busy. What are the optimal values of ib and jb, such that the
number of instructions executed by the loops are minimized?

If there are imax iterations of the outer loop executed,
then the number of frame allocations and initializations (re-
quiring hundreds of cycles apiece) is then: ib� imax� jb.
For a set amount of parallelism ib � jb we wish to exploit
in a nested loop, in general it is better to make ib larger and
jb smaller to minimize loop initialization costs. A possible
optimization is to lift middle loop frame allocations so that it

occurs ib times as opposed to imax times. The optimization
has been implemented, but has not worked reliably.

Large values of k may not be useful if there are dependen-
cies of any kind (data, control, producer/consumer) between
loop iterations, or if the number of iterations is not signif-
icantly larger than k. Choosing loop bounds can make a
tremendous difference in performance, as shown by Culler
[6], but to date, no automatic compiler-directed policy has
been implemented which achieves high performance.

2.4. Other loop optimizations

Partial loop unrolling (as opposed to complete unrolling)
is effective for loops which execute many iterations – the
loop body is increased while the number of iterations is de-
creased, therefore amortizing loop overheads. However, for
loops which may execute a few iterations, unrolling may
decrease performance because of additional conditionals
which are used to determine if a loop has enough iterations
left to execute a unrolled version or a standard version.

Strip mining is a useful optimization for high-overhead
k-bounded loops. To strip mine a loop, the iterations of a k-
bounded loops are divided in a block or interleaved fashion
into pieces of work which are performed by more efficient
sequential loops.

Because dataflow execution allows for dynamic
instruction-level parallelism, dataflow loops may incur ad-
ditional synchronization costs to determine termination of
an iteration. In some cases, a certain loop iteration must
terminate before another iteration is initiated – for sequen-
tial loops, the two consecutive iterations may be sharing
the same synchronization space (i.e. the frame) or for k-
bounded loops, an iteration may not start before the frame k
iterations before is complete. Because the parallelism is so
fine-grained, additional sync instructions may be inserted to
determine when an iteration is complete. Sometimes, the in-
herent structure of the loop body performs much or all of the
synchronization, in which case redundant sync instructions
may be removed [1].

Finally, Ang [1] has described a sequential loop schema
for Monsoon which is frame-based rather than switch-based,
and which performs better for a variety of applications.

3. Preconditioned Conjugate Gradient

The preconditioned conjugate gradient algorithm [4] is
the core of many computational fluid dynamics applications
and its regular structure is similar to many other scientific
applications. It solves linear systems using an indirect (i.e.
iterative) method. The preconditioning step of PCG is used
to speed convergence, and varies depending upon the char-
acteristics of the linear systems being solved. The algorithm
itself is composed of only four basic operations; in the case
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{while (ip_3d r r) > epsilon do
gamma = ip_3d r xi;
Ab = seven_pt_stencil b;
alpha = gamma / (ip_3d b Ab);
next p = daxpy_3d p alpha b;
next r = daxpy_3d r (-alpha) Ab;
next xi = fb_preconditioner (next r);
beta = (ip_3d (next r) (next xi)) /

gamma;
next b = daxpy_3d (next xi) beta b;

finally p}

Figure 8. Inner loop of preconditioned conju-
gate gradient in Id.

of the GCM ocean modelling code, the operations are im-
plemented as follows:

� 3D inner product – this is the computation described
in the previous Section.

� 3D daxpy – aX � Y , where X and Y are 3D vectors
and a is a scalar constant. 3D daxpy requires a floating
point add and multiply per element.

� 7-point stencil – the stencil takes a weighted average
of the local element and the six surrounding elements.
7-point stencil requires six floating point additions and
seven floating point multiplications per element.

� forward-backward substitution – the preconditioner
we chose for our PCG is a forward-backward substi-
tution of a tridiagonal linear system performed in each
column of the ocean. The forward-backward substi-
tution requires about five floating point operations per
element.

Each of these operations can be implemented as a triply-
nested loop. The loops are simple, structured, and have
no dependencies between iterations. Results from some of
these operations feed into others, and because of Monsoon’s
fine-grained word-level synchronization on memory, opera-
tions may proceed before their input arrays are completely
defined.

The structure of the state arrays directly reflects the ge-
ometry of the ocean being modeled. Certain elements of the
arrays represent land state, and certain elements represent
water state. We are not concerned with elements on land be-
cause they do not change with time. We can structure most
of the computation so that all computation is uniform over
all elements of the array, or just attempt to do computation
on water. In some cases, land may take up to 60-70% of the
geometry.

We consider only computation performed on water to be
required, and for a given geometry, the number of required

0

5

10

15

20

25

30

35

40

45

50

C
yc

le
s 

pe
r 

re
qu

ire
d 

flo
at

in
g 

po
in

t

 Idles

 Bubbles

 Move Ops

 Misc Ops

 Memory Ops

 Int Ops

 Float Ops

Water Only Land+Water Hybrid

Figure 9. Comparison of the three versions
of PCG for the 168� 90� 4 Pacific ocean, 60%
water. (ib � 5, jb � 3, 2 processor Monsoon)

floating point operations is constant for this algorithm. Com-
putations performed on land are extraneous and overhead.
In the next Section, we consider optimization by computing
only on water elements.

3.1. Optimizing out computation on land

By eliminating computation on land, the maximum
speedup we could expect over an implementation that com-
putes on both land and water is the ratio of land and water
elements over water elements. For most real geometries,
this is a maximum speedup of three or four, and for the Pa-
cific ocean geometry, the maximum speedup is less than a
factor of two.

We also incur overhead when we attempt to compute
only on water, because we must use sequential loops in
the innermost loop (which computes over columns in the
ocean) as compared to completely unrolled loops in the case
where we compute on both land and water. Figure 9 shows
that the version which computes on land and water actually
is faster than the version which computes only on water,
even though fewer floating point operations are performed
in the water-only version. For this type of application on
this type of architecture, reducing floating point operations
is less important than simplifying the structure of the code
to reduce loop overheads.

In an attempt to take some advantage of both simpli-
fied loop structure and eliminating computation on land ele-
ments, we also developed a hybrid version of the PCG which
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only computes on the bounding hull of the water on the sur-
face of the geometry, while computing on entire columns
of water within the bounding hull. In this way, we elimi-
nate much of the computation on land, while still allowing
complete unrolling of the innermost loop. Figure 9 shows
that this version is slightly faster than the version which
computes on both land and water.

The number of idle cycles in the graph of Figure 9 is mis-
leading because PCG is only one part (albeit the most com-
putationally intense part) of the entire GCM code. When the
PCG is incorporated into the larger code, parallelism from
the rest of the code can mask idle cycles in PCG.

3.2. Breakdown by operation

Figure 10 shows the cycles per floating point operations
for the four operations of the hybrid version of PCG, the PCG
itself and the overall GCM code. The constituent parts were
timed by extracting the code fragment for the component
from the elliptic solver and running it in isolation. Note that
the idle cycles for some of the components are off the scale –
however, when the four components are integrated together
into the PCG, the idle cycles are masked by work from other
components. Also, when the PCG itself is integrated into the
the overall GCM code, the instruction counts heavily reflect
the ratios of the PCG, but idle cycles decrease because of
other work being performed which masks those idle cycles
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Figure 11. PCG efficiency on the CM-5 versus
Monsoon. (Pacific ocean, ib � 5, jb � 3, 2
processor Monsoon, 32 processor CM-5)

when the PCG is run in isolation. This masking of idle
cycles is one of the primary benefits of the multithreaded
execution model.

When we set k-bounds for loops, we must do it in the
context of an entire application, because as Figure 10 shows,
processor utilization for codes with loop bounds set in iso-
lation do not reflect utilization for integrated codes.

4. Comparison to CM-5 implementation

To put the performance of the PCG on Monsoon into per-
spective, we compare it to a version of PCG being used in
daily production runs of the ocean code. The GCM code has
been implemented in CM Fortran [19] for the CM-5 [10].
CM Fortran is a data parallel dialect of Fortran, which is
similar to HPF. We use the same measure of efficiency to
compare the data parallel implementation to the dataflow im-
plementation: cycles per required floating point operation.
Note that the data parallel model can also be implemented
efficiently on dataflow machines [17], but our Id implemen-
tation uses a multithreaded computational model. For both
the Id and CM Fortran implementations, the number of re-
quired floating point operations is identical. The cycles we
are counting in the CM Fortran case are CM-5 vector unit
cycles, because the CM-5 vector units perform almost all of
the work in this application and most data parallel scientific
applications.

Figure 11 shows the performance of PCG on a variety of
ocean geometries. For a shallow, 4-layer Pacific ocean, the
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Id version executes fewer overhead instructions per required
floating point operation. As we increase the depth (and
therefore problem size) of the ocean geometry, the efficiency
of the CM Fortran version also increases, due to longer
vector lengths. We were unable to run a larger than 12-layer
ocean on Monsoon because of heap memory limitations.

Most of the efficiency on the CM Fortran version gained
by adding ocean layers is reached at 12 layers – the 48-layer
ocean has about the same efficiency as the 8-layer ocean.

Further increases in the floating-point efficiency can be
extracted when the geometry is fitted to the machine such
that there is no additional array padding to even out array
distribution across the processors. If the ocean geometry is
192�96�48, the data parallel code executes in exactly the
same amount of time as the 168 � 90 � 48 version of the
code, but executes 22% more floating point operations. 1

The “raw” vector performance of the CM-5 on PCG
(i.e. without the 60% water overhead or array padding) is
one floating point operation every four cycles. Thus, each
16MHz vector unit can produce 4 MFlop/s, which is 1�4 of
the peak performance of the CM-5. There are few realistic
applications which achieve this level of performance. Ad-
ditional overheads from padding, computing on land, and
short vector lengths add up quickly to degrade performance
by a factor of 2 to 5. For most real geometries, we expect
that performance of GCM will be closer to 10-20 cycles
per required floating point operation than the idealized peak
performance of 4 cycles per floating point operation, which
is comparable to the performance we achieved on Monsoon.

5 Conclusion

Tuning for dataflow execution (either by the programmer
or compiler) requires techniques which are different from
tuning on conventional architectures. In this paper, we have
characterized some of the overheads of dataflow execution
on Monsoon, focusing on loops and using an example of
a preconditioned conjugate gradient algorithm (PCG). Our
performance measured by cycles executed per required float-
ing point operation is comparable to a production version of
the algorithm running on the CM-5.

Much of the overhead comes from the dataflow switch
and fork instructions, as well as bubbles which result from
fine-grained synchronization on Monsoon. Part of this over-
head could be eliminated by architectural changes – for in-
stance, the EM-4 [16] architecture uses essentially the same
dataflow-style synchronization mechanism as Monsoon, but
does not incur a bubble because the synchronization and
execution units are decoupled. In addition, due to some
hardware limitations, some idle cycles on Monsoon are the

1Note that the seemingly unusual 168 � 90 problem size is a real
size used in production runs, and was not chosen to make the Monsoon
performance seem relatively better than the CM-5.

result of network access contention, rather than being fun-
damentally associated with dataflow architectures. The fork
overhead is eliminated in the Epsilon dataflow architecture
[8] with a copy instruction which can send values to mul-
tiple instructions – however, the copy instruction reduces
instruction count, but does not reduce cycle count.

Some overhead is the result of the k-bounded loop
scheme, which has proven to be difficult to use for the pro-
grammer as well as incurring significant execution overhead.
Setting k for the k-bounded loop is a non-trivial task, and
does not lend itself easily to compiler analysis. Whereas k-
bounding assumes an eager model of parallelism exposure,
run-time, demand-based approaches such as lazy task cre-
ation [12] or guided self-scheduling [15] may prove more
effective, as well as easier to program – however, in general,
these techniques are difficult to implement on Monsoon be-
cause it is almost impossible to determine when a Monsoon
processor is idle because of the deeply-pipelined, heavily-
interleaved model of execution. Again, this is not an inher-
ent feature of dataflow architectures, but an oversight in the
hardware design of Monsoon.

Language definition and compiler optimization also af-
fect performance. Id’s policy of array extents being defined
only at run-time inhibits some standard loop optimizations,
and may be changed by either changing the language or
adding pragmas. Some compiler loop optimizations for
conventionalarchitectures may not be effective for Monsoon
because the addition of induction variables is very expen-
sive for the dataflow loop schemas. However, some other
loop optimizations may be more effective for Monsoon than
conventional architectures because of the high overhead of
dataflow loop execution.

The programmer plays a large part in attaining good per-
formance. Loop schemas and k-bounds should be chosen
to expose just enough parallelism to keep the machine busy.
Changes to the algorithm in order to take advantage of com-
plete loop unfolding, such as the hybrid version of the PCG,
can also improve performance in non-intuitive ways.

In related work, Arvind, et.al. [3] gives a more detailed
analysis of the overheads of dataflow execution. Hicks,
et.al. [9] describes performance of several smaller bench-
marks on Monsoon. Yeung and Agarwal [21] discuss the
importance of language support for the expression of fine-
grained parallelism using preconditioned conjugate gradient
(primarily the preconditioning step, which is significantly
different from ours) on Alewife. Sur and Bohm [18] have
performed many performance analyses of scientific codes
in Id on Monsoon, primarily focusing on language features
and their impact on performance.

Although it is unlikely that dataflow architectures (as
they exist today) will be viable commercially in the near
future, multithreading techniques and parallelism are play-
ing an increasingly important role in the design of com-
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mercial systems. The synchronization and control over-
heads we encounter in dataflow computing are inherent
to fine-grained parallel multithreaded execution, and these
overheads change the relative importance of program op-
timizations, motivating increases in sizes of basic blocks
through inlining, loop unrolling, and program structuring.
The higher overhead of control instructions also motivates
decreases in the sizes of basic block interfaces, even when
the size of the basic block may be decreased by adding a
basic block interface.
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