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Figure 1: A Message Interface based on Software Queues in the Host DRAM

1 Introduction

This document describes a higher performance reincarnation of START-JR’s FUNI[3], retargeted
for a larger, more capable class of parallel machines interconnected by MIT’s Arctic [2] network.
This new NIU (network interface unit) continues to reside on the peripheral I/0O bus for portability
and ease of implementation. Like FUNT, this NIU will also implement its message-passing interface
in the host DRAM to minimize communication overhead on the host processor (see Figure 1 for a
depiction). The most important improvement in communication bandwidth and latency will come
from replacing the embedded processing aspects of the current FUNI with direct logic implemen-
tation in FPGAs (Field Programmable Gate Arrays). Some of FUNTI’s features are modified or
simplified to accommodate for the new implementation and operation environment. Salient features
of the newly proposed NIU are:

e Message-passing interface in the host DRAM for Arctic-native-sized messages

e DRAM-base interface queues serve as large and inexpensive network buffers

e High-bandwidth remote DMA with automatic packetization for large data blocks (2 KBytes)

e Two-priority, reliable, ordered network abstraction with back-pressure flow control

e Accessibility to internal NIU states for debugging and context switching

This specification does not assume a specific bus architecture. However, the NIU design depends

on the bus to meet the following requirements:

e Bus devices have direct “master” access to the primary host memory, preferably supporting

cacheline-size burst at 64-bit data width.

e A combination of bus-level cache consistency, and/or processor cache control and memory
barrier instructions must give the host processor efficient control over the order of memory
updates as seen by the bus device, and vice versa. The ordering requirement is described

further in Section 3.1.



e The bus must be capable of operating at a frequency within the range of a FPGA-based
interface implementation (33 MHz or 25 MHz).

e Each network endpoint in the parallel system, whether a SMP or an uniprocessor, must have
at least two free bus slots.

e A virtually-addressed bus with memory management is preferred since it eliminates: 1) the
responsibility of memory-protection and 2) the requirement for contiguous physical memory
allocation.

The remainder of this document presents the NIU specification. Section 2 defines the user-visible
communication interface abstraction without going into operational details. Section 3 explains the
usage of the interface with examples in C. Section 4 describes the privileged control interface for
NIU initialization and configuration by the device driver. Section 5 drafts a NIU block diagram and
identifies hardware implementation issues. Section 6 explains the NIU datapath operations under
the different interprocessor communication modes. Section 7 briefly discusses the issues regarding
interconnecting SMPs as network endpoints. Section 8 concludes this document with a tentative
plan for implementation.



Design | Estimated Definition
Constants Value
D 2048 Number of bytes moved per remote DMA
operation
N 256 Number of entries per packet queue. Must be
a power of 2.
S 256 Maximum system size

Table 1: Summary of Design Constants

2 User-level Network Interface Abstraction

Three interprocessor communication mechanisms are proposed: two for message passing and one for
remote DMA block transfer. This section defines the communication interface abstraction visible
to an user-level process. This section covers software constructs and memory-mapped registers.
Interface usage examples are given in Section 3. Throughout this document, program variables
and constructs will be typed in Courier font. San Serif font is used to refer to memory-mapped
hardware registers on NIU. A single capital letter set in bold font (A, B, C, etc.) represents design
constants, some of which are not yet determined due to the lack of accurate estimates of hardware
resources. Table 1 summarizes these constants and gives the best estimated values.

2.1 Memory-based Message-Passing Interface (Mpi1) for Low Overhead

This interface is intended to be the primary mechanism for interprocessor communication. The Mp1
abstraction is based on send and receive FIFO queues at each node. A message enqueued into a
send queue eventually appears at the receive queue of the node addressed by that message. Two sets
of send and receive queues are implemented to support two priorities of communication, with the
guarantee that high priority communications are never blocked by low priority traffic. The choice
of network ordering is currently unresolved. Implementing a point-to-point FIFO network implies
that we must give up automatic network load balancing using random uproute in the underlying
Fat-tree network.

These MPI transmit (Tx) and receive (Rx) queues are implemented using circular buffers in
the host DRAM. To minimize communication overhead, the host processor composes and receives
messages in these cacheable memory locations and thus avoids long latency accesses to the periph-
eral NIU device. Communication overhead is transfered to NIU which must retrieve and deliver
network packets to these queues using DMA. Although lower overhead is achieved through this
memory-based interface, some unwanted communication latency is introduced since intermediate
steps are required in this scheme.

2.1.1 Mpri1 Packet Queues

The MPI interface is based on four packet queues (circular buffers) in the host DRAM to support
sending and receiving over two network priorities. In this document, the base pointers to these
buffers are referred to as HiTx, LoTx, HiRx, and LoRx respectively. The virtual addresses of these
buffers are acquired by requesting the NIU device driver to mmap() 32! 4-Kbyte page from the

! Assuming N=256.



Oth-byte offset of the NIU device file. HiTx is assigned the virtual address returned by mmap().
Subsequently, LoTx=(unsigned long)HiTx+N-128, HiRx=(unsigned long)HiTx+2-N.128, and
LoRx=(unsigned long)HiTx+3-N-128.

The mmap() device driver routine should allocate the requested memory in pinned DRAM
pages. Each of the 256-entry buffers occupies eight 4-Kbyte pages. On systems where address
translation (DVMA) is supported on the I/O bus, the pages need not be physically contiguous.
However, in any case, the “effective” addresses of the two Tx buffer regions, as seen by NIU on the
peripheral bus, must be contiguous. The same requirement holds for the two Rx buffer regions. To
simplify implementation, the starting effective address of the Tx buffer region must be (4-N-128)-
byte aligned, and the Rx buffer region must be (2-N-128)-byte aligned. These device driver and
system-level issues will be discussed in Section 4.

2.1.2 Mpr1 Packet Slots

Each circular buffer is subdivided into N 128-byte packet slots — each slot is large enough to hold
the maximum-sized MPI packet. Using C notation, the packet slot template is defined as:

typedef struct {

unsigned long header; /* Mpi message header */
unsigned long command[2]; /* user message headers */
unsigned long reserved; /* padding for alignment */

unsigned long payload[20]; /* data payload */

unsigned long pad[8]; /* padding for an 128-byte aligned structure */
} MPIPacket;

Given this definition, the base pointer to the circular buffers can be declared as type (MPIPacket *).
Thus, indexing the base pointer of a buffer conveniently dereferences the corresponding packet slot.
For convenience of discussion, let’s also introduce four index variables for the four buffers: HiTxHd,
LoTxHd, HiRxT1, and LoTxHd. During normal usage, these indices will be incremented monotoni-
cally, modulo N. TxHds point to the head (push end) of the packet queues, while RxT1s point to
the tail (pop end) of the packet queues.

The same MPI packet template is used in both the Tx and the Rx queues. The command and
up to 20 words of the payload is transfered, in verbatim, from a Tx queue to a Rx queue during
message passing. The MPI message header specifies the details of the transfer. The subfields of
the MP1 header are given below:



Bit Name | Definition width
Position
31 valid 1 in this field indicates this packet slot 1
currently holds a valid message. Used in
producer-consumer handshaking. See Sec-
tion 3.1
30:24 | reserved 7
23:16 dest Virtual node ID of the destination 8
15:13 reserved | For multiple virtual endpoints extension. See 3
Appendix A for explanation.
12:6 type User assigned packet type 7
) mode | Transfer mode. This field should be 0 for MP1 1
4:0 length | Payload length 5

2.2 DMA Interface (Dma) for High Bandwidth

DwMA is the recommended mechanism for transferring a large, contiguous data block. Each DMA
request will cause a fixed D-byte? data block to be moved from the local memory to the remote
memory location without interrupting the host processors. This interface is designed to be simul-
taneously operable with MP1.

2.2.1 DwmA Request Queues

A node-to-node DMA transfer is initiated by enqueuing a DMA request into a fifth buffer also in
the host DRAM. This buffer is allocated by calling mmap() to map N-128 bytes starting from the
(4-N-128)-byte offset of the NIU device file. The base pointer to this buffer is referred to as DMATx
in this document. Only a single buffer is used for DMA (whereas the equivalent counterparts for
LoTx, HiRx, and LoRx do not exist) because:

e The payload of DMA is delivered directly to the memory of the remote node rather than
a receive queue. A notice is generated on the receiver side following each completed DMA.
However, this notice is enqueued into the HiRx queue instead. Thus, the counterparts of
Hi/LoRx are not required.

e DMA payloads are always transfered as high-priority traffic because they are always sinkable
according to the standard request/reply protocol.> Hence, DMA requests only have one
priority (high), and the equivalent of LoTX is not necessary.

2.2.2 DwmA Request Slots

The DMATx circular buffer is also subdivided into N 128-byte slots. DMATxHd is the program variable
indexing into DMATx. Using C notation, the packet slot template is defined as:

*D=2048

3The two network priorities allow the user to implement a request(low)/reply(high) software protocol to avoid
deadlock in the user code. Under this simple protocol, the handling of a request message can cause the receiver to
respond with any number of reply messages; whereas, reply messages may not generate additional network traffic.
Deadlock can be avoided with bounded-buffering resource if each node always attempts to receive inbound messages
of equal or lower priority when the node is blocked from sending on a given priority due to network blockage.

10



typedef struct {

unsigned long header; /* DMA message header */

unsigned long command; /* notification message header */

void *target; /* remote target virtual address of transfer */
void *source; /* local source virtual address of transfer */
unsigned long payload[20]; /* notification message payload */

unsigned long pad[8]; /* padding for an 128-byte aligned structure */

} DMARequest;

Each enqueued request causes a D-byte data block to be transfered from the source virtual
address on the local node to the target virtual address at the remote node.* The source and target
address must be D-byte aligned. The DMA header contains the same subfields as in a MPIPacket,
except the mode field now contains 0x1. After a DMA transfer has completed, a delivery notice is
sent to HiRx of the receive node. The notice is in the form of a MPI packet composed from the
header, command, target and payload of the DMA request.

A DMA request can also be enqueued into HiTx if the DMA transfer is to take priority over all
other activities. If a DMA request is enqueued into HiTx, all subsequently enqueued high-priority
transmissions will not occur until DMA has been fully transmitted. The purpose of supporting a
DwMA request queue separate from the MPI Tx queues is to allow MPI transmission (both low and
high priority) to bypass long latency DMA operations. If implementation resource becomes scarce,
this feature (separate DMATx buffer) is not required.

2.3 Direct Message-Passing Interface (dMpi1) for Low Latency

To achieve minimum latency (at the expense of host processor overhead), the user may choose
to bypass the memory-based MPI interface, and interact with the network hardware directly in
dMPI mode. On any one node, dMPI mode is not inter-operable with either MPI or DMA modes.
However, if a node can correctly emulate the actions normally carried out by the NIU hardware, it
is conceivable that a node operating in dMPI mode can communicate with other NIUs regardless
of their operating mode. dMPI mode can be selected independently for sending and receiving
since they occur on independent hardware. The mode selection is decided by the control interface
discussed in Section 4.1.

2.3.1 NIU Internal Network FIFO Access Points

In dMPI mode, the four internal network FIFO access points — normally accessed by NIU on
behalf of the user — is exposed and mapped into the user’s address space as memory-mapped
registers. HiTxFIFO, LoTxFIFO, HiRxFIFO, and LoRxFIFO are 32-bit memory-mapped registers for
sending /receiving high/low-priority network packets. Sending and receiving is accomplished by
pushing and popping from these FIFO access points. The last word of each outbound packet must
be pushed into HiTxFIFOLast or LoTxFIFOLast respectively to give an implicit “end-of-packet”

4These DMA accessible source and target regions may have to be specially allocated or at least specially registered
with the help of the device driver so NIU has a convenient way of translating from the user virtual address to the
effective address on the I/O bus. See Section 4.3 for further discussion.
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Figure 2: Comparison between Arctic Network Packet Format vs. NIU Interface Format for dMPp1

command. This interface is “raw” — meaning to send a packet, the user must enqueue properly-
formated Arctic packet according to the Arctic User’s Manual[1]. To identify the destination, full
Arctic route bits need to be specified instead of virtual node IDs. However, NIU still generates
the CRC portion of the Arctic packet in this mode. The receive interface produces exactly what is
delivered by the Arctic network, including the Arctic route header and the CRC trailer.

For the purpose of interfacing, the Arctic packet format is skewed sixteen bits by inserting 16 Os
at the beginning of the packet. This allows the payload part of Arctic packet to be 32-bit aligned
at the FIFO interface. See Figure 2 for clarification.

2.3.2 Network FIFO Status Register

Two auxiliary memory-mapped registers RxStatus and TxStatus indicate when inbound packets are
waiting in the RxFIFOs and when the user must stop transmission because a TxFIFO is full.
RxStatus has the following fields:

Bit Definition
Position
31:2 reserved
1 HiRxFIFO is empty
0 LoRxFIFO is empty

TxStatus has the following fields:

Bit Definition
Position
31:4 reserved

3 HiTxFIFO is full
2 LoTxFIFO is full
1:0 reserved

2.4 Summary

This section defined the user-visible interface abstraction for MP1, DMA and dMp1. Table 2 and
Table 3 summarize the relevent program variables and memory-mapped registers encountered in
this section.

12



Variables Type Definition Mode
HiTx (MPIPacket *) | Base pointer to the high priority transmit | MPI,DMA
queue. Its value is assigned by calling mmap()
to the NIU device driver.
HiTxHd | (unsigned long) | Packet slot index of the high priority transmit | MPI,DMA
queue. O0<HiTxHd<N.
LoTx (MPIPacket *) | Base pointer to the low priority transmit Mp1
queue. LoTx=(unsigned long)HiTx+N-128.
LoTxHd | (unsigned long) | Packet slot index of the low priority transmit Mep1
queue. 0<LoTxHd<N.
HiRx (MPIPacket *) | Base Mp1,DMA
pointer to the high priority receive queue.
HiRx=(unsigned long)HiTx+2-N-128.
HiRxT1 | (unsigned long) | Packet slot index of the high priority receive | MP1,DMA
queue. 0<HiRxT1<N.
LoRx (MPIPacket *) | Base pointer to the low priority receive queue. Mp1
LoRx=(unsigned long)HiTx+3-N-128.
LoRxT1 | (unsigned long) | Packet slot index of the low priority receive Mep1
queue. 0<LoRxT1<N.
DMATx (DMARequest *) | Base pointer to the DMA request queue. Its Dma
value is assigned by calling mmap() to the
NIU device driver
DMATxHd | (unsigned long) | Packet slot index of the DMA request queue. DMma
0<DMATxHd<N.
Table 2: Summary of Interface Variables and Pointers
Registers R/W Definition Mode
HiTxFIFO Write-only | NIU hardware FIFO access point for pushing | dMPp1
high-priority outbound packets
HiTxFIFOLast | Write-only | Equivalent to HiTxFIFO but implicitly indi- | dMPI
cates that this is the last word of a packet
LoTxFIFO Write-only | NIU hardware FIFO access point for pushing | dMPp1
low-priority outbound packets
LoTxFIFOLast | Write-only | Equivalent to HiTxFIFO but implicitly indi- | dMP1
cates that this is the last word of a packet
HiRxFIFO Read-only | NIU hardware FIFO access point for popping | dMP1
high-priority outbound packets
LoRxFIFO Read-only | NIU hardware FIFO access point for popping | dMPI1
low-priority outbound packets
RxStatus Read-only | NIU hardware receive FIFO status register dMPp1
TxStatus Read-only | NIU hardware send FIFO status register dMpP1

Table 3: Summary of Memory Mapped Registers

13




3 User-level Interface Usage

The previous section presented the NIU interface abstractions. This section gives explanations and
examples of using the different communication mechanisms.

3.1 General Circular Buffer Usage

Both the MP1 and DMA interfaces are based on FIFO queues implemented with circular buffers
in the host DRAM. The queue abstraction of the circular buffers is jointly maintained by the
host processor and NIU. For each buffer, the host processor and NIU split the task of producer
and consumer, or vice versa. The handshake between the consumer and the producer is signaled
through a walid bit attached to every slot in the buffer. The producer maintains a index to the
head slot (push end of the queue), and the consumer maintains a index to the tail slot (pop end of
the queue) in the buffer. Following initialization, both the consumer and the producer indices are
zeroed, and thus the queue is empty.

The producer enqueues by writing into the slot corresponding to its head index. Afterwards,
the producer sets the slot’s valid bit to 1 and increments its head index to the logically-next slot.
If at this point, the producer encounters a slot whose valid bit is already set, then the queue is full,
and the producer must wait for the consumer to dequeue before proceeding with additional entries.

The consumer polls on a queue by checking the valid bit of the slot corresponding to its tail
index. When the wvalid bit becomes set, the entry is valid, and the consumer can process the content
of the slot. When the slot can be reused by the producer, the consumer resets the valid bit to 0
and proceeds to poll on the logically-next slot. While polling on an empty Rx queue, as long as the
queue remains empty, the header word containing the valid bit is unchanged. Thus, each failed poll
from the host processor only incurs the overhead of a cache hit. This continues until the producer
(NIU) flushes and updates the header word to reflect a new message arrival.

For this handshake to work, the cache coherence and consistency — either automatic or using
explicit commands — must guarantee that once the consumer observes the 0 to 1 transition at the
valid bit, all prior® updates from the producer are visible to the consumer.

3.1.1 Alternatives

An alternative scheme for handshaking is to use mailbox registers to pass the head and tail indices
between the producer and consumer. This is the scheme employed by START-JR. The consideration
in START-JR is that reading from the Tx queues in the host memory is much more costly than
reading from a mailbox register®. Since the FUNI coprocessor is time-shared among many tasks,
better overall performance is achieved when the mailbox register scheme is used. This problem
does not arise in the operation of the Rx queues.

The disadvantage of the mailbox register scheme is that the host processor must perform writes
to memory-mapped registers as an integral part of message passing. Fortunately, the host overhead
of writing to the index registers can be partially hidden by the write-buffer of the host processor.
Furthermore, the index registers do not need to be updated immediately after each message for
correct operations. Thus, the overhead of updating the index registers can be amortized over many
messages. Depending on the trade-offs, we might resort to the mailbox register scheme for the Tx
queues.

SPrior in “program”-order or “bus”-order depending on whether the producer is the host processor or NIU.
5In START-JR, the mailbox registers are included in the bus bridge of the embedded system.
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3.2 MprI Interface Usage
3.2.1 Transmission

To send a message, the user process directly composes the message in the next open packet slot
in the Tx queue. The user-level interface uses an abstract message format (simpler than the
actual network packet). The following C function sends a high priority message. The contents of
the message are passed in as arguments to the function. The example does not check for valid
arguments.

void TransmitHi(unsigned long dest, unsigned long type,
unsigned long commandO, unsigned long commandl,
unsigned long *payload, int length) {
int i;
unsigned long header;

while ( HiTx[HiTxHd].header & 0x80000000 ); /* step 1 */

HiTx [HiTxHd] . command [0] =commandO; /* step 2 */
HiTx[HiTxHd] . command[1]=commandi;

for(i=0;i<length;i++) {
HiTx [HiTxHd] .payload[i]l=payload[i];

}
header=( 0x80000000 | /* step 3 */
(dest << 16 ) |
(type << 6 ) |
length );
STORE_BARRIER; /* step 4 */
HiTx [HiTxHd] .header=header; /* step 5 */
HiTxHd++; /* step 6 */

HiTxHd%=N;
}

The basic steps involved in sending a message are:

Step 1. Make sure the current slot (HiTx[HiTxHd]) is free. In this simplified example we simply
spin-wait until ready.

Step 2. Compose and write the body of the message in the MPI packet slot.

Step 3. Compose the MPI header using bit-field operations.

Step 4. Perform any necessary barrier operations to insure the previous updates are visible to NTU.
Step 5. Update the MPI header together with the valid bit set to complete the enqueue process.

Step 6. Increment HiTxHd modulo N to prepare for the next message.

15



3.2.2 Reception

Inbound messages from the network are delivered to one of the two Rx queues according to their
network priorities. The following function polls and receives from HiRx. This example is blocking.
The inbound message is received into the space allocated by the caller to the function.

void ReceiveHi(unsigned long *mode, unsigned long *type,
unsigned long *commandO, unsigned long *commandil,
unsigned long *payload, int *length) {
int i;
unsigned long header;

while (!( HiRx[HiRxT1].header & 0x80000000 )); /* step 1 */
READ_BARRIER; /* step 2 */
header=HiRx [HiRxT1] .header; /* step 3 */

*mode=(header&0x00000020)>>5;
*type=(header&0x00001fc0)>>6;
*1ength=(header&0x0000001f) ;

*commandO=HiRx [HiRxT1] . command [0] ; /* step 4 */
*command1=HiRx [HiRxT1] .command[1] ;

for(i=0;i<*length;i++) {
payload[i]=HiRx [HiRxT1] .payload[i];

}
HiRx [HiRxT1] .header=0x0; /* step 5 */
HiRxT1++; /* step 6 */

HiRxT1%=N;
}

The basic steps involved in receiving a message are:

Step 1. Poll the valid bit of the current slot (HiRx [HiRxT1]) until it becomes valid.

Step 2. Perform any necessary barrier operations to insure the previous updates by NIU are now
visible from the host processor.

Step 3. Parse MPI header words to determine the message type and length. (Note: the mode and
dest fields of the header word is not used in the receive queue.)

Step 4. Receive the message by reading the command words and length-number of payload words
from the slot.

Step 5. Reset the walid bit to release the slot back to NIU for reuse.

Step 6. Increment HiRxT1 modulo N to prepare for the next message.

16



3.3 DwmA Interface Usage

The C function below initiates a DMA transfer to move D bytes of data from the local source
address to the remote target address on the node dest. The example does not check for valid
arguments.

void TransmitDMA(unsigned long dest, unsigned long type,
unsigned long command,
void *target, void *source) {
unsigned long *payload, int length) {
int i;
unsigned long header;
while ( HiDMA[HiDMAHd] .header & 0x80000000 ); /* step 1 */
HiDMA [HiDMAHd] . command=command ; /* step 2 */
HiDMA [HiDMAH4] . target=target;

HiDMA [HiDMAHA] . source=source;

for(i=0;i<length;i++) {
HiDMA [HiDMAHd] .payload[i]l=payload[il;

}
header=( 0x80000020 | /* step 3 */
(dest << 16 ) |
(type << 6 ) |
length );
STORE_BARRIER; /* step 4 */
HiDMA [HiDMAHA] .header=header; /* step 5 */
HiDMAHd++; /* step 6 */

HiDMAHA%=N;
}

The basic steps involved in registering a DMA request are:

Step 1. Make sure the current slot (DMATx [DMATxHd]) is free. In this example we simply spin-wait
until ready.

Step 2. Compose the body of the notification packet in the slot.
Step 3. Compose the DMA header using bit-field operations.
Step 4. Perform any necessary barrier operations to insure the previous updates are visible to NIU.

Step 5. Update the DMA header word together with the walid bit set to complete the enqueue
process.

Step 6. Increment DMATxHd modulo N to prepare for the next DMA request.
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3.4 Direct Message Passing Interface

The code segments below demonstrate the usage of the dMPI interface. The transmit and receive
functions perform identical tasks as those given in Section 3.2. The code assumes the existence of
an UpRoute[S] and a DownRoute[S] table. Notice the Arctic packet format is skewed by 16 bits
as described in Section 2.3.1.

3.4.1 Transmission

void TransmitHiDirect(unsigned long dest, unsigned long type,
unsigned long commandO, unsigned long commandil,
unsigned long *payload, int length) {
int i;

/* wait if FIFO is full =*/
while ( TxStatus & 0x00000008 );

/* push Arctic header */

HiTxFIFO= 0x00008000 | (UpRoute[dest]);

HiTxFIFO= (DownRoute[dest]<<16) | ( (type << 6 ) |
length + 4 );

/* push Arctic body except last */

HiTxFIFO=commandO;

HiTxFIFO=commandli;

for(i=0;i<(length-1);i++) {
HiTxFIFO=payload[i];
}

/* push last word */
HiTxFIFOLast=payloadl[i];

3.4.2 Reception

void ReceiveHi(unsigned long *mode, unsigned long *type,
unsigned long *commandO, unsigned long *commandl,
unsigned long *payload, int *length) {
int i;
unsigned long header;

/* wait until FIFO is not empty 8/
while ( RxStatus & 0x00000002 );

/* Retrieve and through Artic Route bits */
header=HiRxFIFO0;
header=HiRxFIFO;

/* Parse header for type and length */
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header=HiRxFIFO;
*type=(header&0x00007fe0) >>6;
*1ength=(header&0x0000001f)-4;

/* Retrieve packet body */
*commandO=HiRxFIFO;
*command1=HiRxFIFO;

for(i=0;i<*length;i++) {
payload[i]=HiRxFIFO;
}
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4 Privileged Control Interface

This section describes the privileged memory-mapped control registers used in initialization and
configuration of the NIU hardware. These registers are to be protected from user accesses through
memory management.

4.1 Operation Control

Two memory-mapped registers, TxCntrl and RxCntrl, independently control the sending and receiv-
ing NIU datapath. Within each register, only two bits are active. The subfields for both control
registers are:

Bit read/write | Definition

Position
31:2 reserved
1 write only | Reset

0 read/write | MPI+DMA On/off

4.1.1 Reset

Setting the Reset bit causes a complete low-level reset of the NIU hardware. The hardware will
restart in a disabled state following a reset. All NIU control states must be reinitialized after a
reset.

4.1.2 MrprI and DMA On/off

Writing OFF to TxCntrl causes the transmit NIU’s MPI and DMA FSM to stop retrieving additional
packets from the host DRAM after the completion of any retrieval currently in progress. However,
the internal datapath continues to be active until all previously retrieve packets have entered the
network FIFOs. Thus, after writing OFF to TxCntrl, the processor must continue to check TxCntrl
until it reads OFF to be certain that all transient states have been cleared through the transmit
datapath. One should note that if a blocked network prevents transient packets in the NIU datapath
from entering the network, the transmit datapath may never enter the OFF state.

Writing OFF to RxCntrl will stop MPI-mode and DMA-mode delivery of additional inbound
packets to the host DRAM after the completion of any delivery currently in progress. Additional
inbound packets will pile up in the internal NIU buffer space and eventually back up into the
network itself.

The sending or receiving datapath must be in the OFF state before the remaining control
registers corresponding to that part of the datapath are modified. When NIU is OFF, the interface
is in dMPI mode. The user can send and receive by accessing the hardware FIFO access points.

4.2 Buffer Control

A TxQBase register in the transmit datapath contains the base pointer to the (4-N-128)-byte
aligned Tx buffer region (HiTx, LoTx, and DMATx). A RxQBase register in the receive datapath
contains the base pointer to the (2-IN-128)-byte aligned Rx buffer region (HiRx and LoRx). The
alignment requirement allows the NIU hardware to generate addresses to the packet queues using
concatenation instead of addition.

Only the upper (23 - log N) bits of TxQBase and the upper (24 - log N) bits of RxQBase
memory-mapped registers are active.

20



As described in Section 3.1, NIU, acting either as the producer or consumer, maintains its own
set of indices into each of the five interface queues. These internal state registers: HiTxTIl, LoTxTlI,
HiRxHd, LoRxHd and DMATXTI are exposed to system-level software for reading and writing to
allow user-transparent context switching and to assist in hardware debugging. Only the lower (log
N) bits of these memory-mapped registers are active.

4.3 DwmA Space

Given a peripheral bus with DVMA capability (address translation and access protection),
NIU can directly process the virtual address supplied by the user process in DMA requests. No
additional control is associated with NIU. (Instead, the complexity has been transfered to the
address translation facility at the I/O bus bridge.)

However, if memory-management is not, or only partially, available, then NIU must carry
out the necessary translation and protection when processing DMA transactions. DMABasePhy,
DMABaseVir and DMARangeMask enable NIU to perform a rudimentary (base & bound) linear
address translation and protection. Prior to utilizing DMA, the user process must request the
device driver to allocate a contiguous virtual memory region where all DMA transactions must fall
within. The device driver, in turn, should allocate contiguous physical memory to back up the
region. The starting addresses (virtual and physical) and a mask reflecting the size of the region is
loaded to the corresponding registers. To simplify the NIU implementation, the starting addresses
of both the physical and virtual region must be 4-MByte aligned. The region size is also required
to be a power of 2 but not less than 4 MBytes. The range mask is the region size minus one byte.
Given these constraints, only the upper 10 bits of the registers need to be active.

A set of these three registers exist separately for the transmit and receive datapath on each
node. However, we logically consider them to be the same registers since during normal operation,
the corresponding contents should be identical.

4.4 Network Route Table

The transmit datapath contains an additional two-by-S-entry RouteTable[2][S]. This memory-
mapped region is backed by SRAMs on-board NIU instead of hardware registers. Two entries
(to be used for the two priorities) exist for each possible network endpoints in the system. The
entries hold the source-base Arctic up and down route headers for the Fat-tree network. Each entry
is 4-byte and have the following format:

typedef struct {

unsigned downroute:16; /* Arctic Downroute */

unsigned priority:1; /* 0x1 if hi priority else 0x0 */
unsigned reserved:1; /* unused bit */

unsigned uproute:14; /* Arctic Uproute */

} RouteEntry;

If we choose to allow unordered network abstraction, the NIU hardware will generate part of the
up-route field randomly to take advantage of the load-balancing characteristics of the underlying
Fat-tree network.

4.5 Summary

Table 4 summarize the memory-mapped registers encountered in this section.
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Registers R/W Definition
TxCntrl read/write | Control register for the transmit datapath
RxCntrl read/write | Control register for the receive datapath
TxQBase read/write | Base pointer to the 4-IN-128-byte-aligned Tx
buffer region
HiTxTI read/write | Packet slot index of the high priority transmit
queue. O0<HITxTI<N.
LoTxTI read/write | Packet slot index of the low priority transmit
queue. 0<LoTxTI<N.
DMATXTI read/write | Packet slot index of the DMA request queue.
0<DMATxTI<N.
RxQBase read/write | Base pointer to the 2-IN-128-byte-aligned Rx
buffer region
HiRxHd read/write | Packet slot index of the high priority receive
queue. 0<HiRxHd<N.
LoRxHd read/write | Packet slot index of the low priority receive
queue. 0<LoRxHd<N.
DMABasePhy | read/write | Physical starting address of the DMA region
DMABaseVir read/write | Virtual starting address of the DMA region
DMARangeMask | read/write | Specifies the size of the DMA region

Table 4: Complete Memory Mapped Priviledged Control Registers
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5 Hardware Datapath and Implementation

The NIU hardware is composed of two PCI adaptor cards, one dedicated to the transmit datapath
and another dedicated to the receive datapath. Although the two cards perform different functions,
they will have identical hardware. Figure 3 gives a block diagram of the PCI card. The difference
between the transmit and receive cards is only in the configuration of the NIU Transaction Core
FPGA.

The two-card design decision is made under the assumption that combining the full transmit
and receive datapath onto a single card is difficult. Since we most likely want to use more than one
network adaptor card per node to increase network access bandwidth anyways, having separate Tx
and Rx cards per node is more effective — both in implementation and operation — than using two
full-featured cards per node. In any case, both the Tx and Rx cards are bi-directional in dMP1
mode.

We started to investigate the possibility of using an existing commericial PCI protoboard pop-
ulated with FPGAs. So far we have come across the DEC Pamette board and the Giga Operations
PCI protoboard. Neither promises 64-bit operation currently. However, the largest obstacle is
that these board are in 12-inch form-factors, which may not physically fit into some of the host
machines. Nevertheless, they are useful for prototyping in the early stages of development.

5.1 PCI Adaptor Card Overview
5.1.1 PCI Interface Core

The PCI bus interface logic will be implemented using FPGAs (Xilinx??). We hope this part of
the logic can be acquired as a synthesizable Verilog module from a commercial vendor. Xilinx
LogiCore PCI offers a 32-bit implementation (and whose bus master module is only in pre-release
stage). Logic Innovations has a 64-bit master-capable module that occupies approximated 8K
gates. We have also requested literature from: Sand Microelectronics, Eureka Technologies, Toucan
Technologies, and Virtual Chips.

A preliminary online survey has revealed several vendors offering a 64-bit PCI implementation.
It is not clear how suitable they are for FPGA synthesis, although most of them at least claim to
target FPGAs. Most packages conveniently include a PCI bus simulation as a design test bench.
The conclusion from this survey seems to indicate that a 64-bit design at 33 MHz is within reach.
We do not expect to attain 66 MHz unless faster implementation technologies (LPGAs, ASICs,
etc.) are considered.

5.1.2 NIU Transaction Core

The NIU Transaction Core will also be implemented using FPGAs. The NIU Transaction Core
may need to be partitioned so it partially sits in the PCI interface FPGA to reduce the pin count
between FPGAs. We anticipate using a total of two large FPGAs to implement the PCI and NIU
cores. The majority of the NIU Transaction Core design can be based on existing C-code from
START-JR’s FUNI embedded processor. Stripped down C-code, as functional specification, can be
adapted to synthesizable Verilog.

The NIU Transaction Core contains FSMs and software accessible control registers. The oper-
ations of the NIU Transaction Core is described in Section 6. Most of the datapath will not flow
through the NIU Transaction Core FPGA. Only selected signals will be interpreted by the NIU
Transaction Core. The decision to partition the NIU design into separate transmit and receive
cards was in part to reduce the complexity of the NTU Transaction Core.
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Figure 3: NIU PCI Card Datapath

5.1.3 SRAM Banks

Two 16-bit SRAM banks totaling at least 1 Kbytes of storage is used to hold the Arctic Fat-tree
route table. The PCB design should be such that the SRAM banks can be left unpopulated on the
Rx cards.

5.1.4 On-board Network FIFOs

Four 32-bit FIFOs bridge the 33MHz PCI bus clock domain and the 40MHz Arctic backend clock
domain. Two FIFOs are provided in each direction to support the two Arctic network priorities.
We may be able to conserve board space by using only two bi-directional FIFOs whose direction
can be set depending on whether they are in the transmit or the receive datapath. However, having
a full set of FIFOs increases the testability of the cards and allows each card to function as a stand
alone interface in dMPI mode.

5.1.5 Arctic Backend and Arctic Electrical

The Arctic backend design includes 1) digital issues such as protocol handshaking and CRC-
generation, and 2) analog issues such as re-timing and ECL signal conversion for transfering over
cables. The Arctic backend design has been worked out as part of the START-JR and START-
VOYAGER projects. The remaining concern is in power consumption, heat dissipation and space.

5.2 Transmit Card

Figure 4 illustrates how the transmit interface registers map onto the transmit card.

5.3 Receive NIU Card

Figure 5 illustrates how the receive interface registers map onto the receive card.
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6 NIU Operations

6.1 dMpri1 Mode

When the NIU Transaction Core is in the OFF state, the corresponding datapath of NIU is in dMP1
mode. The NIU Transaction Core is mostly inactive in this mode. The only function provided is
passive handling of accesses to memory-mapped registers, SRAMs and the internal FIFO access
points.

6.2 Transmit Datapath with MpPI and DMAFsM Enabled

When enabled, the NIU Transaction Core’s two FSMs on the Transmit NIU Card are responsible
for polling the three Tx queues: HiTx, LoTx and DMATx.

6.2.1 Mpri FSM

Mp1 FSM (MPFsMm) is responsible for polling the HiTx and LoTx message passing queues. MPFsSMm
repeatedly executes the following actions:

Step 1. Compose the address of the tail slot in HiTx by concatenation:
currAddr=TxQBase,b’00,Hi TxTI,b’0000000.

Step 2. Perform a direct memory read to currAddr to fetch the MPI header.
Step 3. Check the wvalid bit of the MPI header. If the valid bit is not set, then skip to Step 9.
Step 4. Check the mode bit of the MPI header. If it is a DMA request, then skip to Step 11.

Step 5. Enqueue the Arctic route headers into HiTxFIFO from RouteTable[0][dest] where dest is
from the MPI header . The RouteTable format is given in Section 4.4. The first Arctic header
word is composed of 16 zero upper bits and lower 16 bits from the table. The second word
is composed of the upper 16 bits from the table and lower 16 bits of the MP1 header word”.
Refer to the NIU-Arctic Packet format shown in Figure 2.

Step 6. Enqueue the two user MPI command words from currAddr+4 and currAddr+48. Refer
to Section 2.1.2 for the MP1 packet format.

Step 7. Retrieve the required number of MPI payload words using 4-word-burst reads starting from
currAddr+16. Enqueue the MPI payload words to HiITxFIFO and issue a last word command
on the last payload word.

Step 8. Write a 0x0000000 to currAddr to release the slot. Increment HiTxTI.

Step 9. Compose the address of the tail slot in LoTx by concatenation:
currAddr=TxQBase,b’01,LoTxTI,b’0000000.

Step 10. Carry out similar steps for the low priority transmit queue, and repeat from Step 1.

Step 11. Signal DM AFsM to take over handling of this slot. Wait until DM AFSM has signaled the
completion of the current slot.

Step 12. Write a 0x0000000 to currAddr to release the slot. Increment HiTxTl and repeat from
Step 1.

"The length from the MpI header needs to be incremented by 4 since the length field has different interpretations
in the MPI and the Arctic packet formats.
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6.2.2 DwmA FSM

A DMmA FSM (DMAFsM) is responsible for polling DMATx and occasionally helping MPFSM service
a DMA request in HiTx. DM AFSM repeatedly executes the following actions:

Step 1. Compose the address of the tail slot in DMATx by concatenation:
currAddr=TxQBase,b’10,DMATxTI,b’0000000.

Step 2. Perform a direct memory read to currAddr to fetch the DMA header.
Step 3. Check the valid bit of the DMA header. If the valid is not set, then repeat from Step 2.

Step 4. Check the mode bit of the packet header word. If it is a not DMA request, then turn OFF
the transmit datapath to indicate an error.

Step 5. Fetch the source and target addresses from currAddr+8 and currAddr+412. Refer to
Section 2.2.2 for the DMA request format.

Step 6. If required, translate source into effective bus address.

Step 7. As part of the DMA request, the DMAFSM needs to generate 32 Arctic packets, each
carrying 16 words of the total 2048-byte block transfer. The following loop is executed 32
times:

1. Enqueue the Arctic route header into HiTxFIFO from RouteTable[0][dest] as in MPI except
the length field is fixed to 19 words.

2. Enqueue (target + offset)® where offset is initialized to 0x0 and incremented by 64
bytes after each inner loop.

3. Retrieve 16 words in bursts from (source+offset). Enqueue the DMA data words to
HiTxFIFO and issue a last word command on the last data word of this packet.

Step 8. Signal MPFsM to generate a notification packet by interpreting the current DMA request
slot as a normal packet slot’. Wait until MPFSM has signaled the completion of the current
message.

Step 9. Write a 0x0000000 to currAddr to release the slot. Increment DMATxTI and repeat from
Step 1.

DMAFSM operates independently from MPFSM except when they are contending for shared
datapath and when they are assisting each other in the handling of DMA requests.

For DMA transmissions, DM AFSM needs to ensure that the same Arctic routes are used for all
Arctic packets that are generated from the same DMA request to maintain the point-to-point FIFO
property between the sender and the receiver.

6.3 Receive Datapath with MpI and DMAFsM Enabled

When enabled, the NIU Transaction Core (RCVFsSM) on the Receive NIU Card is responsible for
polling RxStatus and receiving the inbound Arctic packets from HiRxFIFO or LoRxFIFO accordingly.
A packet is categorized as a MPI packet or a part of a DMA transfer by checking the mode bit of
the inbound packet. The packet is then delivered to either HiRx, LoRx, or to the memory location
specified in a DMA packet.

8This addition is actually only a concatenation due to our alignment requirement on the source and target address.
Tn this case, MPFsM should be careful to not interpret the mode bit of the DMA request slot. MPFsM should also
clear the mode field in the Arctic packet transmitted.
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6.3.1 MPprI Receive

When processing a MPI packet, the Arctic route header words are thrown away except for the
16 bits containing the mode, type and length.
RCVFsM executes the following steps for a MPI packet:

Step 1. Compose the address of the head slot by concatenation:
For high-priority packets, currAddr=RxQBase,b’0,HiRxHd,b’0000000,
and for low-priority packets, currAddr=RxQBase,b’1,LoRxHd,b’0000000.

Step 2. Perform a direct memory read to currAddr to fetch the MPI header.

Step 3. Check the valid bit of the MPI header. If the valid bit is already set, then the queue is full.
Repeat from Step 2.

Step 4. Perform direct memory writes of the first two Arctic data words to currAddr+4 and
currAddr+8 as commandO and commandl of the MPI packet. Refer to Section 2.1.2 for the
Mp1 packet format.

Step 5. Write the remaining Arctic data words using 4-word-burst writes'® to the MPI payload
field starting at currAddr-+16.

Step 6. Write the MPI packet header word containing the mode, type and length!' together with
the valid bit set to currAddr.

Step 7. Increment HiRxHd (or LoRxHd) and repeat from the checking of the RxStatus register.

6.3.2 DwMA Transfers

When processing a DMA packet, the Arctic route header words are thrown away once the mode bit
has been examined.
RCVFsM executes the following steps for a DMA packet:

Step 1. Dequeue the target address from the first Arctic data word.

Step 2. If required, translate target into effective bus address.

Step 3. Perform burst memory writes of the next 16 Arctic data words to the host memory starting
at target.

6.4 Summary

In this section, we attempted to give a functional description. A more precise specification in HDL
is necessary in the future.

10Padded with dummy words if the payload size is not 4-word aligned.
"length from the Arctic header is decremented by 4 for the MP1 packet header.
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7 SMP Considerations

This section discusses the issues dealing with interconnecting a cluster of SMPs (symmetric mul-
tiprocessors) with the proposed NIU design. In particular, how NIU (or NIUs) is shared by the
different processors at a single network endpoint. A few scenarios are described.

7.1 NIU as a Shared System Resource

In this straight forward scenario. NIU is managed as a protected system resource, much like normal
LAN hardware. User processes communicate through standard Unix socket-based interface calls.
NIU details are hidden. User processes can still benefit from the increased bandwidth on block
transfers. However, low-overhead, fine-grain message passing features supported by the NIU’s MPp1
mode are lost.

7.2 Cooperating Processors with a Dedicated Coprocessor

In this model, we assume the processors are all cooperating on a single application. One processor,
running user code, is assigned to handle all communication events on this “node”. This scenario is
similar to the previous case except the NIU’s interface is exposed directly to user-level processes.
In some programs, the user application may benefit from both increased bandwidth and lowered
communication overhead.

7.3 Cooperating Processors sharing NIU protected by Semaphores

Again we have a scenario where the processors are all cooperating on a single application, but more
tightly-coupled. For this scenario to work, processors on a node cannot be individually identified.
In other words, it should not matter which processor handles any one particular inbound message.
For example, we can image a system where remote procedure calls are posted to a node through
NIU, and any free processor on that node can handle the remote procedure calls.

In this model, NIU is shared amongst the processors by protecting access to the Tx and Rx
queues with semaphores. By carefully managing the exclusive access to the TxHds and RxT1ls, it
is possible to share NIU in such a way that multiple processors can simultaneously enqueue or
dequeue from the same queue, but working on different slots. This system has greater potential for
fully utilizing the capability of the NIU design.

7.4 Independent Processes Requiring Direct Access to its Own NIU

Although the Tx queues can still be shared using semaphores, each process must have its own Rx
queues. This requirement can be met in a few ways.

e If enough I/O slots can be made available, we can dedicate one set of NIU cards to each
PrOCeSSOr.

e The Tx and Rx datapath can be combined into a single PCI adaptor card so more processors
can be serviced by fewer card slots.

e Instead of servicing a single set of queues, the NIU datapath can be altered to support multiple
sets of Tx and Rx queues. In effect, a single NIU is servicing multiple virtual endpoints. The
3-bit reserved field in the MP1/DMA headers can be used to extended the dest field to identify
up to eight virtual endpoints serviced by each NIU. See Appendix A for the changes required
to support this extension.
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8 Implementation Plans

This design attempts to leverage from the lessons learned from the START family of projects. The
features from START-JR’s FUNI have been trimmed to make the proposed NIU implementation
feasible in the amount of time and resources. However, the performance of the design has not been
sacrificed. If this proposed NIU cannot sustain at least on the neighborhood of 80 MBytes/sec (64-
bit@33 MHz, or 40 MBytes/sec at 32-bit@33 MHz) in one direction in DMA mode, then we need to
re-evaluate the practicality of this design. (The design should try to make full use of the available
bus bandwidth.) The MPI mode will hopefully be able to sustain greater than 20 MBytes/sec and
incur less than 1 usec of overhead on the host processor.

8.1 Hardware Development Resources

Aside from the parts for final assembly, the following resources need to be secured for hardware
development:

e Synopsis and compatible FPGA development tools (Xilinx??)

e Commercial synthesizable PCI interface core capable of 64-bit bus width at 33 MHz in FPGA
form

e PCI Bus simulation to verify the design against (usually included in the PCI interface core
package)

e PCB design and layout expertise!?

8.2 Software Development Resources
We need some expertise in Solaris device driver development. The minimum functions required

from a bare-bone device driver are:

e Allocate pinned physical memory
e Setup DVMA translation to host memory for NIU

e Support mmap() to NIU control locations and pinned DRAM pages

For more user-friendly access, we need to develop full-featured device drivers and the IP layers.

8.3 Testing Strategy

The full NIU design will be captured in Verilog. With the PCI bus simulator, the design will
be extensively simulated during the debug phase of the design cycle. Prior to committing to the
PCB layout, the captured interface design will also be tested using a commercial FPGA-based
PCI prototyping board. First round hardware bring-up and debugging will be carried out using
inexpensive and readily-available Linux PCs or SUN workstations. The NIU hardware will be
tested against matured START-JR NIU hardware over the Arctic network. Only a fully-debugged
design will be installed in the final system.

12We need the most outside help in this area.
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A Virtual End-point Extension

Currently, a network endpoint is composed of five queues: HiTx, LoTx, DMATx, HiRx, and LoRx.
Each endpoint is serviced by one set of Tx and Rx NIU cards. A simple change can be made to
enable one set of NIU to service a number of virtual endpoints to be used independently by different
processes of the same parallel application. The aggregate bandwidth through NIU will not change
significantly. However, when any one virtual endpoint user causes the network to block, all other
virtual endpoints serviced by the same NIU will also block.

A.1 Tx Modifications

Three bits have been allocated in the MPI header to identify up to eight virtual endpoints per
NIU. All eight sets of Tx queues need to be allocated contiguously and be (4-N-128)-byte aligned.
The eight different virtual endpoints can be selected by setting the three address bits above the
alignment boundary.

MPrFsm and DMAFSM maintain a 3-bit COUNT register that are incremented following each
polling/service cycle. An additional 3-bit privileged control register, VMASK is introduced. At the
beginning of each polling cycle, the COUNT is binary-anded with VMASK to select one of the eight
sets of Tx queues to service next.

For example, the address of the tail slot in HiTx of the selected endpoint is:
currAddr=TxQBase!?,(COUNT&VMASK),b’00,HiTxT1,b’°00000. When VMASK=b’111, each of
the eight virtual endpoints will be visited in sequence. When VMASK=Db’000, only the Oth endpoint
is serviced. Two and four endpoint nodes can be be configured similarly.

The remaining MPFsM and DM AFSM operations are unaffected.

A.2 Rx Modifications

Bit[15:13], just below the destination field, in the 2nd header word of MPI and DMA template has
been reserved to specify one of the eight virtual endpoints at the destination node as the receiver.
These three bits are transmitted with the corresponding Arctic packet. When delivering an inbound
message, RCVFSM needs to decode these additional three bits to determine the designated virtual
endpoint. Again by requiring the Rx queues to be aligned, these three bits can be directly applied
to compose the delivery address by concatenation. The remainder of the RCVFSM operation is not
affected by this change.

13TxQBase is shortened by 3-bits.
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