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Transitioning from MPP to SMP:
Experiences with the MIT Ocean-Atmosphere Model

Chris N. Hill
Center for Meteorology and Physical Oceanography, Massachusetts Institute of
Technology, Cambridge, MA 02189, USA. (e-mail: cnh@plume.mst.edu)

Andrew Shaw
Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA. (e-mail: shaw@abp.lcs.mit.edu)

High-end, mainstream symmetric multiprocessor (SMP) computers are beginning
to offer numerical modelers realistic alternatives to traditional vector or massively
parallel processing (MPP) supercomputers. We report on the implementation of
the MIT ocean-atmosphere dynamical kernel on a DEC 8400 SMP. The SMP im-
plementation is contrasted with an existing optimized version of the same model on
the CM-5 parallel vector supercomputer. We discuss the numerical methods and
programming styles appropriate to the two machines. To characterize the differ-
ences in the architectures, we compare the performance of key kernels of the model
which are typical of those in many computational fluid dynamics (CFD) codes.
To render the model readily accessible to individual researchers and students, it
is written in High Performance Fortran, which emphasizes both high performance
and a high-level programming environment. Our study highlights cache memory
architecture and compilation systems as particularly critical technologies in deter-
mining the overall utility of a mainstream SMP system for the oceanographic and
meteorological community. Notwithstanding these caveats, we demonstrate that
the performance of “high-end mainstream” SMP’s is rapidly converging on that of
“low-end” computer center facilities for real scientific applications.

1 Introduction

During the last twenty years, the application of supercomputers to the nu-
merical study of fluids, in particular the atmosphere and ocean, has been an
unquestionable success, paving the way for vast improvements in the fidelity
of computational fluid simulations. Throughout this period, low-volume, high-
end vector supercomputers have clearly led in absolute performance and vector
computers have been an indispensable tool in meeting the seemingly insatiable
demands of computational fluid dynamics (CFD). Recently, however, commod-
ity microprocessor-based multiprocessors have reached a level of performance
where they can be seriously considered as an affordable alternative to special-
ized, purpose-built, and hence generally expensive, vector supercomputers.
Today there is a widely articulated viewpoint that mainstream symmetric
multi-processor (SMP) architectures, based on the same commodity micropro-
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Figure 1: Peak floating point performance versus main memory bandwidth. Peak floating

point performance is the maximum floating point operations which can be issued in a cy-

cle multiplied by the cycles per second. Main memory bandwidth is measured using the
STREAM benchmark.

cessor technology used in desktop workstations, will become the building blocks
for a new generation of high-end, scalable supercomputer platforms. Computer
architects now enthuse over the possibility of multiprocessor supercomputers
based on commodity microprocessors delivering significant performance to nu-
merical applications at a fraction of the cost of traditional vector supercom-
puters. Skeptics question the soundness of this conviction, arguing that vector
processing is a natural paradigm for core supercomputer fields such as compu-
tational fluid dynamics, and that many legacy applications do not perform well
on current generation commodity platforms':2. The skeptic’s argument is com-
pelling. Current generation commodity microprocessor platforms all rely on
hierarchical cache-based memories to give them high performance — however,
this memory organization performs poorly with the vector-centric numerical
procedures that lie at the heart of many supercomputer applications, including
most meteorological and oceanographic applications.

Figure 1 illustrates one important architectural difference between vector,
massively parallel processor (MPP), and mainstream workstation/SMP plat-
forms. The Cray vector computers (Y-MP, C90, and T94) are a yardstick
for the performance of vector supercomputers. They show a close to one-to-
one balance between main memory bandwidth (as measured by the STREAM
benchmark®) and peak floating point performance, with both increasing pro-
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portionately over time. Such a balance makes it possible for Cray and other
similar vector supercomputers to fetch an array element and to perform a
floating point operation on an array element each cycle.

The two platforms we consider in this paper, a 32-processor CM-5 and
a 4-processor DEC 8400/300, are also shown on Figure 1. The CM-5 is a
vector MPP supercomputer, and accordingly it shows a one-to-three balance
between main memory bandwidth and floating point performance — not quite
as evenly balanced as the Cray vector computers, but significantly more bal-
anced than cache-based workstations or SMP’s. As the CM-5 scales to larger
configurations, the balance remains roughly fixed. The DEC 8400, on the other
hand, shows comparable peak floating point performance to even the current-
generation of Cray vector machine, but has significantly lower main memory
bandwidth. The DEC 8400 has about a one-to-thirty balance between floating
point and main memory performance.

Generally, oceanographic and atmospheric models, either grid-point or
spectral, are relatively straightforward to map efficiently to architectures like
the Crays, with their even balance between main memory bandwidth and
floating point performance. Typically, the models use low-order finite differ-
ence schemes, which can be expressed naturally using vector-processor-friendly
constructs with a roughly equal ratio of floating point operations to memory
references. As Figure 1 shows, such constructs are not well-suited to the DEC
8400 or other cache-based microprocessor platforms, because the main memory
bandwidth soon becomes the limiting factor.

Nevertheless, there are numerical codes for which the performance of a 4-
processor DEC 8400 is comparable with a top-of-the-line vector platform. The
LINPACK** benchmark rates a 4-processor DEC 8400/300 at 1351 MFlop/s
and a l-processor Cray T94 at 1603 MFlop/s, for the hand-optimized LIN-
PACK 1000 test. A workstation of the same era as the Cray Y-MP, on the
other hand, had both low floating point and low main memory performance,
and would have been unsuitable for any form of large-scale computational fluid
dynamics. The rapidly increasing performance of mainstream microprocessor
computers, along with their relatively low costs, makes it tempting to investi-
gate the role they might play in large-scale meteorological and oceanographic
modeling, and to anticipate how that role might evolve in the future.

In this paper, we report on the design, implementation and evaluation of
the hydro-dynamical kernel of the MIT ocean-atmosphere model on a mass-
market SMP platform, the DEC 8400 5/300. We compare this implementation
with an existing implementation on a CM-5 MPP currently used for daily pro-
duction runs of the MIT model. A vision of “personal supercomputers” as
effective research and teaching tools underlies this study, and so we limit our
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experiments to high-level programming environments that would be readily
accessible to researchers and students who are not necessarily expert scien-
tific programmers or numerical modelers. Our study employs a hierarchy of
problems, culminating in the MIT model hydro-dynamical kernel, to probe the
strengths and weaknesses of the platforms, and to identify promising imple-
mentation strategies.

2 The MIT ocean-atmosphere model

The MIT ocean-atmosphere model is built around a versatile incompressible
Navier-Stokes solver developed at MIT for the numerical study and analysis of
rotating fluids. A hydro-dynamical kernel, designed to be sensitive to the tran-
sition from non-hydrostatic to hydrostatic dynamics, lies at the heart of the
model, providing computational efficiency across a broad spectrum of simula-
tion regimes. A review of the model’s utility for research in a range of problems
related to ocean and climate dynamics can be found in Marshall et.al®. Im-
plementations of the model targeted to the MPP CM-5 and to CRAY vector
supercomputers are being actively used by researchers at MITé78,9,10,11,12
The discrete algorithm uses a finite volume'®, time-stepping formulation
which is rich in data parallelism and can handle the intricate, order one varia-
tions in geometry of ocean basins. The CM-5 code achieves sustained floating
point throughput of over 10 GFlop/s on a 512 node CM-5. Daily production
runs of the model sustain between 500 MFlop/s and 1 GFlop/s on a 32 node
CM-5, and between 100 MFlop/s and 200 MFlop/s on a CRAY Y-MP.

2.1 The numerical scheme

The numerical procedure used in the model is described in detail in Marshall
et.all* The scheme is a variant on the theme set out by Harlow and Welch'®,
in which a pressure correction to the velocity field is used to guarantee non-
divergence.

The numerical kernel is a discrete form of the Boussinesq incompressible
Navier Stokes fluid equations: it can be written in semi-discrete form to second
order in time At thus:

,Un—i-l — " 1 1
= =G -Vt (1)
Vot =0 (2)



Equations 1 and 2 describe how the fluid evolves (v = (v, w) is the velocity
in the horizontal and the vertical) in response to forcing due to G (representing
inertial, Coriolis, metric, gravitational, and forcing/dissipation terms) and to
the pressure gradient Vp. The same kernel algorithm is used by us to study
both the atmosphere and the ocean - the anelastic approximation as described
in Brugge et.al!® and in Miller'” is used to render the same model suitable for
the study of both fluids.

The pressure field required in Equations 1 and 2 is found by separating
p into hydrostatic, surface and non-hydrostatic parts. Vertical variations in p
can be computed hydrostatically yielding pp, using only information in each
column of the fluid. Horizontal variations in ps are diagnosed by solving an
elliptic equation which ensures non-divergent depth integrated flow:

prwe - H
Vi HVpps = Vp.Go, 2 — Vi VpDry' 3)

( —H indicates the vertical integral over the local depth, H, of the domain
and the subscript ;, denotes horizontal). In the non-hydrostatic limit a three-
dimensional elliptic equation is inverted for the non-hydrostatic pressure. In
this study we consider the hydrostatic case involving the two-dimensional prob-
lem, Equation 3. More details of the numerical procedure can be found in
Marshall et.aP-'4.

2.2 Program structure

Figure 2 shows the high-level program structure of the MIT model. Almost
all of the execution time is spent in the time-stepping loop, which is divided
into two parts — Forward_Step and Inversion _Step. The Forward_Step
comprises a series of nearest-neighbor computations involving two time lev-
els of the model state variables and their time derivatives. This stage com-
putes explicit time derivative terms for the velocity and tracer equations, steps
them forward in time and updates the density field through an equation of
state. There is considerable latitude for different orderings of the computa-
tions within Forward_Step, and, as discussed in Shaw et.all®, this stage con-
tains an abundance of both data parallelism and functional parallelism. The
Inversion_Step requires global communication to solve a set of simultaneous
equations to ensure that the flow remains non-divergent.

3 The computer platforms

We compare the implementation of the MIT model on two very different plat-
forms: the CM-5 vector MPP, and the DEC 8400 cache-based SMP. The CM-5
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BEGIN
Initialize
Define topography, initialize flow field, tracer distributions
FOR each time step DO
Forward_Step
Calculate velocity time derivatives
Calculate tracer field time derivatives
Step forward state variables
Update density field
Inversion_Step
Solve elliptic problem to ensure non-divergent flow
END FOR
END

Figure 2: High-level structure of the MIT model. The model iterates repeatedly over a
time-stepping loop, comprised of two main blocks, Forward_Step and Inversion_Step.

is well-suited for scientific simulation applications, and it, along with the Cray
Y-MP, is the mainstay of our day-to-day production runs. We will be testing
a 32-processor configuration of the CM-5.

The DEC 8400 is a very high-end mainstream SMP system, designed for
use in a broad variety of both technical and non-technical situations. Digital
has already sold several thousand 8400 systems, while in contrast, Thinking
Machines shipped less than 100 CM-5 systems. We will be testing a 300 MHz,
4-processor configuration of the DEC 8400.

3.1 Machine architectures

Both systems have theoretical peak floating point performance well in excess
of 100 MFlop/s, as illustrated in Figure 1. However, the two systems have
radically different architectures, which we discuss here in more detail.

The CM-5 MPP'? was one of the first parallel computers which could rou-
tinely out-perform traditional vector supercomputers for real scientific prob-
lems. The machine is built from relatively modest vector processors connected
through two communications networks, as shown in Figure 3. Each vector unit
runs at 16 MHz and can issue a multiply-add instruction each cycle, giving it
a peak performance of 32 MFlop/s. Each CM-5 node contains 4 vector units,
yielding a peak performance of 128 MFlop/s per node. In real applications,
however, sustained performance of 10-30 Mflop/s per node is more typical.
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Figure 3: High-level architecture of the CM-5

The key to exploiting the CM-5’s vector units is to express computation
in terms of data-parallel vector operations, which is a natural paradigm for
regular finite difference/volume models. The vector units act as both memory
controllers and vector floating point units — each vector unit can read or write
one 64-bit word of memory every cycle, as well as performing one floating point
operation.

Main memory on the CM-5 is distributed across the vector units and so
any sort of inter-processor communication on the CM-5 is relatively expen-
sive, motivating the programmer to structure codes to minimize inter-processor
communication. Often, this entails a tradeoff of extra memory use for less com-
munication.

The architecture of the DEC 8400 2° is typical of the current generation
of microprocessor-based SMP’s. As shown in Figure 4, the DEC 8400 consists
of nodes connected by a shared system bus. Sharing of data between the
processors can only occur through reads and writes to memory. Each node
of the 8400 consists of an Alpha 21164 microprocessor 2! with three levels of
cache — the first two levels of cache are on-chip, and the third level of cache is
off-chip, but on the same board. The caches are small, fast-access memories
which mirror sections of the computer’s larger, slower access main memory.
Computation using data from cache is much faster than using data from main
memory. As the caches are situated farther from the processor core, they are
successively larger and slower.

Other SMP’s and even successive generations of DEC SMP’s may have
different sized caches, or even a different number of levels of caches. However,
all microprocessor-based SMP’s have one or more levels of cache and a shared
view of main memory.

The 8400 and other mainstream SMP’s rely on caches to get good perfor-
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Figure 4: High-level architectures of the DEC 8400 SMP

mance. If a memory reference from the processor is returned by the 1st-level
cache, the processor can continue working on the next cycle. References which
are returned by the 2nd or 3rd level cache cause the processor to wait longer,
and references to the main memory can cause the processor to wait for tens of
cycles. Each Alpha microprocessor runs at 300 MHz, and if all of the operands
are available, the Alpha can perform one floating point operation (which may
be a multiply-add) per cycle, thus having a peak performance of 600 MFlop/s.

The shared memory architecture of the 8400 allows for lower communica-
tion costs than on the CM-5. However, if the problem does not fit into the
8400’s caches, performance may be very bad, so it is important to minimize
memory use. It should be noted, however, that main memory itself can be
very large.

3.2 Programming environments

Our goal is to make a model that is accessible to the general scientist, as well
as to specialist scientific programmers and numerical modelers. A high-level,
intuitive scientific programming environment is therefore of interest to us.

Motivated by this goal, we implemented the model on the CM-5 in CM
Fortran (CMF) 22, which is a high-level, data-parallel dialect of Fortran. For
the DEC 8400, we implemented the model in High Performance Fortran (HPF)
using Digital’s native High Performance Fortran (HPF) compiler?® HPF is very
similar to CMF because the design of the HPF language standard was strongly
influenced by CMF.

HPF compilers are available for most SMP platforms, provided either by
the hardware vendor or third-party compiler vendors. However, the quality of
HPF compilers can vary widely — although HPF compiling technology is fairly
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mature in general, some hardware vendors have not made a full commitment
in manpower and other resources to develop high-quality HPF compilers for
their platforms. Furthermore, in our experience, third-party compiler vendors
are at a disadvantage in developing high-quality compilers for any particular
platform because (1) they must support several platforms, and (2) details of
the hardware necessary to obtain maximum performance are usually only well-
understood by the hardware vendor.

The state of affairs is improving, but any decision to move to a new plat-
form should be made only after evaluation of both hardware capabilities as
well as software support.

4 Performance profiling

To obtain high performance for the MIT model on a new computer platform,
we take an incremental approach, beginning with performance profiling of el-
ementary kernels, and moving towards profiling of the full application. At
each stage, we gain a better quantitative understanding of the architecture,
programming environment, and algorithmic match to the machine. The suc-
cessive tests give us a step-by-step guide to the design of the full application.

4.1 DAXPY test

The DAXPY test measures the performance of a system for vector-style op-
erations. DAXPY is a primitive of the BLAS12* linear algebra library which
performs the operation y = az + y, where y and z are 64-bit floating point
arrays. B B B

Figure 5 shows the floating point performance as a function of the length
of the input arrays for the 32 node CM-5, and for different processor counts
of the DEC 8400. Examining this graph, we clearly see the impact of the
cache size on performance. For the 8400 system, performance tails off sharply
when cache size is exceeded, which is indicated at the “cache shoulders”. As
the number of processors increases, the total amount of cache memory also
increases, as seen by the cache shoulder moving towards the right as more
processors are used in the 8400.

For the CM-5, the performance increases with the size of the problem,
because the CM-5 can more fully use its vector units on larger sized problems.
In comparing the absolute performance of the CM-5 to the 8400, we should try
to determine what region of interest is delineated by the curves. Once the size
of the problem is too large to fit into the caches of the 8400, the performance
is uncompetitive with the CM-5, or like machines.
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Figure 5: Performance of DAXPY BLASI1 primitive for different lengths of vector on one,
two and four processors of a DEC 8400, and on a 32 node CM-5 computer.

In some ways, DAXPY is the worst-case situation for the SMP, because
no data is reused, and therefore, the caches are poorly exploited. We can
attempt to alleviate the effects of computations like DAXPY, by reusing
data that is in the cache. However, traditional vector supercomputers favored
applications which were structured as compositions of DAXPY-like operations,
so programming and compiling for microprocessor-based SMP’s requires a re-
thinking of the mapping of an algorithm to the computer.

4.2 3D DAXPY test

3D DAXPY is a three-dimensional version of DAXPY. Although the 3D
DAXPY computation seems extremely straightforward, there are actually
some subtleties about programming even such a simple piece of code. Figure
6 shows some of the results obtained when we ordered the axes of the arrays
differently, and when we used different HPF data layout directives for the same
code using a fixed problem size and a fixed number of processors. We ran the
code with arrays of size 200 x 100 x 10, which is representative of runs we do
daily on the CM-5.

There is almost a factor of 5 difference between the performance of Version
1 and Version 5. Version 2 actually uses the same axis order and layout as
the CM-5 version of the MIT model, but it is not optimal on the 8400. It
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3D DAXPY performance on DEC 8400
Version | Axis Order Data Layout Miflops
1 (z,z,y) (BLOCK, * ,*) 60
2 (z,z,y) (*,BLOCK,BLOCK) 210
3 (z,y,2) (BLOCK,BLOCK, *) 260
4 (y,x,2) (BLOCK,BLOCK, *) 230
o (z,y,2) (*,BLOCK, %) 270

Figure 6: The performance of 3D DAXPY on the DEC 8400 under the DEC HPF compiler
is highly dependent on the axis order declaration and data layout directives. The 3D arrays
are of extents X.,, = 200, Y., = 100, Z;.,, = 10, and runs were on a 4 processor 8400.

is clear that Version 5 gives the maximum possible performance, because its
performance is about the same as the one-dimensional DAXPY test.

4.8 Forward_Step test

The Forward_Step part of the code consists of updates to a three dimensional
grid of double-precision floating point numbers representing the state of the
fluid. In our study, in keeping with our goal of a highly intuitive and readable
code, the grid is mapped directly to three-dimensional arrays. Figure 7 shows
the performance of a representative fragment from Forward_Step, which cal-
culates the G terms in Equation 1. Problem sizes were chosen to be wide
and thin, which is representative of geometries we use for our research. Times
were gathered by extracting the section of code from the model, and using the
optimal axis ordering and data layout as determined by the 3D DAXPY test.

The results in Figure 7 represent the performance after modest optimiza-
tions were made to the DEC 8400 code relative to the CM-5 code. The CM-5
version actually uses about 40 arrays, some of which are used to minimize
communication. With the DEC 8400 shared-memory architecture it is more
important to reduce the overall memory usage, so some of these buffer ar-
rays are removed. Memory requirements were further reduced by storing time
invariant terms as 32-bit rather than 64-bit values.

Note that the performance of the DEC 8400 does not drop off as much as
for DAXPY with this more representative code extract, but that the drop-off
occurs at an earlier point. The improvement in asymptotic performance re-
flects the higher ratio of floating point operations to memory references of the
Forward_Step test (which has a ratio of = 26 : 8) relative to the DAXPY
tests (where the ratio is 1 : 1). This higher ratio translates into increased op-
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Figure 7: Performance of the Forward_Step test as a function of problem size. The shoulder
for the DEC 8400 has moved to about 10° elements, because many more arrays are used for
Forward_Step than for DAXPY.

portunities for reusing data loaded from main memory into cache. The degree
to which this is exploited is highly dependent upon optimizations performed
by the compiler and the way in which the code is written by the user.

The earlier drop-off point relative to DAXPY is the result of using more
arrays — whereas DAXPY uses 2 arrays, this code segment uses the equivalent
of 24 64-bit arrays, and accordingly, the drop-off point is about a factor of
12 earlier than for DAXPY. The full MIT model requires about the same
number of arrays (to hold six state variables, their time derivatives at two time
levels and geometric terms), so we expect that the rest of the Forward_Step
code should behave as this code fragment does. To put this problem size in
perspective, it is about equivalent to a global simulation with a four degree
horizontal grid and twenty vertical layers.

4.4 Inversion_Step test

The other important stage in the model algorithm is the Inversion_Step
which solves an elliptic problem to ensure non-divergent flow. In discrete form
this inversion can be written:

=/ (4)
12
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Figure 8: The preconditioned conjugate gradient algorithm used to solve for the pressure is
competitive to the CM-5 over the region of interest (104 to 105).

in which, for hydrostatic simulations, A is the horizontal Laplacian operator,
a matrix with five diagonals, and p and f represent the surface pressure and
the right-hand side term of Equation 3 respectively.

In the CM-5 implementation of the model, Equation 4 is solved using an
iterative pre-conditioned conjugate gradient (PCG) scheme. PCG is well suited
to data parallel implementations and the same algorithm was implemented in
HPF on the DEC 8400.

Figure 8 shows the performance of the PCG algorithm on the CM-5 and
DEC 8400. Note that because we are solving a two-dimensional problem in-
stead of a three-dimensional problem (required in the non-hydrostatic limit
formulation of the model), the problem sizes we consider are much smaller,
and thus the performance of the DEC 8400 does not show the characteristic
cache shoulder of the previous tests.

In addition, we perform further optimizations to minimize memory use.
In the CM-5 implementation of PCG, to reduce communication we duplicate
data structures that hold the diagonals of A shifted by one point in z and y.
On the DEC SMP system, this duplication is not necessary, and we exploit
the symmetry of A to eliminate another array by recalculating its value at
run-time. Finally, we also store A in 32-bit precision rather than 64-bit. In
total, we were able to reduce the memory required to represent A by a factor
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Skyline (Direct) vs. PCG (Iterative) solvers on DEC 8400
Ocean Skyline (1 proc) PCG (4 proc)

Size Factor | Solve | Megaflops | Solve | Megaflops
100 x 100 1.1s. 0.1s. 9.1 0.1s. 350
200 x 100 24s. | 0.2s. 8.7 2.7s. 380
200 x 200 | 23.0s. | 0.9s. 8.8 1.6 s. 467
400 x 200 | 49.7 s. 1.9s. 8.4 4.6 s. 480
400 x 400 | 238.0s. | 10.0 s. 6.4 25.8 s. 230
800 x 400 | 633.3 s. | 20.9 s. 6.1 83.5 s. 210

Figure 9: The direct solution to Az = b is divided into a factorization of A and the solve for

z. Factorization only occurs once during the run of a program, and its cost is amortized out

on long runs. The Skyline direct solver is faster in wall clock time than the PCG iterative
solve, even though it has a lower Megaflops rating.

of 5.

The PCG iterative solution can require anywhere between 10 and 200
iterations to converge — the exact number will depend on the physics of the
particular simulation. For a domain with a surface of size NX x NY, if we
assume that convergence requires nits iterations, the number of floating point
operations executed is:

nits X 32 x NX x NY

where 32 is the number of floating point operations performed per grid point
per iteration in our PCG implementation.

An alternative approach to an iterative PCG solver is a direct solver. Be-
cause A is symmetric and sparse, the LU decomposition can be stored within
the profile of the A matrix. For any A representing a closed physical domain,
this requires about NX x NX x NY elements of storage. Once the LU fac-
torization has been accomplished, we can find p using forward-backward sub-
stitution. Solving for p using this direct method requires the following number
of floating point operations:

3xNXxNX xNY

where 3 floating point operations are performed per word of the LU factoriza-
tion for the forward-backward substitution.

Because of the way the problem is posed, we can choose to appropriately
switch NX and NY to arrive at a problem with a smaller LU decomposition.
We should note, however, the lateral aspect ratio of typical geometries is not
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usually greater than 2 : 1, so that the direct method has an algorithmic com-
plexity O(n?®), whereas the iterative methods generally require about O(n?).

Despite the higher order complexity of the direct method, the high con-
stant factors in the iterative method make the direct method competitive for
a certain range of problem sizes. Suppose that a 100 x 100 sized problem
required 100 PCG iterations to converge — the PCG algorithm would require
100 x 32 x 100 x 100 = 32,000, 000 floating point operations, whereas the direct
method would only require 3 x 100 x 100 x 100 = 3, 000, 000 floating point op-
erations. However, even though the direct method may execute fewer floating
point operations, each floating point operation will be much slower than the
direct method because the direct method must stream through the entire LU
factorization, performing only 3 operations per element, leading to a fairly bad
ratio of floating point operations to memory operations.

To test the effectiveness of a direct approach versus the iterative approach,
we solved the same 2D problem using a sparse direct solver included with the
DEC DXML scientific library 25. The solver uses the skyline algorithm, which
assumes matrices have elements which are primarily close to the main diagonal.
This particular algorithm does not assume any other structure (other than
symmetry) within the A matrix, and currently only runs on 1 processor of the
8400 system — a more specialized or parallel direct solver may be faster than
this very general-purpose, single-processor algorithm.

Nevertheless, the results in Figure 9 show that a direct solver could be
a competitive solution method for certain problems. For example, Hill and
Marshal?® make a non-hydrostatic model competitive with a hydrostatic model,
even in the presence of complex geometry, by separating out, and solving to
high-accuracy, the two-dimensional surface pressure problem we examine here.
Because the direct solver returns a solution to Equation 4 which is accurate to
machine precision, the solver would be ideal for accelerating a non-hydrostatic
model.

4.5  Full application performance

We evaluate the full model’s DEC 8400 implementation by comparing its per-
formance with the CM-5 implementation for a specific physical simulation.
The simulation we chose was an experiment modeling the collapse and break
up, through baroclinic instabilities, of an anomalously dense column of fluid in
a rotating frame of reference? The chosen test has a computational grid of size
100 x 100 x 26, which is large enough to exceed the cache size of a four processor
DEC 8400, but not so large that there are no opportunities for optimization.
Figure 10 shows the relative performance of the CM-5 and DEC 8400 for
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Figure 10: Performance of the full model on a 32 node CM-5 and a DEC 8400 5/300 server.

this simulation. The DEC 8400 four processor system is about one half as
fast as the CM-5. From our previous tests, we should be able to predict the
performance of the DEC 8400 given the problem size. For the Forward_Step,
referring to Figure 7, the problem size is 2.6 x 105, which shows that the
DEC 8400 should be about 2.5 times slower than the CM-5. For the Inver-
sion_Step, referring to Figure 8, the problem size is 10%, so the DEC 8400
should be about 2.5 times faster than the CM-5.

For the problem that we simulated in Figure 10, the time spent in one time
step on the CM-5 is about equally divided between the Forward_Step and the
Inversion_Step. This ratio will depend on the physics of the simulation, in
particular, the amount of work required by the Inversion_Step varies greatly
from one problem to another. Notice that our performance prediction was fairly
accurate: the time spent in the Inversion_Step for the DEC 8400 is indeed
about 2.5 times less, and the time spent in the Forward_Step is roughly 2.5
times greater than the CM-5 time.

Although the particular integration considered here had a 50/50 balance
between forward and inversion steps on the CM-5, other simulations have a
different split. For problems that spend a large fraction of time in the inverter,
the 4-processor DEC 8400 should out-perform the CM-5.

We have also compared single processor performance of our HPF test codes
expressed in Fortran 77, using the DEC compilers. In these checks, the HPF
test code performance was always within 10% of its Fortran 77 equivalent.
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This, along with the linear scaling shown in Figure 10, leads us to conclude that
an explicit message-passing version of the MIT model (for instance, coded using
PVM or MPI) would have similar performance to our HPF implementation.
Furthermore, unlike a message-passing code, we are able to use a global address
space throughout the model, making the code much easier to understand and
modify.

5 Conclusion

We have implemented a complete hydrodynamical code in HPF on a DEC 8400
SMP. We have shown that its performance on a 4-processor DEC 8400 is com-
petitive with a 32-processor CM-5 for problems we run routinely on the CM-5.
We found that the size of a problem which could be feasibly integrated on a
mainstream SMP machine like the DEC 8400 is limited by the aggregate cache
memory size. For a 4-processor DEC 8400, performance is sufficient for coarse
resolution (& 4° horizontal resolution) climatological time scale integrations,
or for higher resolution (down to = 1°) decadal simulation.

To obtain good performance on the SMP, we analyzed and optimized a
series of isolated kernels that are the building-blocks of the full model. These
test codes highlight factors which affect performance of the full application.
For example, we see how performance scales with problem size, machine size,
and cache size. Each test also reveals strengths and weaknesses of the compiler,
and allows us to explore alternative implementations which may better match
the system. These alternatives range from simple axis order re-ordering to
completely different numerical procedures such as the substitution of a direct
linear solver for an iterative one.

Achieving good performance on microprocessor-based SMP’s depends upon
many factors, including the number of processors in the system, the size of
the caches for each processor, the speed of the individual processors, and the
maturity of the compilation system. The DEC 8400 represents a successful
combination of these attributes for our application, although other applica-
tions (e.g. spectral models or elaborate physics packages) may have different
requirements. We note that processor counts, cache sizes, and processor speeds
for SMP systems can vary significantly from vendor to vendor, although these
hardware characteristics are easy to measure. Less easy to measure is compiler
technology, which plays an equally important role in attaining good perfor-
mance — it has been our experience that some systems with adequate hardware
do not have compilers which can exploit the hardware to their full potential.

We are optimistic that microprocessor-based SMP platforms will, for real
oceanographic and meteorological applications, bridge the gap between fre-
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quently over-burdened, centralized supercomputer center facilities and under-
powered desktop workstations. However, the widespread adoption of SMP’s is
contingent on their affordability — currently, the 4-processor DEC 8400 system
is significantly more expensive than four individual workstations. Nevertheless,
it seems likely that prices will fall as high-performance SMP technology gains
popularity in the marketplace, driven primarily by demands of the business
community, as well as the scientific and engineering communities.

Finally, we note that our adherence to a high-level, global programming
model has made it significantly easier to automate the complex data flow anal-
ysis required to differentiate our forward model code. As a result we are able
to apply the TAMC adjoint model generation tooP” to our HPF code, and gen-
erate adjoint and tangent linear models automatically. Furthermore, through
appropriate replication of the data distribution directives from the forward
model, the automatically derived codes transparently inherit the parallelism
of our forward model. Using this technique we are incorporating our model
into a systematic optimization framework with relative ease.
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